encrypt.c 10.9 KB
Newer Older
lwc-tester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

/* Reference implementation of SPIX-128 AEAD
   Written by:
   Kalikinkar Mandal <kmandal@uwaterloo.ca>
*/

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<stdint.h>

#include "sliscp_light256.h"
#include "crypto_aead.h" 
#include "api.h" 

#define KAT_SUCCESS          0
#define KAT_FILE_OPEN_ERROR -1
#define KAT_DATA_ERROR      -3
#define KAT_CRYPTO_FAILURE  -4

lwc-tester committed
21 22 23
/*
   *rate_bytes256: positions of rate bytes in state
*/
lwc-tester committed
24 25
const unsigned char rate_bytes256[8] = {8,9,10,11,24,25,26,27};

lwc-tester committed
26 27 28 29 30 31
/*
   *spix_init: initialization with key and nonce
   *k: key 
   *npub: nonce
   *state: state after initialization
*/
lwc-tester committed
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
int spix_init(
			unsigned char *state, 
			const unsigned char *npub,
			const unsigned char *k
			)
{
	unsigned char i;

	// Initialize the state to all-ZERO 
	for ( i = 0; i < STATEBYTES; i++ )
		state[i] = 0x0;
		
	if ( CRYPTO_KEYBYTES == 16 && CRYPTO_NPUBBYTES == 16 )
	{
		//Assigning nonce
		for ( i = 0; i < 8; i++ )
			state[i] = npub[i];
		for ( i = 0; i < 8; i++ )
			state[16+i] = npub[8+i];

		//Initial assignment of Key
		for ( i = 0; i < 8; i++ )
			state[8+i] = k[i];
		for ( i = 0; i < 8; i++ )
			state[24+i] = k[8+i];
		
		sliscp_permutation256r18(state );

lwc-tester committed
60
		//Absorbing first 64-bit key again
lwc-tester committed
61 62 63 64 65
		for ( i = 0; i < 8; i++ )
			state[rate_bytes256[i]]^=k[i];

		sliscp_permutation256r18(state);

lwc-tester committed
66
		//Absorbing last 64-bit key again
lwc-tester committed
67 68 69 70 71 72 73 74 75 76 77 78
		for ( i = 0; i < 8; i++ )
			state[rate_bytes256[i]]^=k[8+i];

		sliscp_permutation256r18(state);
	}
	else
	{
		return KAT_CRYPTO_FAILURE;
	}
return KAT_SUCCESS;
}

lwc-tester committed
79 80 81 82 83 84 85 86
/*
   *spix_ad: processing associated data
   *adlen: byte-length of ad
   *ad: associated data
   *state: state after initialization, 
           and output state is stored 
	   in "state" (inplace) 
*/
lwc-tester committed
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
int spix_ad(
             unsigned char *state,
             const unsigned char *ad,
             const u64 adlen
		     )
{
	unsigned char i, lblen;
	u64 j, ad64len = adlen/8;
	lblen = (unsigned char)(adlen%8);

	if ( adlen == 0 )
		return(KAT_SUCCESS);
        
        //Absorbing associated data
        if ( adlen != 0 )
        {
                for ( j = 0; j < ad64len; j++ )
                {
                        for ( i = 0; i < 8; i++ )
                                state[rate_bytes256[i]]^=ad[8*j+((u64)i)];
                        //Domain seperator
                        state[STATEBYTES-1]^=(0x01);
                        sliscp_permutation256r9(state);
                }

lwc-tester committed
112
                //Process the last 64-bit block if "adlen" is not a multiple of 8 bytes
lwc-tester committed
113 114 115 116 117 118 119 120 121
                if ( lblen != 0 )
                {
                        for ( i = 0; i < lblen; i++ )
                                state[rate_bytes256[i]]^=ad[ad64len*8+(u64)i];
                        state[rate_bytes256[lblen]]^=(0x80); // Padding: 10*
                        //Domain seperator
                        state[STATEBYTES-1]^=(0x01);
                        sliscp_permutation256r9(state );
                }
lwc-tester committed
122 123 124 125 126 127 128
		else
		{
			state[rate_bytes256[0]]^=(0x80); //Padding: 10*
                        //Domain seperator
                        state[STATEBYTES-1]^=(0x01);
                        sliscp_permutation256r9(state );
		}
lwc-tester committed
129 130 131 132 133
        }

