encrypt.c 10.2 KB
Newer Older
lwc-tester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/* Reference implementation of ACE-128 AEAD
   Written by:
   Kalikinkar Mandal <kmandal@uwaterloo.ca>
*/

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<stdint.h>

#include "ace.h"
#include "crypto_aead.h" 
#include "api.h" 

#define KAT_SUCCESS          0
#define KAT_FILE_OPEN_ERROR -1
#define KAT_DATA_ERROR      -3
#define KAT_CRYPTO_FAILURE  -4

lwc-tester committed
20 21 22
/*
   *rate_bytes: positions of rate bytes in state
*/
lwc-tester committed
23 24
const unsigned char rate_bytes[8] = {0,1,2,3,16,17,18,19};

lwc-tester committed
25 26 27 28 29 30
/*
   *ace_init: initialization with key and nonce
   *k: key 
   *npub: nonce
   *state: state after initialization
*/
lwc-tester committed
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
int ace_init(
		unsigned char *state, 
		const unsigned char *npub,
		const unsigned char *k
	    )
{
	unsigned char i;

	//Initialize the state to all-ZERO 
	for ( i = 0; i < STATEBYTES; i++ )
		state[i] = 0x0;
		
	if ( CRYPTO_KEYBYTES == 16 && CRYPTO_NPUBBYTES == 16 )
	{
		//Assigning key at A[0..7] & C[0..7]
		for ( i = 0; i < 8; i++ )
			state[i] = k[i];
		for ( i = 0; i < 8; i++ )
			state[16+i] = k[8+i];

		//Assigning nonce at B[0..7] & E[0..7]
		for ( i = 0; i < 8; i++ )
			state[8+i] = npub[i];
		for ( i = 0; i < 8; i++ )
			state[32+i] = npub[8+i];
		
		ace_permutation(state);
lwc-tester committed
58 59
		
		//Absorbing first 64-bit key
lwc-tester committed
60 61 62 63
		for ( i = 0; i < 8; i++ )
			state[rate_bytes[i]]^=k[i];

		ace_permutation(state);
lwc-tester committed
64 65
		
		//Absorbing last 64-bit key
lwc-tester committed
66 67 68 69 70 71 72 73 74 75 76 77
		for ( i = 0; i < 8; i++ )
			state[rate_bytes[i]]^=k[8+i];

		ace_permutation(state);
	}
	else
	{
		return KAT_CRYPTO_FAILURE;
	}
return KAT_SUCCESS;
}

lwc-tester committed
78 79 80 81 82 83 84 85
/*
   *ace_ad: processing associated data
   *adlen: byte-length of ad
   *ad: associated data
   *state: state after initialization, 
           and output state is stored 
	   in "state" (inplace) 
*/
lwc-tester committed
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
int ace_ad(
			unsigned char *state,
			const unsigned char *ad, 
			const u64 adlen
		     )
{
	unsigned char i, lblen;
	u64 j, ad64len = adlen/8;
	lblen = (unsigned char)(adlen%8);

	if ( adlen == 0 )
		return(KAT_SUCCESS);
	
	//Absorbing associated data
	for ( j = 0; j < ad64len; j++ )
	{
		for ( i = 0; i < 8; i++ )
			state[rate_bytes[i]]^=ad[8*j+((u64)i)];
		//Domain seperator
                state[STATEBYTES-1]^=(0x01);
                
		ace_permutation(state);
	}

	//Process the last 64-bit block.
	if ( lblen != 0 )
	{
		for ( i = 0; i < lblen; i++ )
			state[rate_bytes[i]]^=ad[ad64len*8+(u64)i];

		state[rate_bytes[lblen]]^=(0x80); //Padding: 10*
		//Domain seperator 
		state[STATEBYTES-1]^=(0x01);
		ace_permutation(state );
	}
	else
	{
		state[rate_bytes[0]]^=(0x80); //Padding: 10*
                //Domain seperator
                state[STATEBYTES-1]^=(0x01);
		ace_permutation(state );
	}

return (KAT_SUCCESS);
}

lwc-tester committed
132 133 134 135 136 137 138
/*
   *ace_gentag: generate tag
   *k: key
   *state: state before tag generation
   *tlen: length of tag in byte
   *tag: tag
*/
lwc-tester committed
139 140 141 142 143 144 145 146 147 148
int ace_gentag(
               unsigned char *tag,
               const unsigned char tlen,
               unsigned char *state,
               const unsigned char *k
               )
{
        unsigned char i;
        if ( CRYPTO_KEYBYTES == 16 && tlen == 16 )
        {
lwc-tester committed
149
				//Absorbing first 64-bit (8 bytes) key
lwc-tester committed
150 151 152 153 154
                for ( i = 0; i < 8; i++ )
                        state[rate_bytes[i]]^=k[i];
                
