Skip to content
Toggle navigation
P
Projects
G
Groups
S
Snippets
Help
FORMUS3IC_LAS3
/
embb
This project
Loading...
Sign in
Toggle navigation
Go to a project
Project
Repository
Issues
0
Merge Requests
0
Pipelines
Wiki
Members
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Commit
d793c0c6
authored
Oct 30, 2015
by
Christian Kern
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'development' into embb_520_prepare_valuepool_for_herlihy_object_pool
parents
51938714
b9182d3d
Show whitespace changes
Inline
Side-by-side
Showing
10 changed files
with
1114 additions
and
866 deletions
+1114
-866
base_c/src/internal/thread_index.c
+15
-0
containers_cpp/include/embb/containers/internal/hazard_pointer-inl.h
+338
-364
containers_cpp/include/embb/containers/internal/hazard_pointer.h
+198
-411
containers_cpp/include/embb/containers/internal/lock_free_mpmc_queue-inl.h
+11
-12
containers_cpp/include/embb/containers/internal/lock_free_stack-inl.h
+7
-8
containers_cpp/include/embb/containers/lock_free_mpmc_queue.h
+18
-7
containers_cpp/include/embb/containers/lock_free_stack.h
+17
-5
containers_cpp/test/hazard_pointer_test.cc
+412
-43
containers_cpp/test/hazard_pointer_test.h
+96
-16
containers_cpp/test/main.cc
+2
-0
No files found.
base_c/src/internal/thread_index.c
View file @
d793c0c6
...
@@ -128,6 +128,20 @@ void embb_internal_thread_index_set_max(unsigned int max) {
...
@@ -128,6 +128,20 @@ void embb_internal_thread_index_set_max(unsigned int max) {
*
embb_max_number_thread_indices
()
=
max
;
*
embb_max_number_thread_indices
()
=
max
;
}
}
/**
* \pre the calling thread is the only active thread
*
* \post the thread indices count and calling thread index is reset
*/
void
embb_internal_thread_index_reset
()
{
void
embb_internal_thread_index_reset
()
{
/** This function is only called in tests, usually when all other threads
* except the main thread have terminated. However, the main thread still has
* potentially stored its old index value in its thread local storage,
* which might be assigned additionally to another thread (as the counter is
* reset), which may lead to hard to detect bugs. Therefore, reset the thread
* local thread id here.
*/
embb_internal_thread_index_var
=
UINT_MAX
;
embb_counter_init
(
embb_thread_index_counter
());
embb_counter_init
(
embb_thread_index_counter
());
}
}
\ No newline at end of file
containers_cpp/include/embb/containers/internal/hazard_pointer-inl.h
View file @
d793c0c6
...
@@ -30,386 +30,360 @@
...
@@ -30,386 +30,360 @@
namespace
embb
{
namespace
embb
{
namespace
containers
{
namespace
containers
{
namespace
internal
{
namespace
internal
{
template
<
typename
ElementT
>
// Visual Studio is complaining, that the return in the last line of this
FixedSizeList
<
ElementT
>::
FixedSizeList
(
size_t
max_size
)
:
// function is not reachable. This is true, as long as exceptions are enabled.
max_size
(
max_size
),
// Otherwise, the exception becomes an assertion and with disabling assertions,
size
(
0
)
{
// the code becomes reachable. So, disabling this warning.
elementsArray
=
static_cast
<
ElementT
*>
(
#ifdef EMBB_PLATFORM_COMPILER_MSVC
embb
::
base
::
Allocation
::
Allocate
(
sizeof
(
ElementT
)
*
#pragma warning(push)
max_size
));
#pragma warning(disable:4702)
}
template
<
typename
ElementT
>
inline
size_t
FixedSizeList
<
ElementT
>::
GetSize
()
const
{
return
size
;
}
template
<
typename
ElementT
>
inline
size_t
FixedSizeList
<
ElementT
>::
GetMaxSize
()
const
{
return
max_size
;
}
template
<
typename
ElementT
>
inline
void
FixedSizeList
<
ElementT
>::
clear
()
{
size
=
0
;
}
template
<
typename
ElementT
>
typename
FixedSizeList
<
ElementT
>::
iterator
FixedSizeList
<
ElementT
>::
begin
()
const
{
return
&
elementsArray
[
0
];
}
template
<
typename
ElementT
>
typename
FixedSizeList
<
ElementT
>::
iterator
FixedSizeList
<
ElementT
>::
end
()
const
{
return
&
elementsArray
[
size
];
}
template
<
typename
ElementT
>
FixedSizeList
<
ElementT
>
&
FixedSizeList
<
ElementT
>::
operator
=
(
const
FixedSizeList
&
other
)
{
size
=
0
;
if
(
max_size
<
other
.
size
)
{
EMBB_THROW
(
embb
::
base
::
ErrorException
,
"Copy target to small"
);
}
for
(
const_iterator
it
=
other
.
begin
();
it
!=
other
.
end
();
++
it
)
{
PushBack
(
*
it
);
}
return
*
this
;
}
template
<
typename
ElementT
>
bool
FixedSizeList
<
ElementT
>::
PushBack
(
ElementT
const
el
)
{
if
(
size
+
1
>
max_size
)
{
return
false
;
}
elementsArray
[
size
]
=
el
;
size
++
;
return
true
;
}
template
<
typename
ElementT
>
FixedSizeList
<
ElementT
>::~
FixedSizeList
()
{
embb
::
base
::
Allocation
::
Free
(
elementsArray
);
}
template
<
typename
GuardType
>
bool
HazardPointerThreadEntry
<
GuardType
>::
IsActive
()
{
return
is_active
;
}
template
<
typename
GuardType
>
bool
HazardPointerThreadEntry
<
GuardType
>::
TryReserve
()
{
bool
expected
=
false
;
return
is_active
.
CompareAndSwap
(
expected
,
true
);
}
template
<
typename
GuardType
>
void
HazardPointerThreadEntry
<
GuardType
>::
Deactivate
()
{
is_active
=
false
;
}
template
<
typename
GuardType
>
size_t
HazardPointerThreadEntry
<
GuardType
>::
GetRetiredCounter
()
{
return
retired_list
.
GetSize
();
}
template
<
typename
GuardType
>
FixedSizeList
<
GuardType
>&
HazardPointerThreadEntry
<
GuardType
>::
GetRetired
()
{
return
retired_list
;
}
template
<
typename
GuardType
>
FixedSizeList
<
GuardType
>&
HazardPointerThreadEntry
<
GuardType
>::
GetRetiredTemp
()
{
return
retired_list_temp
;
}
template
<
typename
GuardType
>
FixedSizeList
<
GuardType
>&
HazardPointerThreadEntry
<
GuardType
>::
GetHazardTemp
()
{
return
hazard_pointer_list_temp
;
}
template
<
typename
GuardType
>
void
HazardPointerThreadEntry
<
GuardType
>::
SetRetired
(
internal
::
FixedSizeList
<
GuardType
>
const
&
retired_list
)
{
this
->
retired_list
=
retired_list
;
}
template
<
typename
GuardType
>
HazardPointerThreadEntry
<
GuardType
>::
HazardPointerThreadEntry
(
GuardType
undefined_guard
,
int
guards_per_thread
,
size_t
max_size_retired_list
)
:
#ifdef EMBB_DEBUG
who_is_scanning
(
-
1
),
#endif
#endif
undefined_guard
(
undefined_guard
),
template
<
typename
GuardType
>
guards_per_thread
(
guards_per_thread
),
unsigned
int
HazardPointer
<
GuardType
>::
GetObjectLocalThreadIndex
()
{
max_size_retired_list
(
max_size_retired_list
),
// first, get the EMBB native thread id.
// initially, each potential thread is active... if that is not the case
unsigned
int
embb_thread_index
;
// another thread could call "HelpScan", and block this thread in making
// progress.
int
return_val
=
embb_internal_thread_index
(
&
embb_thread_index
);
// Still, threads can be leave the hazard pointer processing (deactivation),
// but this can only be done once, i.e., this is not revertable...
if
(
return_val
!=
EMBB_SUCCESS
)
{
is_active
(
1
),
EMBB_THROW
(
embb
::
base
::
ErrorException
,
"Could not get thread id"
);
retired_list
(
max_size_retired_list
),
}
retired_list_temp
(
max_size_retired_list
),
hazard_pointer_list_temp
(
embb
::
base
::
Thread
::
GetThreadsMaxCount
()
*
// iterate over the mappings array
guards_per_thread
)
{
for
(
unsigned
int
i
=
0
;
i
!=
max_accessors_count_
;
++
i
)
{
// Initialize guarded pointer list
// end of mappings? then we need to write our id
guarded_pointers
=
static_cast
<
embb
::
base
::
Atomic
<
GuardType
>*>
if
(
thread_id_mapping_
[
i
]
==
-
1
)
{
(
embb
::
base
::
Allocation
::
Allocate
(
// try to CAS the initial value with out thread id
sizeof
(
embb
::
base
::
Atomic
<
GuardType
>
)
*
guards_per_thread
));
for
(
int
i
=
0
;
i
!=
guards_per_thread
;
++
i
)
{
new
(
static_cast
<
void
*>
(
&
guarded_pointers
[
i
]))
embb
::
base
::
Atomic
<
GuardType
>
(
undefined_guard
);
}
}
template
<
typename
GuardType
>
HazardPointerThreadEntry
<
GuardType
>::~
HazardPointerThreadEntry
()
{
for
(
int
i
=
0
;
i
!=
guards_per_thread
;
++
i
)
{
guarded_pointers
[
i
].
~
Atomic
();
}
embb
::
base
::
Allocation
::
Free
(
guarded_pointers
);
}
template
<
typename
GuardType
>
GuardType
HazardPointerThreadEntry
<
GuardType
>::
GetGuard
(
int
pos
)
const
{
return
guarded_pointers
[
pos
];
}
template
<
typename
GuardType
>
void
HazardPointerThreadEntry
<
GuardType
>::
AddRetired
(
GuardType
pointerToGuard
)
{
retired_list
.