return (KAT_SUCCESS);
}

lwc-tester committed
134 135 136 137 138 139 140
/*
   *spix_gentag: generate tag
   *k: key
   *state: state before tag generation
   *tlen: length of tag in byte
   *tag: tag
*/
lwc-tester committed
141 142 143 144 145 146 147 148 149 150
int spix_gentag(
                unsigned char *tag,
                const unsigned char tlen,
                unsigned char *state,
                const unsigned char *k
                )
{
        unsigned char i;
        if ( CRYPTO_KEYBYTES == 16 && tlen == 16 )
        {
lwc-tester committed
151
		//Absorbing first 64-bit (8 bytes) key
lwc-tester committed
152 153 154 155
                for ( i = 0; i < 8; i++ )
                        state[rate_bytes256[i]]^=k[i];
                sliscp_permutation256r18(state );
                
lwc-tester committed
156
		//Absorbing last 64-bit key
lwc-tester committed
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
                for ( i = 0; i < 8; i++ )
                        state[rate_bytes256[i]]^=k[8+i];
                sliscp_permutation256r18(state);
                
                //Extracting 128-bit tag from X1 and X3
                for ( i = 0; i < 8; i++ )
                {
                        tag[i] = state[8+i];
                        tag[8+i] = state[24+i];
                }
        }
        else
        {
                printf("Invalid key and tag length pair.\n");
                return KAT_CRYPTO_FAILURE;
        }
        return KAT_SUCCESS;
}

lwc-tester committed
176 177 178 179 180 181 182 183 184 185 186 187 188
/*
   *crypto_aead_encrypt: encrypt message and produce tag
   *k: key 
   *npub: nonce
   *nsec: NULL
   *adlen: length of ad
   *ad: associated data
   *mlen: length of message
   *m: message to be encrypted
   *clen: ciphertext length + tag length
   *c: ciphertext, followed by tag
*/

lwc-tester committed
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
int crypto_aead_encrypt(
			unsigned char *c,unsigned long long *clen,
			const unsigned char *m,unsigned long long mlen,
			const unsigned char *ad,unsigned long long adlen,
			const unsigned char *nsec,
			const unsigned char *npub,
			const unsigned char *k
			)
{
	unsigned char *state;
	unsigned char *tag;
	unsigned char i, lblen;
	u64 j, m64len;

	m64len = mlen/8;
	lblen = (unsigned char)(mlen%8);

lwc-tester committed
206 207
	nsec=nsec;

lwc-tester committed
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
	state = (unsigned char *)malloc(sizeof(unsigned char)*STATEBYTES);
	tag = (unsigned char *)malloc(sizeof(unsigned char)*CRYPTO_ABYTES);

	//Initialize state with "key" and "nonce" and then absorbe "key" again
	if ( spix_init (state, npub, k)!= KAT_SUCCESS )
		return(KAT_CRYPTO_FAILURE);

	//Absorbing "ad"
        if ( adlen != 0 )
        {
                if ( spix_ad( state, ad, adlen) != KAT_SUCCESS)
                        return(KAT_CRYPTO_FAILURE);
        }

	//Encrypting "message(m)" and producing "ciphertext (c)"
        if ( mlen != 0 )
        {
                for ( j = 0; j < m64len; j++ )
                {
                        for ( i = 0; i < 8; i++ )
                        {
                                c[8*j+((u64)i)] = m[8*j+((u64)i)]^state[rate_bytes256[i]];
                                state[rate_bytes256[i]] = c[8*j+((u64)i)];
                        }
                        //Domain seperator
                        state[STATEBYTES-1]^=(0x02);
                        sliscp_permutation256r9(state);
                }
                if ( lblen != 0 )
                {
                        //Encrypting the padded 64-bit block when "mlen" is not a multiple of 8
                        for ( i = 0; i < lblen; i++ )
                        {
                                c[8*m64len+((u64)i)]=m[8*m64len+((u64)i)]^state[rate_bytes256[i]];
                                state[rate_bytes256[i]]=c[8*m64len+((u64)i)];
                        }
                        state[rate_bytes256[lblen]]^=(0x80);// Padding: 10*
                       
                        //Domain seperator
                        state[STATEBYTES-1]^=(0x02);
                        sliscp_permutation256r9(state);
                }
                else
                {
                        state[rate_bytes256[0]]^=(0x80);// Padding: 10*
                        //Domain seperator
                        state[STATEBYTES-1]^=(0x02);
                        sliscp_permutation256r9(state);
                }
        }
        else
        {
                state[rate_bytes256[0]]^=(0x80);// Padding: 10*
                //Domain seperator
                state[STATEBYTES-1]^=(0x02);
                sliscp_permutation256r9(state);
        }
        