                ace_permutation(state);
                
lwc-tester committed
155
                //Absorbing last 64-bit key
lwc-tester committed
156 157 158 159
                for ( i = 0; i < 8; i++ )
                        state[rate_bytes[i]]^=k[8+i];
                
                ace_permutation(state);
lwc-tester committed
160
                //Extracting 128-bit tag from A and C
lwc-tester committed
161 162 163 164 165 166 167 168 169 170 171 172 173 174
                for ( i = 0; i < 8; i++ )
                {
                        tag[i] = state[i];
                        tag[8+i] = state[16+i];
                }
        }
        else
        {
                printf("Invalid key and tag length pair.\n");
                return KAT_CRYPTO_FAILURE;
        }
        return KAT_SUCCESS;
}

lwc-tester committed
175 176 177 178 179 180 181 182 183 184 185 186
/*
   *crypto_aead_encrypt: encrypt message and produce tag
   *k: key 
   *npub: nonce
   *nsec: NULL
   *adlen: length of ad
   *ad: associated data
   *mlen: length of message
   *m: message to be encrypted
   *clen: ciphertext length + tag length
   *c: ciphertext, followed by tag
*/
lwc-tester committed
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
int crypto_aead_encrypt(
			unsigned char *c,unsigned long long *clen,
			const unsigned char *m,unsigned long long mlen,
			const unsigned char *ad,unsigned long long adlen,
			const unsigned char *nsec,
			const unsigned char *npub,
			const unsigned char *k
			)
{
	unsigned char *state;
	unsigned char *tag;
	unsigned char i, lblen;
	u64 j, m64len;

	m64len = mlen/8;
	lblen = (unsigned char)(mlen%8);
lwc-tester committed
203
	nsec=nsec;
lwc-tester committed
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

	state = (unsigned char *)malloc(sizeof(unsigned char)*STATEBYTES);
	tag = (unsigned char *)malloc(sizeof(unsigned char)*CRYPTO_ABYTES);

	//Initialize state with "key" and "nonce" and then absorbe "key" again
	if ( ace_init(state, npub, k)!= KAT_SUCCESS )
		return(KAT_CRYPTO_FAILURE);
		
	//Absorbing "ad"
        if ( adlen != 0 )
        {
                if ( ace_ad( state, ad, adlen) != KAT_SUCCESS)
                        return(KAT_CRYPTO_FAILURE);
        }

	//Encrypting "message(m)" and producing "ciphertext (c)"
        if ( mlen != 0 )
        {
                for ( j = 0; j < m64len; j++ )
                {
                        for ( i = 0; i < 8; i++ )
                        {
                                c[8*j+((u64)i)] = m[8*j+((u64)i)]^state[rate_bytes[i]];
                                state[rate_bytes[i]] = c[8*j+((u64)i)];
                        }
                        //Domain seperator
                        state[STATEBYTES-1]^=(0x02);
                
                        ace_permutation(state);
                }

                if ( lblen != 0 )
                {
                        //Encrypting the padded 64-bit block when "mlen" is not a multiple of 8
                        for ( i = 0; i < lblen; i++ )
                        {
                                c[8*m64len+((u64)i)] = m[m64len*8+(u64)i]^state[rate_bytes[i]];
                                state[rate_bytes[i]] = c[8*m64len+((u64)i)];
                        }
			state[rate_bytes[lblen]]^=(0x80); //Padding: 10*

                        //Domain seperator
                        state[STATEBYTES-1]^=(0x02);
                        ace_permutation(state);
                }
		else
		{
			state[rate_bytes[0]]^=(0x80); //Padding: 10*
                        //Domain seperator
                        state[STATEBYTES-1]^=(0x02);
			ace_permutation(state );
		}
        }
        else
	{
		state[rate_bytes[0]]^=(0x80); //Padding: 10*
                //Domain seperator
                state[STATEBYTES-1]^=(0x02);
		ace_permutation(state );
	}
	