PushBack
(
pointerToGuard
);
}
template
<
typename
GuardType
>
void
HazardPointerThreadEntry
<
GuardType
>::
GuardPointer
(
int
guardNumber
,
GuardType
pointerToGuard
)
{
guarded_pointers
[
guardNumber
]
=
pointerToGuard
;
}
template
<
typename
GuardType
>
void
HazardPointerThreadEntry
<
GuardType
>::
SetActive
(
bool
active
)
{
is_active
=
active
;
}
template
<
typename
GuardType
>
unsigned
int
HazardPointer
<
GuardType
>::
GetCurrentThreadIndex
()
{
unsigned
int
thread_index
;
int
return_val
=
embb_internal_thread_index
(
&
thread_index
);
if
(
return_val
!=
EMBB_SUCCESS
)
EMBB_THROW
(
embb
::
base
::
ErrorException
,
"Could not get thread id!"
);
return
thread_index
;
}
template
<
typename
GuardType
>
bool
HazardPointer
<
GuardType
>::
IsThresholdExceeded
()
{
double
retiredCounterLocThread
=
static_cast
<
double
>
(
GetHazardPointerElementForCurrentThread
().
GetRetiredCounter
());
return
(
retiredCounterLocThread
>=
RETIRE_THRESHOLD
*
static_cast
<
double
>
(
active_hazard_pointer
)
*
static_cast
<
double
>
(
guards_per_thread
));
}
template
<
typename
GuardType
>
size_t
HazardPointer
<
GuardType
>::
GetActiveHazardPointers
()
{
return
active_hazard_pointer
;
}
template
<
typename
GuardType
>
typename
HazardPointer
<
GuardType
>::
HazardPointerThreadEntry_t
&
HazardPointer
<
GuardType
>::
GetHazardPointerElementForCurrentThread
()
{
// For each thread, there is a slot in the hazard pointer array.
// Initially, the active flag of a hazard pointer entry is false.
// Only the respective thread changes the flag from true to false.
// This means that the current thread tells that he is about to
// stop operating, and the others are responsible for his retired
// list.
return
hazard_pointer_thread_entry_array
[
GetCurrentThreadIndex
()];
}
template
<
typename
GuardType
>
void
HazardPointer
<
GuardType
>::
HelpScan
()
{
// This is a little bit different than in the paper. In the paper,
// the retired nodes from other threads are added to our retired list.
// To be able to give a bound on memory consumption, we execute scan
// for those threads, without moving elements. The effect shall be
// the same.
for
(
size_t
i
=
0
;
i
!=
hazard_pointers
;
++
i
)
{
// Try to find non active lists...
if
(
!
hazard_pointer_thread_entry_array
[
i
].
IsActive
()
&&
hazard_pointer_thread_entry_array
[
i
].
TryReserve
())
{
// Here: grab retired things, first check if there are any...
if
(
hazard_pointer_thread_entry_array
[
i
].
GetRetiredCounter
()
>
0
)
{
Scan
(
&
hazard_pointer_thread_entry_array
[
i
]);
}
// We are done, mark it as deactivated again
hazard_pointer_thread_entry_array
[
i
].
Deactivate
();
}
}
}
template
<
typename
GuardType
>
void
HazardPointer
<
GuardType
>::
Scan
(
HazardPointerThreadEntry_t
*
currentHazardPointerEntry
)
{
#ifdef EMBB_DEBUG
// scan should only be executed by one thread at a time, otherwise we have
// a bug... this assertions checks that
int
expected
=
-
1
;
int
expected
=
-
1
;
if
(
!
currentHazardPointerEntry
->
GetScanningThread
().
CompareAndSwap
(
if
(
thread_id_mapping_
[
i
].
CompareAndSwap
(
expected
,
expected
,
static_cast
<
int
>
(
GetCurrentThreadIndex
())))
{
static_cast
<
int
>
(
embb_thread_index
)))
{
assert
(
false
);
//successful, return our mapping
return
i
;
}
}
if
(
thread_id_mapping_
[
i
]
==
static_cast
<
int
>
(
embb_thread_index
))
{
// found our mapping!
return
i
;
}
}
// when we reach this point, we have too many accessors
// (no mapping possible)
EMBB_THROW
(
embb
::
base
::
ErrorException
,
"Too many accessors"
);
return
0
;
}
}
#ifdef EMBB_PLATFORM_COMPILER_MSVC
#pragma warning(pop)
#endif
#endif
// In this function, we compute the intersection between local retired
// pointers and all hazard pointers. This intersection cannot be deleted and
template
<
typename
GuardType
>
// forms the new local retired pointers list.
void
HazardPointer
<
GuardType
>::
RemoveGuard
(
int
guard_position
)
{
// It is assumed that the union of all retired pointers contains no two
const
unsigned
int
my_thread_id
=
GetObjectLocalThreadIndex
();
// pointers with the same value. However, the union of all hazard guards
// might.
// check invariants...
assert
(
guard_position
<
max_guards_per_thread_
);
// Here, we store the temporary hazard pointers. We have to store them,
assert
(
my_thread_id
<
max_accessors_count_
);
// as iterating multiple time over them might be expensive, as this
// atomic array is shared between threads.
// set guard
currentHazardPointerEntry
->
GetHazardTemp
().
clear
();
guards_
[
guard_position
*
max_accessors_count_
+
my_thread_id
]
=
undefined_guard_
;
// Get all active hazard pointers!
}
for
(
unsigned
int
i
=
0
;
i
!=
hazard_pointers
;
++
i
)
{
// Only consider guards of active threads
template
<
typename
GuardType
>
if
(
hazard_pointer_thread_entry_array
[
i
].
IsActive
())
{
HazardPointer
<
GuardType
>::
HazardPointer
(
// For each guard in an hazard pointer entry
embb
::
base
::
Function
<
void
,
GuardType
>
freeGuardCallback
,
for
(
int
pos
=
0
;
pos
!=
guards_per_thread
;
++
pos
)
{
GuardType
undefined_guard
,
int
guardsPerThread
,
int
accessors
)
:
GuardType
guard
=
hazard_pointer_thread_entry_array
[
i
].
GetGuard
(
pos
);
max_accessors_count_
(
accessors
<
0
?
embb
::
base
::
Thread
::
GetThreadsMaxCount
()
:
accessors
),
// UndefinedGuard means not guarded
undefined_guard_
(
undefined_guard
),
if
(
guard
==
undefined_guard
)
max_guards_per_thread_
(
guardsPerThread
),
continue
;
release_object_callback_
(
freeGuardCallback
),
thread_id_mapping_
(
static_cast
<
embb
::
base
::
Atomic
<
int
>*>
(
currentHazardPointerEntry
->
GetHazardTemp
().
PushBack
(
guard
);
embb
::
base
::
Allocation
::
Allocate
(
sizeof
(
embb
::
base
::
Atomic
<
int
>
)
}
*
max_accessors_count_
))),
}
guards_
(
static_cast
<
embb
::
base
::
Atomic
<
GuardType
>*>
}
(
embb
::
base
::
Allocation
::
Allocate
(
sizeof
(
embb
::
base
::
Atomic
<
GuardType
>
)
*
max_guards_per_thread_
*
currentHazardPointerEntry
->
GetRetiredTemp
().
clear
();
max_accessors_count_
))),
thread_local_retired_lists_temp_
(
static_cast
<
GuardType
*>
// Sort them, we will do a binary search on each entry from the retired list
(
embb
::
base
::
Allocation
::
Allocate
(
std
::
sort
(
sizeof
(
GuardType
)
*
max_guards_per_thread_
*
max_accessors_count_
*
currentHazardPointerEntry
->
GetHazardTemp
().
begin
(),
max_accessors_count_
currentHazardPointerEntry
->
GetHazardTemp
().
end
());
))),
thread_local_retired_lists_
(
static_cast
<
GuardType
*>
for
(
(
embb
::
base
::
Allocation
::
Allocate
(
EMBB_CONTAINERS_CPP_DEPENDANT_TYPENAME
FixedSizeList
<
GuardType
>::
iterator
sizeof
(
GuardType
)
*
max_guards_per_thread_
*
max_accessors_count_
*
it
=
currentHazardPointerEntry
->
GetRetired
().
begin
();
max_accessors_count_
it
!=
currentHazardPointerEntry
->
GetRetired
().
end
();
++
it
)
{
)))
{
if
(
false
==
::
std
::
binary_search
(
const
unsigned
int
count_guards
=
currentHazardPointerEntry
->
GetHazardTemp
().
begin
(),
max_guards_per_thread_
*
max_accessors_count_
;
currentHazardPointerEntry
->
GetHazardTemp
().
end
(),
*
it
))
{
this
->
free_guard_callback
(
*
it
);
const
unsigned
int
count_ret_elements
=
count_guards
*
max_accessors_count_
;
for
(
unsigned
int
i
=
0
;
i
!=
max_accessors_count_
;
++
i
)
{
//in-place new for each cell
new
(
&
thread_id_mapping_
[
i
])
embb
::
base
::
Atomic
<
int
>
(
-
1
);
}
for
(
unsigned
int
i
=
0
;
i
!=
count_guards
;
++
i
)
{
//in-place new for each cell
new
(
&
guards_
[
i
])
embb
::
base
::
Atomic
<
GuardType
>
(
undefined_guard
);
}
for
(
unsigned
int
i
=
0
;
i
!=
count_ret_elements
;
++
i
)
{
//in-place new for each cell
new
(
&
thread_local_retired_lists_temp_
[
i
])
GuardType
(
undefined_guard
);
}
for
(
unsigned
int
i
=
0
;
i
!=
count_ret_elements
;
++
i
)
{
//in-place new for each cell
new
(
&
thread_local_retired_lists_
[
i
])
GuardType
(
undefined_guard
);
}
}
template
<
typename
GuardType
>
HazardPointer
<
GuardType
>::~
HazardPointer
()
{
const
unsigned
int
count_guards
=
max_guards_per_thread_
*
max_accessors_count_
;
const
unsigned
int
count_ret_elements
=
count_guards
*
max_accessors_count_
;
// Release references from all retired lists. Note that for this to work,
// the data structure using hazard pointer has still to be active... So
// first, the hazard pointer class shall be destructed, then the memory
// management class (e.g. some pool). Otherwise, the hazard pointer class
// would try to return memory to an already destructed memory manager.
for
(
unsigned
int
i
=
0
;
i
!=
count_ret_elements
;
++
i
)
{
GuardType
pointerToFree
=
thread_local_retired_lists_
[
i
];
if
(
pointerToFree
==
undefined_guard_
)
{
break
;
}
release_object_callback_
(
pointerToFree
);
}
for
(
unsigned
int
i
=
0
;
i
!=
max_accessors_count_
;
++
i
)
{
thread_id_mapping_
[
i
].