        //Appending tag to the end of ciphertext
	if ( spix_gentag ( tag, CRYPTO_ABYTES, state, k ) != KAT_SUCCESS )
		return(KAT_CRYPTO_FAILURE);
        else
        {
                for ( i = 0; i < CRYPTO_ABYTES; i++ )
                        c[mlen+(u64)i] = tag[i];
        }
	*clen = mlen+CRYPTO_ABYTES;

	free(state);
	free(tag);
return KAT_SUCCESS;
}

lwc-tester committed
281 282 283 284 285 286 287 288 289 290 291 292
/*
   *crypto_aead_decrypt: decrypt ciphertext and verify tag
   *k: key 
   *npub: nonce
   *nsec: NULL
   *adlen: length of ad
   *ad: associated data
   *clen: ciphertext length + tag length
   *c: ciphertext, followed by tag
   *mlen: length of message
   *m: message
*/
lwc-tester committed
293 294 295 296 297 298 299 300 301 302 303 304 305 306
int crypto_aead_decrypt(
			unsigned char *m,unsigned long long *mlen,
			unsigned char *nsec,
			const unsigned char *c,unsigned long long clen,
			const unsigned char *ad,unsigned long long adlen,
			const unsigned char *npub,
			const unsigned char *k
			)
{
	unsigned char i, lblen;
	u64 j, clen1, c64len;
        clen1 = clen - CRYPTO_ABYTES;
        c64len = clen1/8;
	lblen = (unsigned char)(clen1%8);
lwc-tester committed
307
	nsec=nsec;
lwc-tester committed
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
	
	unsigned char *state;
	unsigned char *tag;

	state = (unsigned char *)malloc(sizeof(unsigned char)*STATEBYTES);
	tag = (unsigned char *)malloc(sizeof(unsigned char)*CRYPTO_ABYTES);

	//Initialize state with "key" and "nonce" and then absorbe "key" again
	if ( spix_init (state, npub, k)!= KAT_SUCCESS )
		return(KAT_CRYPTO_FAILURE);

	//Absorbing "ad"
        if ( adlen != 0 )
        {
                if ( spix_ad( state, ad, adlen) != KAT_SUCCESS)
                        return(KAT_CRYPTO_FAILURE);
        }

        if ( clen1 != 0 )
        {
                for ( j = 0; j < c64len; j++ )
                {
                        for ( i = 0; i < 8; i++ )
                        {
                                m[8*j+((u64)i)] = c[8*j+((u64)i)]^state[rate_bytes256[i]];
                                state[rate_bytes256[i]] = c[8*j+((u64)i)];
                        }
                        //Domain seperator
                        state[STATEBYTES-1]^=(0x02);
                        sliscp_permutation256r9(state);
                }

                if ( lblen != 0 )
                {
                        //Decrypting last 64-bit block
                        for ( i = 0; i < lblen; i++ )
                        {
                                m[8*c64len +((u64)i)]=c[8*c64len +((u64)i)]^state[rate_bytes256[i]];
                                state[rate_bytes256[i]]=c[8*c64len +((u64)i)];
                        }
                        state[rate_bytes256[lblen]]^=(0x80); //Padding: 10*

                        //Domain seperator
                        state[STATEBYTES-1]^=(0x02);
                        sliscp_permutation256r9(state);
                }
                else
                {
                        state[rate_bytes256[0]]^=(0x80); //Padding: 10*
                        //Domain seperator
                        state[STATEBYTES-1]^=(0x02);
                        sliscp_permutation256r9(state);
                }
        }
        else
        {
                state[rate_bytes256[0]]^=(0x80); //Padding: 10*
                //Domain seperator
                state[STATEBYTES-1]^=(0x02);
                sliscp_permutation256r9(state);
        }
	
        //Generating and verifying the tag
	if ( spix_gentag ( tag, CRYPTO_ABYTES, state, k ) != KAT_SUCCESS )
		return(KAT_CRYPTO_FAILURE);
        else
        {
                for ( i = 0; i < CRYPTO_ABYTES; i++ )
                {
                        if ( c[clen1 + (u64)i] != tag[i] )
                                return(KAT_CRYPTO_FAILURE);
                }
        }
	*mlen = clen-CRYPTO_ABYTES;

	free(state);
	free(tag);
	
return KAT_SUCCESS;
}