        //Appending tag to the end of ciphertext
	if ( ace_gentag( tag, CRYPTO_ABYTES, state, k ) != KAT_SUCCESS )
		return(KAT_CRYPTO_FAILURE);
        else
        {
                for ( i = 0; i < CRYPTO_ABYTES; i++ )
                        c[mlen+(u64)i] = tag[i];
        }
	*clen = mlen+CRYPTO_ABYTES;

        /*printf("Print tag after enc.:\n");
	for ( i = 0; i < 16; i++ )
		printf("%.2X", tag[i]);
	printf("\n");*/

	free(state);
	free(tag);
return KAT_SUCCESS;
}

lwc-tester committed
285 286 287 288 289 290 291 292 293 294 295 296
/*
   *crypto_aead_decrypt: decrypt ciphertext and verify tag
   *k: key 
   *npub: nonce
   *nsec: NULL
   *adlen: length of ad
   *ad: associated data
   *clen: ciphertext length + tag length
   *c: ciphertext, followed by tag
   *mlen: length of message
   *m: message
*/
lwc-tester committed
297 298 299 300 301 302 303 304 305 306 307 308 309 310
int crypto_aead_decrypt(
			unsigned char *m,unsigned long long *mlen,
			unsigned char *nsec,
			const unsigned char *c,unsigned long long clen,
			const unsigned char *ad,unsigned long long adlen,
			const unsigned char *npub,
			const unsigned char *k
			)
{
	unsigned char i, lblen;
	u64 j, clen1, c64len;
        clen1 = clen-CRYPTO_ABYTES;
        c64len = clen1/8;
	lblen = (unsigned char)(clen1%8);
lwc-tester committed
311
	nsec = nsec;
lwc-tester committed
312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
	
	unsigned char *state;
	unsigned char *tag;

	state = (unsigned char *)malloc(sizeof(unsigned char)*STATEBYTES);
	tag = (unsigned char *)malloc(sizeof(unsigned char)*CRYPTO_ABYTES);

	//Initialize state with "key" and "nonce" and then absorbe "key" again
	if ( ace_init(state, npub, k)!= KAT_SUCCESS )
		return(KAT_CRYPTO_FAILURE);

	//Absorbing "ad"
        if ( adlen != 0 )
        {
                if ( ace_ad( state, ad, adlen) != KAT_SUCCESS)
                        return(KAT_CRYPTO_FAILURE);
        }

        if ( clen1 != 0 )
        {
                for ( j = 0; j < c64len; j++ )
                {
                        for ( i = 0; i < 8; i++ )
                        {
                                m[8*j+((u64)i)] = c[8*j+((u64)i)]^state[rate_bytes[i]];
                                state[rate_bytes[i]] = c[8*j+((u64)i)];
                        }
                        //Domain seperator
                        state[STATEBYTES-1]^=(0x02);
                        ace_permutation(state);
                }

                if ( lblen != 0 )
                {
                        //Decrypting last 64-bit block
                        for ( i = 0; i < lblen; i++ )
                        {
                                m[8*c64len +((u64)i)] = c[8*c64len +((u64)i)]^state[rate_bytes[i]];
                                state[rate_bytes[i]] = c[8*c64len +((u64)i)];
                        }
			state[rate_bytes[i]]^=(0x80); //Padding: 10*

                        //Domain seperator
                        state[STATEBYTES-1]^=(0x02);
                        ace_permutation(state);
                }
		else
		{
			state[rate_bytes[0]]^=(0x80); //Padding: 10*
                        //Domain seperator
                        state[STATEBYTES-1]^=(0x02);
			ace_permutation(state );
		}
        }
        else
        {
                state[rate_bytes[0]]^=(0x80); //Padding: 10*
                //Domain seperator
                state[STATEBYTES-1]^=(0x02);
                ace_permutation(state );
        }
        
	//Generating and verifying the tag
	if ( ace_gentag( tag, CRYPTO_ABYTES, state, k ) != KAT_SUCCESS )
		return(KAT_CRYPTO_FAILURE);
        else
        {
                for ( i = 0; i < CRYPTO_ABYTES; i++ )
                {
                        if ( c[clen1 + (u64)i] != tag[i] )
                                return(KAT_CRYPTO_FAILURE);
                }
        }
	*mlen = clen-CRYPTO_ABYTES;

        /*printf("Print tag after dec.:\n");
	for ( i = 0; i < 16; i++ )
		printf("%.2X", tag[i]);
	printf("\n");*/

	free(state);
	free(tag);
	
return KAT_SUCCESS;
}