~
Atomic
();
}
embb
::
base
::
Allocation
::
Free
(
thread_id_mapping_
);
for
(
unsigned
int
i
=
0
;
i
!=
count_guards
;
++
i
)
{
guards_
[
i
].
~
Atomic
();
}
embb
::
base
::
Allocation
::
Free
(
guards_
);
for
(
unsigned
int
i
=
0
;
i
!=
count_ret_elements
;
++
i
)
{
thread_local_retired_lists_temp_
[
i
].
~
GuardType
();
}
embb
::
base
::
Allocation
::
Free
(
thread_local_retired_lists_temp_
);
for
(
unsigned
int
i
=
0
;
i
!=
count_ret_elements
;
++
i
)
{
thread_local_retired_lists_
[
i
].
~
GuardType
();
}
embb
::
base
::
Allocation
::
Free
(
thread_local_retired_lists_
);
}
template
<
typename
GuardType
>
void
HazardPointer
<
GuardType
>::
Guard
(
int
guardPosition
,
GuardType
guardedElement
)
{
const
unsigned
int
my_thread_id
=
GetObjectLocalThreadIndex
();
// check invariants...
assert
(
guardPosition
<
max_guards_per_thread_
);
assert
(
my_thread_id
<
max_accessors_count_
);
// set guard
guards_
[
guardPosition
*
max_accessors_count_
+
my_thread_id
]
=
guardedElement
;
}
template
<
typename
GuardType
>
size_t
HazardPointer
<
GuardType
>::
ComputeMaximumRetiredObjectCount
(
size_t
guardsPerThread
,
int
accessors
)
{
unsigned
int
accessorCount
=
(
accessors
==
-
1
?
embb
::
base
::
Thread
::
GetThreadsMaxCount
()
:
accessors
);
return
static_cast
<
size_t
>
(
guardsPerThread
*
accessorCount
*
accessorCount
);
}
/**
* Remark: it might be faster to just swap pointers for temp retired list and
* retired list. However, with the current implementation (one array for all
* retired and retired temp lists, respectively) this is not possible. This is
* not changed until this copying accounts for a performance problem. The
* copying is not the bottleneck currently.
*/
template
<
typename
GuardType
>
void
HazardPointer
<
GuardType
>::
CopyRetiredList
(
GuardType
*
sourceList
,
GuardType
*
targetList
,
unsigned
int
retiredListSize
,
GuardType
undefinedGuard
)
{
bool
done
=
false
;
for
(
unsigned
int
ii
=
0
;
ii
!=
retiredListSize
;
++
ii
)
{
if
(
!
done
)
{
GuardType
guardToCopy
=
sourceList
[
ii
];
if
(
guardToCopy
==
undefinedGuard
)
{
done
=
true
;
if
(
targetList
[
ii
]
==
undefinedGuard
)
{
// end of target list
break
;
}
}
targetList
[
ii
]
=
guardToCopy
;
}
else
{
}
else
{
currentHazardPointerEntry
->
GetRetiredTemp
().
PushBack
(
*
it
);
// we copied the whole source list, remaining values in the target
// have to be zeroed.
if
(
targetList
[
ii
]
==
undefinedGuard
)
{
// end of target list
break
;
}
else
{
targetList
[
ii
]
=
undefinedGuard
;
}
}
}
}
}
}
currentHazardPointerEntry
->
SetRetired
(
currentHazardPointerEntry
->
GetRetiredTemp
());
#ifdef EMBB_DEBUG
template
<
typename
GuardType
>
currentHazardPointerEntry
->
GetScanningThread
().
Store
(
-
1
);
void
HazardPointer
<
GuardType
>::
UpdateRetiredList
(
GuardType
*
retired_list
,
#endif
GuardType
*
updated_retired_list
,
unsigned
int
retired_list_size
,
}
GuardType
guarded_element
,
GuardType
considered_hazard
,
GuardType
undefined_guard
)
{
template
<
typename
GuardType
>
// no hazard set here
size_t
HazardPointer
<
GuardType
>::
GetRetiredListMaxSize
()
const
{
if
(
considered_hazard
==
undefined_guard
)
return
static_cast
<
size_t
>
(
RETIRE_THRESHOLD
*
static_cast
<
double
>
(
embb
::
base
::
Thread
::
GetThreadsMaxCount
())
*
static_cast
<
double
>
(
guards_per_thread
))
+
1
;
}
template
<
typename
GuardType
>
HazardPointer
<
GuardType
>::
HazardPointer
(
embb
::
base
::
Function
<
void
,
GuardType
>
free_guard_callback
,
GuardType
undefined_guard
,
int
guards_per_thread
)
:
undefined_guard
(
undefined_guard
),
guards_per_thread
(
guards_per_thread
),
//initially, all potential hazard pointers are active...
active_hazard_pointer
(
embb
::
base
::
Thread
::
GetThreadsMaxCount
()),
free_guard_callback
(
free_guard_callback
)
{
hazard_pointers
=
embb
::
base
::
Thread
::
GetThreadsMaxCount
();
hazard_pointer_thread_entry_array
=
static_cast
<
HazardPointerThreadEntry_t
*>
(
embb
::
base
::
Allocation
::
Allocate
(
sizeof
(
HazardPointerThreadEntry_t
)
*
hazard_pointers
));
for
(
size_t
i
=
0
;
i
!=
hazard_pointers
;
++
i
)
{
new
(
static_cast
<
void
*>
(
&
(
hazard_pointer_thread_entry_array
[
i
])))
HazardPointerThreadEntry_t
(
undefined_guard
,
guards_per_thread
,
GetRetiredListMaxSize
());
}
}
template
<
typename
GuardType
>
HazardPointer
<
GuardType
>::~
HazardPointer
()
{
for
(
size_t
i
=
0
;
i
!=
hazard_pointers
;
++
i
)
{
hazard_pointer_thread_entry_array
[
i
].
~
HazardPointerThreadEntry_t
();
}
embb
::
base
::
Allocation
::
Free
(
static_cast
<
void
*
>
(
hazard_pointer_thread_entry_array
));
}
template
<
typename
GuardType
>
void
HazardPointer
<
GuardType
>::
DeactivateCurrentThread
()
{
HazardPointerThreadEntry_t
*
current_thread_entry
=
&
hazard_pointer_thread_entry_array
[
GetCurrentThreadIndex
()];
// Deactivating a non-active hazard pointer entry has no effect!
if
(
!
current_thread_entry
->
IsActive
())
{
return
;
return
;
}
else
{
current_thread_entry
->
SetActive
(
false
);
// if this hazard is currently in the union of
active_hazard_pointer
--
;
// threadLocalRetiredLists and pointerToRetire, but not yet in
// threadLocalRetiredListsTemp, add it to that list
bool
contained_in_union
=
false
;
// first iterate over our retired list
for
(
unsigned
int
i
=
0
;
i
!=
retired_list_size
;
++
i
)
{
// when reaching 0, we can stop iterating (end of the "list")
if
(
retired_list
[
i
]
==
0
)
break
;
// the hazard is contained in the retired list... it shall go
// into the temp list, if not already there
if
(
retired_list
[
i
]
==
considered_hazard
)
{
contained_in_union
=
true
;
break
;
}
}
}
}
template
<
typename
GuardType
>
// the union also contains pointerToRetire
void
HazardPointer
<
GuardType
>::
GuardPointer
(
int
guardPosition
,
if
(
!
contained_in_union
)
{
GuardType
guardedElement
)
{
contained_in_union
=
(
considered_hazard
==
guarded_element
);
GetHazardPointerElementForCurrentThread
().
GuardPointer
(
}
guardPosition
,
guardedElement
);
}
template
<
typename
GuardType
>
// add the pointer to temp. retired list, if not already there
void
HazardPointer
<
GuardType
>::
EnqueuePointerForDeletion
(
if
(
contained_in_union
)
{
GuardType
guardedElement
)
{
for
(
unsigned
int
ii
=
0
;
ii
!=
retired_list_size
;
++
ii
)
{
GetHazardPointerElementForCurrentThread
().
AddRetired
(
guardedElement
);
// is it already there?
if
(
IsThresholdExceeded
())
{
if
(
updated_retired_list
[
ii
]
==
considered_hazard
)
HazardPointerThreadEntry_t
*
currentHazardPointerEntry
=
break
;
&
GetHazardPointerElementForCurrentThread
();
// end of the list
if
(
updated_retired_list
[
ii
]
==
undefined_guard
)
{
// add hazard
updated_retired_list
[
ii
]
=
considered_hazard
;
// we are done here...
break
;
}
}
}
}
template
<
typename
GuardType
>
void
HazardPointer
<
GuardType
>::
EnqueueForDeletion
(
GuardType
toRetire
)
{
unsigned
int
my_thread_id
=
GetObjectLocalThreadIndex
();
// check for invariant
assert
(
my_thread_id
<
max_accessors_count_
);
const
unsigned
int
retired_list_size
=
max_accessors_count_
*
max_guards_per_thread_
;
const
unsigned
int
count_guards
=
max_accessors_count_
*
max_guards_per_thread_
;
Scan
(
currentHazardPointerEntry
);
GuardType
*
retired_list
=
&
thread_local_retired_lists_
[
my_thread_id
*
retired_list_size
];
// Help deactivated threads to clean their retired nodes.
GuardType
*
retired_list_temp
=
HelpScan
();
&
thread_local_retired_lists_temp_
[
my_thread_id
*
retired_list_size
];
// wipe my temp. retired list...
for
(
unsigned
int
i
=
0
;
i
<
retired_list_size
;
++
i
)
{
// the list is filled always from left to right, so occurring the first
// undefinedGuard, the remaining ones are also undefinedGuard...
if
(
retired_list_temp
[
i
]
==
undefined_guard_
)
break
;
retired_list_temp
[
i
]
=
undefined_guard_
;
}
// we test each hazard if it is in the union of retiredList and
// guardedElement. If it is, it goes into the new retired list...
for
(
unsigned
int
i
=
0
;
i
!=
count_guards
;
++
i
)
{
// consider each current active guard
GuardType
considered_hazard
=
guards_
[
i
].
Load
();
UpdateRetiredList
(
retired_list
,
retired_list_temp
,
retired_list_size
,
toRetire
,
considered_hazard
,
undefined_guard_
);
}
}
}
template
<
typename
GuardType
>
int
retired_list_size_signed
=
static_cast
<
int
>
(
retired_list_size
);
const
double
embb
::
containers
::
internal
::
HazardPointer
<
GuardType
>::
assert
(
retired_list_size_signed
>=
0
);
RETIRE_THRESHOLD
=
1
.
25
f
;
// now we created a a new retired list... the elements that are "removed"
// from the old retired list can be safely deleted now...
for
(
int
i
=
-
1
;
i
!=
retired_list_size_signed
;
++
i
)
{
// we iterate over the current retired list... -1 is used as dummy element
// in the iteration, to also iterate over the pointerToRetire, which is
// logically also part of the current retired list...
// end of the list, stop iterating
if
(
i
>=
0
&&
retired_list
[
i
]
==
undefined_guard_
)
break
;
GuardType
to_check_if_in_new_list
=
undefined_guard_
;
to_check_if_in_new_list
=
(
i
==
-
1
?
toRetire
:
retired_list
[
i
]);
// still in the new retired list?
bool
still_in_list
=
false
;
for
(
unsigned
int
ii
=
0
;
ii
!=
retired_list_size
;
++
ii
)
{
// end of list
if
(
retired_list_temp
[
ii
]
==
undefined_guard_
)
break
;
if
(
to_check_if_in_new_list
==
retired_list_temp
[
ii
])
{
// still in list, cannot delete element!
still_in_list
=
true
;
break
;
}
}
if
(
!
still_in_list
)
{
this
->
release_object_callback_
(
to_check_if_in_new_list
);
}
}
// copy the updated retired list (temp) to the retired list...
CopyRetiredList
(
retired_list_temp
,
retired_list
,
retired_list_size
,
undefined_guard_
);
}
}
// namespace internal
}
// namespace internal
}
// namespace containers
}
// namespace containers
}
// namespace embb
}
// namespace embb
...
...
containers_cpp/include/embb/containers/internal/hazard_pointer.h
View file @
d793c0c6
...
@@ -40,487 +40,274 @@
...
@@ -40,487 +40,274 @@
#define EMBB_CONTAINERS_CPP_DEPENDANT_TYPENAME typename
#define EMBB_CONTAINERS_CPP_DEPENDANT_TYPENAME typename
#endif
#endif
// forward declaration for white-box test, used in friend declaration of
// HazardPointer class.
namespace
embb
{
namespace
embb
{
namespace
containers
{
namespace
containers
{
namespace
internal
{
namespace
test
{
/**
class
HazardPointerTest2
;
* A list with fixed size, implemented as an array. Replaces std::vector that
}
* was used in previous hazard pointer implementation.
}
*
}
* Provides iterators, so we can apply algorithms from the STL.
*
* \tparam ElementT Type of the elements contained in the list.
*/
template
<
typename
ElementT
>
class
FixedSizeList
{
private
:
/**
* Capacity of the list
*/
size_t
max_size
;
/**
* Size of the list
*/
size_t
size
;
/**
* Pointer to the array containing the list
*/
ElementT
*
elementsArray
;
/**
* Copy constructor not implemented. Would require dynamic memory allocation.
*/
FixedSizeList
(
const
FixedSizeList
&
/**< [IN] Other list */
);
public
:
/**
* Definition of an iterator
*/
typedef
ElementT
*
iterator
;
/**
* Definition of a const iterator
*/
typedef
const
ElementT
*
const_iterator
;
/**
* Constructor, initializes list with given capacity
*/
FixedSizeList
(
size_t
max_size
/**< [IN] Capacity of the list */
);
/**
* Gets the current size of the list
*
* \return Size of the list
*/
inline
size_t
GetSize
()
const
;
/**
* Gets the capacity of the list
*
* \return The capacity of the list
*/
inline
size_t
GetMaxSize
()
const
;
/**
* Removes all elements from the list without changing the capacity
*/
inline
void
clear
();
/**
* Iterator pointing to the first element
*
* \return Begin iterator
*/
iterator
begin
()
const
;
/**
* Iterator pointing beyond the last element
*
* \return End iterator
*/
iterator
end
()
const
;
/**
* Copies the elements of another list to this list. The capacity of
* this list has to be greater than or equal to the size of the other list.
*/
FixedSizeList
&
operator
=
(
const
FixedSizeList
&
other
/**< [IN] Other list */
);
/**
* Appends an element to the end of the list
*
* \return \c false if the operation was not successful because the list is
* full, otherwise \c true.
*/
bool
PushBack
(
ElementT
const
el
/**< [IN] Element to append to the list */
);
/**
* Destructs the list.
*/
~
FixedSizeList
();
};
namespace
embb
{
namespace
containers
{
namespace
internal
{
/**
/**
* Hazard pointer entry for a single thread. Holds the actual guards that
* This class contains a hazard pointer implementation following publication:
* determine if the current thread is about to use the guarded pointer.
* Guarded pointers are protected and not deleted.
*
*
* Moreover, the retired list for this thread is contained. It determines
* Maged M. Michael. "Hazard pointers: Safe memory reclamation for lock-free
* the pointers that have been allocated from this thread, but are not used
* objects." IEEE Transactions on Parallel and Distributed Systems, 15.6 (2004)
* anymore by this thread. However, another thread could have a guard on it,
* : 491-504.
* so the pointer cannot be deleted immediately.
*
* For the scan operation, the intersection of the guarded pointers from all
* threads and the retired list has to be computed. For this computation, we
* need thread local temporary lists which are also contained here.
*
*
* \tparam GuardType The type of guard, usually a pointer.
* Hazard pointers are a wait-free memory reclamation scheme for lock-free
* algorithms. Loosely speaking, they act as garbage collector. The release of
* objects contained within the memory, managed by the hazard pointer class, is
* intercepted and possibly delayed to avoid concurrency bugs.
*
* Before accessing an object, threads announce their intention to do so (i.e.
* the intention to dereference the respective pointer) to the hazard pointer
* class. This is called guarding. From now on, the hazard pointer class will
* prohibit the release or reuse of the guarded object. This is necessary, to
* assure that the object is not released or reused while it is accessed and to
* assure that it has not unnoticed changed (effectively avoiding the ABA
* problem).
*
* Note that after guarding an object, a consecutive check that the object (i.e.
* its pointer) is still valid is necessary; the object release could already
* have been started when guarding the object. Guarding is repeated, until this
* check eventually succeeds. Note that this "guard-and-check" loop makes the
* usage of the hazard pointer class lock-free, even though its implementation
* is wait-free.
*
* Internally, guarding is realized by providing each thread slots, where
* pointers can be placed that should not be freed (so called guards). When
* trying to release an object, it is checked if the object's pointer is
* guarded, and if so this object is not released, but instead put into a
* retired list for later release, when all guards for this object have been
* removed.
*
* In contrast to the original implementation, our implementation consumes only
* fixed-size memory. Note that the number of threads accessing the hazard
* pointer object accounts quadratic for the memory consumption: managed objects
* are provided from outside and the number of accessors accounts quadric for
* the minimum count of those objects.
*
* Also in contrast to the original implementation, we do not provide a HelpScan
* functionality, which gives threads the possibility, to not participate in the
* garbage collection anymore: other threads will help to clean-up the objects
* protected by the exiting thread. The reason is, that the only use-case would
* be a crashing thread, not participating anymore. However, as the thread has
* to signal its exit himself, this is not possible to realize anyways. In the
* end, it is still guaranteed that all memory is properly returned (in the
* destructor).
*
* Additionally, the original implementation holds a threshold, which determines
* when objects shall be freed. In this implementation, we free whenever it is
* possibly to do so, as we want to keep the memory footprint as low as
* possible. We also don't see a performance drop in the current algorithms that
* are using hazard pointers, when not using a threshold.
*
* \tparam GuardType the type of the guards. Usually the pointer type of some
* object to protect.
*/
*/
template
<
typename
GuardType
>
template
<
typename
GuardType
>
class
HazardPointerThreadEntry
{
class
HazardPointer
{
#ifdef EMBB_DEBUG
public
:
embb
::
base
::
Atomic
<
int
>&
GetScanningThread
()
{
return
who_is_scanning
;
}
private
:
embb
::
base
::
Atomic
<
int
>
who_is_scanning
;
#endif
private
:
/**
* Value of the undefined guard (means that no guard is set).
*/
GuardType
undefined_guard
;
/**
* The number of guards per thread. Determines the size of the guard array.
*/
int
guards_per_thread
;
/**
* The capacity of the retired list. It is determined by number of guards,
* retired threshold, and maximum number of threads.
*/
size_t
max_size_retired_list
;
/**
* Set to true if the current thread is active. Is used for a thread to
* signal that it is leaving. If a thread has left, the other threads are
* responsible for cleaning up its retired list.
*/
embb
::
base
::
Atomic
<
bool
>
is_active
;
/**
* The guarded pointer of this thread, has size \c guard_per_thread.
*/
embb
::
base
::
Atomic
<
GuardType
>*
guarded_pointers
;
/**
* The retired list of this thread, contains pointer that shall be released
* when no thread holds a guard on it anymore.
*/
FixedSizeList
<
GuardType
>
retired_list
;
/**
* Temporary retired list, has same capacity as \c retired_list, It is used to
* compute the intersection of all guards and the \c retired list.
*/
FixedSizeList
<
GuardType
>
retired_list_temp
;
/**
* Temporary guards list. Used to compute the intersection of all guards and
* the \c retired_list.
*/
FixedSizeList
<
GuardType
>
hazard_pointer_list_temp
;
/**
* HazardPointerThreadEntry shall not be copied
*/
HazardPointerThreadEntry
(
const
HazardPointerThreadEntry
&
);
/**
* HazardPointerThreadEntry shall not be assigned
*/
HazardPointerThreadEntry
&
operator
=
(
const
HazardPointerThreadEntry
&
);
public
:
public
:
/**
/**
* Checks if current thread is active (with respect to participating in hazard
* The user of the hazard pointer class has to provide the memory that is
* pointer management)
* managed here. The user has to take into account, that releasing of memory
*
* might be delayed. He has therefore to provide more memory than he wants to
* \return \c true if the current thread is active, otherwise \c false.
* guarantee at each point in time. More specific, on top of the guaranteed
*/
* count of objects, he has to provide the additional count of objects that
bool
IsActive
();
* can be (worst-case) contained in the retired lists and therefore are not
* released yet. The size sum of all retired lists is guardsPerThread *
/**
* accessorCount * accessorCount, which is computed using this function. So
* Tries to set the active flag to true (atomically). Used if the current
* the result of function denotes to the user, how many objects he has to
* thread is not active anymore as lock for another thread to help cleaning
* allocate additionally to the guaranteed count.
* up hazard pointer.
*
*
* \return \c true if this thread was successful setting the active flag,
* \waitfree
* otherwise \c false.
*/
bool
TryReserve
();
/**
* Deactivates current thread by atomically setting active flag to false.
*/
*/
void
Deactivate
();
static
size_t
ComputeMaximumRetiredObjectCount
(
size_t
guardsPerThread
,
/**<[IN] the count of guards per thread*/
int
accessors
=
-
1
/**<[IN] Number of accessors. Determines, how many threads will access
the hazard pointer object. Default value -1 will allow the
maximum amount of threads as defined with
\c embb::base::Thread::GetThreadsMaxCount()*/
);
/**
/**
*
Gets the count of current retired pointer for the current thread.
*
Initializes the hazard pointer object
*
*
* \return Count of current retired pointer
* \notthreadsafe
*/
size_t
GetRetiredCounter
();
/**
* Gets the retired list.
*
*
* \return Reference to \c retired_list
* \memory We dynamically allocate the following:
*/
FixedSizeList
<
GuardType
>&
GetRetired
();
/**
* Gets the temporary retired list.
*
*
* \return Reference to \c retired_list_temp
* (sizeof(Atomic<int>) * accessors) + (sizeof(Atomic<GuardType>) *
*/
* guards_per_thread * accessors) + (2*sizeof(GuardType) *
FixedSizeList
<
GuardType
>&
GetRetiredTemp
();
* guards_per_thread * accessors^2)
/**
* Gets the temporary hazard pointer list.
*
*
* \return Reference to \c hazard_pointer_list_temp
* The last addend is the dominant one, as accessorCount accounts
*/
* quadratically for it.
FixedSizeList
<
GuardType
>&
GetHazardTemp
();
/**
* Sets the retired list.
*/
*/
void
SetRetired
(
HazardPointer
(
embb
::
containers
::
internal
::
FixedSizeList
<
GuardType
>
const
&
retired_list
embb
::
base
::
Function
<
void
,
GuardType
>
free_guard_callback
,
/**< [IN] Retired list */
);
/**<[IN] Callback to the function that shall be called when a retired
guard can be deleted */
/**
* Constructor
*/
HazardPointerThreadEntry
(
GuardType
undefined_guard
,
GuardType
undefined_guard
,
/**<
[IN] Value of the undefined guard (e.g. NULL)
*/
/**<
[IN] The guard value denoting "not guarded"
*/
int
guards_per_thread
,
int
guards_per_thread
,
/**< [IN] Number of guards per thread */
/**<[IN] Number of guards per thread*/
size_t
max_size_retired_list
int
accessors
=
-
1
/**< [IN] The capacity of the retired list(s) */
);
/**<[IN] Number of accessors. Determines, how many threads will access
this hazard pointer object. Default value -1 will allow the
maximum amount of threads as defined with
\c embb::base::Thread::GetThreadsMaxCount()*/
);
/**
/**
* Destructor
* Deallocates internal data structures. Additionally releases all objects
* currently held in the retired lists, using the release functor passed in
* the constructor.
*
*
* Deallocate lists
* \notthreadsafe
*/
~
HazardPointerThreadEntry
();
/**
* Gets the guard at the specified position.
* Positions are numbered, beginning with 0.
*/
GuardType
GetGuard
(
int
pos
/**< [IN] Position of the guard */
)
const
;
/**
* Adds pointer to the retired list
*/
void
AddRetired
(
GuardType
pointerToGuard
/**< [IN] Guard to retire */
);
/**
* Guards pointer
*/
*/
void
GuardPointer
(
~
HazardPointer
();
int
guardNumber
,
/**< [IN] Position of guard */
GuardType
pointerToGuard
/**<[IN] Pointer to guard */
);
/**
/**
* Sets the current thread active, i.e., announce that the thread
* Guards \c to_guard. If the guarded_element is passed to \c EnqueueForDeletion
* participates in managing hazard pointer.
* it is prevented from release from now on. The user must have a check, that
*/
* EnqueueForDeletion has not been called on to_guard, before the guarding took
void
SetActive
(
* effect.
bool
active
/**<[IN] \c true for active, \c false for inactive */
);
};
/**
* HazardPointer implementation as presented in:
*
* Maged M. Michael. "Hazard pointers: Safe memory reclamation for lock-free
* objects." IEEE Transactions on Parallel and Distributed Systems, 15.6 (2004)
* : 491-504.
*
*
* In contrast to the original implementation, our implementation only uses
* \waitfree
* fixed-size memory. There is a safe upper limit, hazard pointer are guaranteed
* to not consume more memory. Memory is allocated solely at initialization.
*
* Hazard pointers solve the ABA problem for lock-free algorithms. Before
* accessing a pointer, threads announce that they want to access this pointer
* and then check if the pointer is still valid. This announcement is done by
* placing a guard. It is guaranteed that the pointer is not reused until all
* threads remove their guards to this pointer. Objects, these pointers are
* pointing to, can therefore not be deleted directly. Instead, these pointers
* are put into a list for later deletion (retired list). Regularly, this list
* is processed to check which pointers can be deleted. If a pointer can be
* deleted, a callback function provided by the user is called. The user can
* then, e.g., free the respective object, so that the pointer can be safely
* reused.
*/
template
<
typename
GuardType
>
class
HazardPointer
{
private
:
/**
* Concrete hazard pointer entry type
*/
*/
typedef
HazardPointerThreadEntry
<
GuardType
>
void
Guard
(
HazardPointerThreadEntry_t
;
int
guard_position
,
/**<[IN] position to place guard*/
GuardType
to_guard
/**<[IN] element to guard*/
);
/**
/**
* The guard value denoting "not guarding"
* Enqueue guarded element for deletion. If not guarded, it is deleted
* immediately. If it is guarded, it is added to a thread local retired list,
* and deleted in a subsequent call to \c EnqueueForDeletion, when no guard is
* placed on it anymore.
*/
*/
GuardType
undefined_guard
;
void
EnqueueForDeletion
(
GuardType
guarded_element
/**<[IN] element to logically delete*/
);
/**
/**
* The capacity of the retired list (safe upper bound for retired list size)
* Explicitly remove guard from thread local slot.
*
* \waitfree
*/
*/
int
retired_list_max_size
;
void
RemoveGuard
(
int
guard_position
)
;
private
:
/**
/**
* Guards that can be set per thread
* HazardPointerTest2 is a white-box test, needing access to private members
* of this class. So declaring it as friend.
*/
*/
int
guards_per_thread
;
friend
class
embb
::
containers
::
test
::
HazardPointerTest2
;
/**
/**
* Array of HazardPointerElements. Each thread is assigned to one.
* This number determines the amount of maximal accessors (threads) that
* will access this hazard pointer instance. Note that a thread once
* accessing this object will be permanently count as accessor, even if not
* participating anymore. If too many threads access this object, an
* exception is thrown.
*/
*/
HazardPointerThreadEntry_t
*
hazard_pointer_thread_entry_array
;
unsigned
int
max_accessors_count_
;
/**
/**
* The threshold, determines at which size of the retired list pointers
* The guard value denoting "not guarded"
* are tried to be deleted.
*/
*/
static
const
double
RETIRE_THRESHOLD
;
GuardType
undefined_guard_
;
/**
/**
* Each thread is assigned a thread index (starting with 0).
* The maximal count of guards that can be set per thread.
* Get the index of the current thread.
*/
*/
static
unsigned
int
GetCurrentThreadIndex
()
;
int
max_guards_per_thread_
;
/**
/**
* The number of hazard pointers currently active.
* The functor that is called to release an object. This is called by this
* class, when it is safe to do so, i.e., no thread accesses this object
* anymore.
*/
*/
size_t
active_hazard_pointer
;
embb
::
base
::
Function
<
void
,
GuardType
>
release_object_callback_
;
/**
/**
* Count of all hazard pointers.
* Mapping from EMBB thread id to hazard pointer thread ids. Hazard pointer
* thread ids are in range [0;accesor_count-1]. The position of a EMBB thread
* id in that array determines the respective hazard pointer thread id.
*/
*/
size_t
hazard_pointers
;
embb
::
base
::
Atomic
<
int
>*
thread_id_mapping_
;
/**
/**
* The
callback that is triggered when a retired guard can be
* The
hazard pointer guards, represented as array. Each thread has a fixed
*
freed. Usually, the user will call a free here
.
*
set of slots (guardsPerThread) within this array
.
*/
*/
embb
::
base
::
Function
<
void
,
GuardType
>
free_guard_callback
;
embb
::
base
::
Atomic
<
GuardType
>*
guards_
;
/**
/**
* Checks if the current size of the retired list exceeds the threshold, so
* \see threadLocalRetiredLists documentation
* that each retired guard is checked for being not hazardous anymore.
*
* \return \c true is threshold is exceeded, otherwise \c false.
*/
*/
bool
IsThresholdExceeded
()
;
GuardType
*
thread_local_retired_lists_temp_
;
/**
/**
*
Gets the number of hazard pointe, currently active
*
A list of lists, represented as single array. Each thread maintains a list
*
*
of retired pointers, that are objects that are logically released but not
*
\return Number of active hazard pointers
*
released because some thread placed a guard on it.
*/
*/
size_t
GetActiveHazardPointers
()
;
GuardType
*
thread_local_retired_lists_
;
/**
/**
* Gets the hazard pointer entry for the current thread
* Each thread is assigned a thread index (starting with 0). Get the index of
* the current thread. Note that this is not the global index, but an hazard
* pointer class internal one. The user is free to define less accessors than
* the amount of default threads. This is useful, as the number of accessors
* accounts quadratic for the memory consumption, so the user should have the
* possibility to avoid memory wastage when only having a small, fixed size,
* number of accessors.
*
*
* \return Hazard pointer entry for current thread
* @return current (hazard pointer object local) thread index
*/
HazardPointerThreadEntry_t
&
GetHazardPointerElementForCurrentThread
();
/**
* Threads might leave from participating in hazard pointer management.
* This method helps all those threads processing their retired list.
*/
void
HelpScan
();
/**
* Checks the retired list of a hazard pointer entry for elements of the
* retired list that can be freed, and executes the delete callback for those
* elements.
*/
*/
void
Scan
(
unsigned
int
GetObjectLocalThreadIndex
();
HazardPointerThreadEntry_t
*
currentHazardPointerEntry
/**<[IN] Hazard pointer entry that should be checked for elements that
can be deleted*/
);
public
:
/**
/**
* Gets the capacity of one retired list
* Copy retired list \c sourceList to retired list \c targetList
*
* \waitfree
*/
*/
size_t
GetRetiredListMaxSize
()
const
;
static
void
CopyRetiredList
(
GuardType
*
source_list
,
/**<[IN] the source retired list*/
GuardType
*
target_list
,
/**<[IN] the target retired list*/
unsigned
int
single_retired_list_size
,
/**<[IN] the size of a thread local retired list*/
GuardType
undefined_guard
/**<[IN] the undefined guard (usually the NULL pointer)*/
);
/**
static
void
UpdateRetiredList
(
* Initializes hazard pointer
GuardType
*
retired_list
,
*
/**<[IN] the old retired list*/
* \notthreadsafe
GuardType
*
updated_retired_list
,
*
/**<[IN] the updated retired list*/
* \memory
unsigned
int
retired_list_size
,
* - Let \c t be the number of maximal threads determined by EMBB
/**<[IN] the size of a thread local retired list*/
* - Let \c g be the number of guards per thread
GuardType
to_retire
,
* - Let \c x be 1.25*t*g + 1
/**<[IN] the element to retire*/
*
GuardType
considered_hazard
,
* We dynamically allocate \c x*(3*t+1) elements of size \c sizeof(void*).
/**<[IN] the currently considered hazard*/
*/
GuardType
undefined_guard
HazardPointer
(
/**<[IN] the undefined guard (usually the NULL pointer)*/
embb
::
base
::
Function
<
void
,
GuardType
>
free_guard_callback
,
);
/**<[IN] Callback to the function that shall be called when a retired
guard can be deleted */
GuardType
undefined_guard
,
/**<[IN] The guard value denoting "not guarded"*/
int
guards_per_thread
/**<[IN] Number of guards per thread*/
);
/**
* Deallocates lists for hazard pointer management. Note that no objects
* currently in the retired lists are deleted. This is the responsibility
* of the user. Usually, HazardPointer manages pointers of an object pool.
* After destructing HazardPointer, the object pool is deleted, so that
* everything is properly cleaned up.
*/
~
HazardPointer
();
/**
* Announces that the current thread stops participating in hazard pointer
* management. The other threads now take care of his retired list.
*
* \waitfree
*/
void
DeactivateCurrentThread
();
/**
* Guards \c guardedElement with the guard at position \c guardPosition
*/
void
GuardPointer
(
int
guardPosition
,
GuardType
guardedElement
);
/**
* Enqueue a pointer for deletion. It is added to the retired list and
* deleted when no thread accesses it anymore.
*/
void
EnqueuePointerForDeletion
(
GuardType
guardedElement
);
};
};
}
// namespace internal
}
// namespace internal
}
// namespace containers
}
// namespace containers
...
...
containers_cpp/include/embb/containers/internal/lock_free_mpmc_queue-inl.h
View file @
d793c0c6
...
@@ -77,7 +77,12 @@ LockFreeMPMCQueue<Type, ValuePool>::~LockFreeMPMCQueue() {
...
@@ -77,7 +77,12 @@ LockFreeMPMCQueue<Type, ValuePool>::~LockFreeMPMCQueue() {
template
<
typename
Type
,
typename
ValuePool
>
template
<
typename
Type
,
typename
ValuePool
>
LockFreeMPMCQueue
<
Type
,
ValuePool
>::
LockFreeMPMCQueue
(
size_t
capacity
)
:
LockFreeMPMCQueue
<
Type
,
ValuePool
>::
LockFreeMPMCQueue
(
size_t
capacity
)
:
capacity
(
capacity
),
capacity
(
capacity
),
// Object pool, size with respect to the maximum number of retired nodes not
// eligible for reuse. +1 for dummy node.
objectPool
(
MPMCQueueNodeHazardPointer_t
::
ComputeMaximumRetiredObjectCount
(
2
)
+
capacity
+
1
),
// Disable "this is used in base member initializer" warning.
// Disable "this is used in base member initializer" warning.
// We explicitly want this.
// We explicitly want this.
#ifdef EMBB_PLATFORM_COMPILER_MSVC
#ifdef EMBB_PLATFORM_COMPILER_MSVC
...
@@ -89,13 +94,7 @@ delete_pointer_callback(*this,
...
@@ -89,13 +94,7 @@ delete_pointer_callback(*this,
#ifdef EMBB_PLATFORM_COMPILER_MSVC
#ifdef EMBB_PLATFORM_COMPILER_MSVC
#pragma warning(pop)
#pragma warning(pop)
#endif
#endif
hazardPointer
(
delete_pointer_callback
,
NULL
,
2
),
hazardPointer
(
delete_pointer_callback
,
NULL
,
2
)
{
// Object pool, size with respect to the maximum number of retired nodes not
// eligible for reuse. +1 for dummy node.
objectPool
(
hazardPointer
.
GetRetiredListMaxSize
()
*
embb
::
base
::
Thread
::
GetThreadsMaxCount
()
+
capacity
+
1
)
{
// Allocate dummy node to reduce the number of special cases to consider.
// Allocate dummy node to reduce the number of special cases to consider.
internal
::
LockFreeMPMCQueueNode
<
Type
>*
dummyNode
=
objectPool
.
Allocate
();
internal
::
LockFreeMPMCQueueNode
<
Type
>*
dummyNode
=
objectPool
.
Allocate
();
// Initially, head and tail point to the dummy node.
// Initially, head and tail point to the dummy node.
...
@@ -120,7 +119,7 @@ bool LockFreeMPMCQueue<Type, ValuePool>::TryEnqueue(Type const& element) {
...
@@ -120,7 +119,7 @@ bool LockFreeMPMCQueue<Type, ValuePool>::TryEnqueue(Type const& element) {
for
(;;)
{
for
(;;)
{
my_tail
=
tail
;
my_tail
=
tail
;
hazardPointer
.
Guard
Pointer
(
0
,
my_tail
);
hazardPointer
.
Guard
(
0
,
my_tail
);
// Check if pointer is still valid after guarding.
// Check if pointer is still valid after guarding.
if
(
my_tail
!=
tail
)
{
if
(
my_tail
!=
tail
)
{
...
@@ -163,12 +162,12 @@ bool LockFreeMPMCQueue<Type, ValuePool>::TryDequeue(Type & element) {
...
@@ -163,12 +162,12 @@ bool LockFreeMPMCQueue<Type, ValuePool>::TryDequeue(Type & element) {
Type
data
;
Type
data
;
for
(;;)
{
for
(;;)
{
my_head
=
head
;
my_head
=
head
;
hazardPointer
.
Guard
Pointer
(
0
,
my_head
);
hazardPointer
.
Guard
(
0
,
my_head
);
if
(
my_head
!=
head
)
continue
;
if
(
my_head
!=
head
)
continue
;
my_tail
=
tail
;
my_tail
=
tail
;
my_next
=
my_head
->
GetNext
();
my_next
=
my_head
->
GetNext
();
hazardPointer
.
Guard
Pointer
(
1
,
my_next
);
hazardPointer
.
Guard
(
1
,
my_next
);
if
(
head
!=
my_head
)
continue
;
if
(
head
!=
my_head
)
continue
;
if
(
my_next
==
NULL
)
if
(
my_next
==
NULL
)
...
@@ -187,7 +186,7 @@ bool LockFreeMPMCQueue<Type, ValuePool>::TryDequeue(Type & element) {
...
@@ -187,7 +186,7 @@ bool LockFreeMPMCQueue<Type, ValuePool>::TryDequeue(Type & element) {
break
;
break
;
}
}
hazardPointer
.
Enqueue
Pointer
ForDeletion
(
my_head
);
hazardPointer
.
EnqueueForDeletion
(
my_head
);
element
=
data
;
element
=
data
;
return
true
;
return
true
;
}
}
...
...
containers_cpp/include/embb/containers/internal/lock_free_stack-inl.h
View file @
d793c0c6
...
@@ -81,13 +81,12 @@ capacity(capacity),
...
@@ -81,13 +81,12 @@ capacity(capacity),
#ifdef EMBB_PLATFORM_COMPILER_MSVC
#ifdef EMBB_PLATFORM_COMPILER_MSVC
#pragma warning(pop)
#pragma warning(pop)
#endif
#endif
hazardPointer
(
delete_pointer_callback
,
NULL
,
1
),
// Object pool, size with respect to the maximum number of retired nodes not
// Object pool, size with respect to the maximum number of retired nodes not
// eligible for reuse:
// eligible for reuse:
objectPool
(
objectPool
(
hazardPointer
.
GetRetiredListMaxSize
()
*
StackNodeHazardPointer_t
::
ComputeMaximumRetiredObjectCount
(
1
)
+
embb
::
base
::
Thread
::
GetThreadsMaxCount
()
+
capacity
),
capacity
)
{
hazardPointer
(
delete_pointer_callback
,
NULL
,
1
)
{
}
}
template
<
typename
Type
,
typename
ValuePool
>
template
<
typename
Type
,
typename
ValuePool
>
...
@@ -128,7 +127,7 @@ bool LockFreeStack< Type, ValuePool >::TryPop(Type & element) {
...
@@ -128,7 +127,7 @@ bool LockFreeStack< Type, ValuePool >::TryPop(Type & element) {
return
false
;
return
false
;
// Guard top_cached
// Guard top_cached
hazardPointer
.
Guard
Pointer
(
0
,
top_cached
);
hazardPointer
.
Guard
(
0
,
top_cached
);
// Check if top is still top. If this is the case, it has not been
// Check if top is still top. If this is the case, it has not been
// retired yet (because before retiring that thing, the retiring thread
// retired yet (because before retiring that thing, the retiring thread
...
@@ -144,16 +143,16 @@ bool LockFreeStack< Type, ValuePool >::TryPop(Type & element) {
...
@@ -144,16 +143,16 @@ bool LockFreeStack< Type, ValuePool >::TryPop(Type & element) {
break
;
break
;
}
else
{
}
else
{
// We continue with the next and can unguard top_cached
// We continue with the next and can unguard top_cached
hazardPointer
.
Guard
Pointer
(
0
,
NULL
);
hazardPointer
.
Guard
(
0
,
NULL
);
}
}
}
}
Type
data
=
top_cached
->
GetElement
();
Type
data
=
top_cached
->
GetElement
();
// We don't need to read from this reference anymore, unguard it
// We don't need to read from this reference anymore, unguard it
hazardPointer
.
Guard
Pointer
(
0
,
NULL
);
hazardPointer
.
Guard
(
0
,
NULL
);
hazardPointer
.
Enqueue
Pointer
ForDeletion
(
top_cached
);
hazardPointer
.
EnqueueForDeletion
(
top_cached
);
element
=
data
;
element
=
data
;
return
true
;
return
true
;
...
...
containers_cpp/include/embb/containers/lock_free_mpmc_queue.h
View file @
d793c0c6
...
@@ -113,8 +113,17 @@ class LockFreeMPMCQueue {
...
@@ -113,8 +113,17 @@ class LockFreeMPMCQueue {
* least as many elements, maybe more.
* least as many elements, maybe more.
*/
*/
size_t
capacity
;
size_t
capacity
;
// Do not change the ordering of class local variables.
// Important for initialization.
/**
* The object pool, used for lock-free memory allocation.
*
* Warning: the objectPool has to be initialized before the hazardPointer
* object, to be sure that the hazardPointer object is destructed before the
* Pool as the hazardPointer object might return elements to the pool in its
* destructor. So the ordering of the members objectPool and hazardPointer is
* important here!
*/
ObjectPool
<
internal
::
LockFreeMPMCQueueNode
<
Type
>
,
ValuePool
>
objectPool
;
/**
/**
* Callback to the method that is called by hazard pointers if a pointer is
* Callback to the method that is called by hazard pointers if a pointer is
...
@@ -124,15 +133,17 @@ class LockFreeMPMCQueue {
...
@@ -124,15 +133,17 @@ class LockFreeMPMCQueue {
delete_pointer_callback
;
delete_pointer_callback
;
/**
/**
*
The hazard pointer object, used for memory management.
*
Definition of the used hazard pointer type
*/
*/
embb
::
containers
::
internal
::
HazardPointer
typedef
embb
::
containers
::
internal
::
HazardPointer
<
internal
::
LockFreeMPMCQueueNode
<
Type
>*
>
hazardPointer
;
<
internal
::
LockFreeMPMCQueueNode
<
Type
>*
>
MPMCQueueNodeHazardPointer_t
;
/**
/**
* The
object pool, used for lock-free memory allocation
.
* The
hazard pointer object, used for memory management
.
*/
*/
ObjectPool
<
internal
::
LockFreeMPMCQueueNode
<
Type
>
,
ValuePool
>
objectPool
;
MPMCQueueNodeHazardPointer_t
hazardPointer
;
/**
/**
* Atomic pointer to the head node of the queue
* Atomic pointer to the head node of the queue
...
...
containers_cpp/include/embb/containers/lock_free_stack.h
View file @
d793c0c6
...
@@ -187,11 +187,6 @@ class LockFreeStack {
...
@@ -187,11 +187,6 @@ class LockFreeStack {
delete_pointer_callback
;
delete_pointer_callback
;
/**
/**
* The hazard pointer object, used for memory management.
*/
internal
::
HazardPointer
<
internal
::
LockFreeStackNode
<
Type
>*>
hazardPointer
;
/**
* The callback function, used to cleanup non-hazardous pointers.
* The callback function, used to cleanup non-hazardous pointers.
* \see delete_pointer_callback
* \see delete_pointer_callback
*/
*/
...
@@ -199,10 +194,27 @@ class LockFreeStack {
...
@@ -199,10 +194,27 @@ class LockFreeStack {
/**
/**
* The object pool, used for lock-free memory allocation.
* The object pool, used for lock-free memory allocation.
*
* Warning: the objectPool has to be initialized before the hazardPointer
* object, to be sure that the hazardPointer object is destructed before the
* Pool as the hazardPointer object might return elements to the pool in its
* destructor. So the ordering of the members objectPool and hazardPointer is
* important here!
*/
*/
ObjectPool
<
internal
::
LockFreeStackNode
<
Type
>
,
ValuePool
>
objectPool
;
ObjectPool
<
internal
::
LockFreeStackNode
<
Type
>
,
ValuePool
>
objectPool
;
/**
/**
* Definition of the used hazard pointer type
*/
typedef
internal
::
HazardPointer
<
internal
::
LockFreeStackNode
<
Type
>*
>
StackNodeHazardPointer_t
;
/**
* The hazard pointer object, used for memory management.
*/
StackNodeHazardPointer_t
hazardPointer
;
/**
* Atomic pointer to the top node of the stack (element that is popped next)
* Atomic pointer to the top node of the stack (element that is popped next)
*/
*/
embb
::
base
::
Atomic
<
internal
::
LockFreeStackNode
<
Type
>*>
top
;
embb
::
base
::
Atomic
<
internal
::
LockFreeStackNode
<
Type
>*>
top
;
...
...
containers_cpp/test/hazard_pointer_test.cc
View file @
d793c0c6
...
@@ -31,24 +31,71 @@
...
@@ -31,24 +31,71 @@
namespace
embb
{
namespace
embb
{
namespace
containers
{
namespace
containers
{
namespace
test
{
namespace
test
{
IntObjectTestPool
::
IntObjectTestPool
(
unsigned
int
pool_size
)
:
poolSize
(
pool_size
)
{
simplePoolObjects
=
static_cast
<
int
*>
(
embb
::
base
::
Allocation
::
Allocate
(
sizeof
(
int
)
*
pool_size
));
simplePool
=
static_cast
<
embb
::
base
::
Atomic
<
int
>*>
(
embb
::
base
::
Allocation
::
Allocate
(
sizeof
(
embb
::
base
::
Atomic
<
int
>
)
*
pool_size
));
for
(
unsigned
int
i
=
0
;
i
!=
pool_size
;
++
i
)
{
// in-place new for each array cell
new
(
&
simplePool
[
i
])
embb
::
base
::
Atomic
<
int
>
;
}
for
(
unsigned
int
i
=
0
;
i
!=
pool_size
;
++
i
)
{
simplePool
[
i
]
=
FREE_MARKER
;
simplePoolObjects
[
i
]
=
0
;
}
}
IntObjectTestPool
::~
IntObjectTestPool
()
{
embb
::
base
::
Allocation
::
Free
(
simplePoolObjects
);
for
(
unsigned
int
i
=
0
;
i
!=
poolSize
;
++
i
)
{
// in-place new for each array cell
simplePool
[
i
].
~
Atomic
();
}
embb
::
base
::
Allocation
::
Free
(
simplePool
);
}
int
*
IntObjectTestPool
::
Allocate
()
{
for
(
unsigned
int
i
=
0
;
i
!=
poolSize
;
++
i
)
{
int
expected
=
FREE_MARKER
;
if
(
simplePool
[
i
].
CompareAndSwap
(
expected
,
ALLOCATED_MARKER
))
{
return
&
simplePoolObjects
[
i
];
}
}
return
0
;
}
void
IntObjectTestPool
::
Release
(
int
*
object_pointer
)
{
int
cell
=
object_pointer
-
simplePoolObjects
;
simplePool
[
cell
].
Store
(
FREE_MARKER
);
}
HazardPointerTest
::
HazardPointerTest
()
:
HazardPointerTest
::
HazardPointerTest
()
:
#ifdef EMBB_PLATFORM_COMPILER_MSVC
#ifdef EMBB_PLATFORM_COMPILER_MSVC
#pragma warning(push)
#pragma warning(push)
#pragma warning(disable:4355)
#pragma warning(disable:4355)
#endif
#endif
delete_pointer_callback
(
*
this
,
&
HazardPointerTest
::
DeletePointerCallback
),
delete_pointer_callback_
(
*
this
,
&
HazardPointerTest
::
DeletePointerCallback
),
#ifdef EMBB_PLATFORM_COMPILER_MSVC
#ifdef EMBB_PLATFORM_COMPILER_MSVC
#pragma warning(pop)
#pragma warning(pop)
#endif
#endif
object_pool
(
NULL
),
object_pool
_
(
NULL
),
stack
(
NULL
),
stack
_
(
NULL
),
h
p
(
NULL
),
h
azard_pointer_
(
NULL
),
n_threads
(
static_cast
<
int
>
n_threads_
(
static_cast
<
int
>
(
partest
::
TestSuite
::
GetDefaultNumThreads
()))
{
(
partest
::
TestSuite
::
GetDefaultNumThreads
()))
{
n_elements_per_thread
=
100
;
n_elements_per_thread
_
=
100
;
n_elements
=
n_threads
*
n_elements_per_thread
;
n_elements
_
=
n_threads_
*
n_elements_per_thread_
;
embb
::
base
::
Function
<
void
,
embb
::
base
::
Atomic
<
int
>*
>
embb
::
base
::
Function
<
void
,
embb
::
base
::
Atomic
<
int
>*
>
delete
_pointer_c
allback
(
delete
PointerC
allback
(
*
this
,
*
this
,
&
HazardPointerTest
::
DeletePointerCallback
);
&
HazardPointerTest
::
DeletePointerCallback
);
...
@@ -59,41 +106,48 @@ n_threads(static_cast<int>
...
@@ -59,41 +106,48 @@ n_threads(static_cast<int>
// placed, the pointer is not allowed to be deleted until the second thread
// placed, the pointer is not allowed to be deleted until the second thread
// removes this guard.
// removes this guard.
CreateUnit
(
"HazardPointerTestThatGuardWorks"
).
CreateUnit
(
"HazardPointerTestThatGuardWorks"
).
Pre
(
&
HazardPointerTest
::
HazardPointerTest1
_
Pre
,
this
).
Pre
(
&
HazardPointerTest
::
HazardPointerTest1Pre
,
this
).
Add
(
Add
(
&
HazardPointerTest
::
HazardPointerTest1
_
ThreadMethod
,
&
HazardPointerTest
::
HazardPointerTest1ThreadMethod
,
this
,
static_cast
<
size_t
>
(
n_threads
)).
this
,
static_cast
<
size_t
>
(
n_threads
_
)).
Post
(
&
HazardPointerTest
::
HazardPointerTest1
_
Post
,
this
);
Post
(
&
HazardPointerTest
::
HazardPointerTest1Post
,
this
);
}
}
void
HazardPointerTest
::
HazardPointerTest1
_
Pre
()
{
void
HazardPointerTest
::
HazardPointerTest1Pre
()
{
embb_internal_thread_index_reset
();
embb_internal_thread_index_reset
();
object_pool
=
new
embb
::
containers
::
ObjectPool
<
embb
::
base
::
Atomic
<
int
>
>
(
static_cast
<
size_t
>
(
n_elements
));
object_pool_
=
stack
=
new
embb
::
containers
::
LockFreeStack
<
embb
::
base
::
Atomic
<
int
>*
>
embb
::
base
::
Allocation
::
(
static_cast
<
size_t
>
(
n_elements
));
New
<
embb
::
containers
::
ObjectPool
<
embb
::
base
::
Atomic
<
int
>
>
>
hp
=
new
embb
::
containers
::
internal
::
HazardPointer
<
embb
::
base
::
Atomic
<
int
>*>
(
static_cast
<
size_t
>
(
n_elements_
));
(
delete_pointer_callback
,
NULL
,
stack_
=
embb
::
base
::
Allocation
::
New
<
embb
::
containers
::
LockFreeStack
<
embb
::
base
::
Atomic
<
int
>*
>
>
(
static_cast
<
size_t
>
(
n_elements_
));
hazard_pointer_
=
embb
::
base
::
Allocation
::
New
<
embb
::
containers
::
internal
::
HazardPointer
<
embb
::
base
::
Atomic
<
int
>*
>
>
(
delete_pointer_callback_
,
static_cast
<
embb
::
base
::
Atomic
<
int
>*>
(
NULL
),
1
);
1
);
}
}
void
HazardPointerTest
::
HazardPointerTest1
_
Post
()
{
void
HazardPointerTest
::
HazardPointerTest1Post
()
{
delete
object_pool
;
embb
::
base
::
Allocation
::
Delete
(
hazard_pointer_
)
;
delete
stack
;
embb
::
base
::
Allocation
::
Delete
(
object_pool_
)
;
delete
hp
;
embb
::
base
::
Allocation
::
Delete
(
stack_
)
;
}
}
void
HazardPointerTest
::
HazardPointerTest1
_
ThreadMethod
()
{
void
HazardPointerTest
::
HazardPointerTest1ThreadMethod
()
{
unsigned
int
thread_index
;
unsigned
int
thread_index
;
embb_internal_thread_index
(
&
thread_index
);
embb_internal_thread_index
(
&
thread_index
);
for
(
int
i
=
0
;
i
!=
n_elements_per_thread
;
++
i
)
{
for
(
int
i
=
0
;
i
!=
n_elements_per_thread
_
;
++
i
)
{
embb
::
base
::
Atomic
<
int
>*
allocated_object
=
object_pool
->
Allocate
(
0
);
embb
::
base
::
Atomic
<
int
>*
allocated_object
=
object_pool
_
->
Allocate
(
0
);
h
p
->
GuardPointer
(
0
,
allocated_object
);
h
azard_pointer_
->
Guard
(
0
,
allocated_object
);
bool
success
=
stack
->
TryPush
(
allocated_object
);
bool
success
=
stack
_
->
TryPush
(
allocated_object
);
PT_ASSERT
(
success
==
true
);
PT_ASSERT
(
success
==
true
);
...
@@ -105,50 +159,365 @@ void HazardPointerTest::HazardPointerTest1_ThreadMethod() {
...
@@ -105,50 +159,365 @@ void HazardPointerTest::HazardPointerTest1_ThreadMethod() {
bool
success_pop
;
bool
success_pop
;
while
(
while
(
(
success_pop
=
stack
->
TryPop
(
allocated_object_from_different_thread
))
(
success_pop
=
stack
_
->
TryPop
(
allocated_object_from_different_thread
))
==
true
==
true
&&
allocated_object_from_different_thread
==
allocated_object
&&
allocated_object_from_different_thread
==
allocated_object
)
{
)
{
//try to make it probable to get an element from a different thread
//
try to make it probable to get an element from a different thread
//however, can be the same. Try 10000 times to get a different element.
//
however, can be the same. Try 10000 times to get a different element.
if
(
diff_count
++
>
10000
)
{
if
(
diff_count
++
>
10000
)
{
same
=
true
;
same
=
true
;
break
;
break
;
}
}
bool
success
=
stack
->
TryPush
(
allocated_object_from_different_thread
);
bool
success
=
stack
_
->
TryPush
(
allocated_object_from_different_thread
);
PT_ASSERT
(
success
==
true
);
PT_ASSERT
(
success
==
true
);
}
}
PT_ASSERT
(
success_pop
==
true
);
PT_ASSERT
(
success_pop
==
true
);
allocated_object
->
Store
(
1
);
allocated_object
->
Store
(
1
);
h
p
->
EnqueuePointer
ForDeletion
(
allocated_object
);
h
azard_pointer_
->
Enqueue
ForDeletion
(
allocated_object
);
if
(
!
same
)
{
if
(
!
same
)
{
h
p
->
GuardPointer
(
0
,
allocated_object_from_different_thread
);
h
azard_pointer_
->
Guard
(
0
,
allocated_object_from_different_thread
);
// if this holds, we were successful in guarding... otherwise we
// if this holds, we were successful in guarding... otherwise we
// were to late, because the pointer has already been added
// were to late, because the pointer has already been added
// to the retired list.
// to the retired list.
if
(
*
allocated_object_from_different_thread
==
0
)
{
if
(
*
allocated_object_from_different_thread
==
0
)
{
// the pointer must not be deleted here!
// the pointer must not be deleted here!
vector_mutex
.
Lock
();
vector_mutex
_
.
Lock
();
for
(
std
::
vector
<
embb
::
base
::
Atomic
<
int
>*
>::
iterator
for
(
std
::
vector
<
embb
::
base
::
Atomic
<
int
>*
>::
iterator
it
=
deleted_vector
.
begin
();
it
=
deleted_vector
_
.
begin
();
it
!=
deleted_vector
.
end
();
it
!=
deleted_vector
_
.
end
();
++
it
)
{
++
it
)
{
PT_ASSERT
(
*
it
!=
allocated_object_from_different_thread
);
PT_ASSERT
(
*
it
!=
allocated_object_from_different_thread
);
}
}
vector_mutex
.
Unlock
();
vector_mutex
_
.
Unlock
();
}
}
h
p
->
GuardPointer
(
0
,
NULL
);
h
azard_pointer_
->
Guard
(
0
,
NULL
);
}
}
}
}
}
}
void
HazardPointerTest
::
DeletePointerCallback
void
HazardPointerTest
::
DeletePointerCallback
(
embb
::
base
::
Atomic
<
int
>*
to_delete
)
{
(
embb
::
base
::
Atomic
<
int
>*
to_delete
)
{
vector_mutex
.
Lock
();
vector_mutex_
.
Lock
();
deleted_vector
.
push_back
(
to_delete
);
deleted_vector_
.
push_back
(
to_delete
);
vector_mutex
.
Unlock
();
vector_mutex_
.
Unlock
();
}
void
HazardPointerTest2
::
DeletePointerCallback
(
int
*
to_delete
)
{
test_pool_
->
Release
(
to_delete
);
}
bool
HazardPointerTest2
::
SetRelativeGuards
()
{
unsigned
int
thread_index
;
embb_internal_thread_index
(
&
thread_index
);
unsigned
int
my_begin
=
guards_per_phread_count_
*
thread_index
;
int
guard_number
=
0
;
unsigned
int
alreadyGuarded
=
0
;
for
(
unsigned
int
i
=
my_begin
;
i
!=
my_begin
+
guards_per_phread_count_
;
++
i
)
{
if
(
shared_guarded_
[
i
]
!=
0
)
{
alreadyGuarded
++
;
guard_number
++
;
continue
;
}
int
*
to_guard
=
shared_allocated_
[
i
];
if
(
to_guard
)
{
hazard_pointer_
->
Guard
(
guard_number
,
to_guard
);
// changed in the meantime?
if
(
to_guard
==
shared_allocated_
[
i
].
Load
())
{
// guard was successful. Communicate to other threads.
shared_guarded_
[
i
]
=
to_guard
;
}
else
{
// reset the guard, couldn't guard...
hazard_pointer_
->
RemoveGuard
(
guard_number
);
}
}
guard_number
++
;
}
return
(
alreadyGuarded
==
guards_per_phread_count_
);
}
void
HazardPointerTest2
::
HazardPointerTest2Master
()
{
// while the hazard pointer guard array is not full
int
**
allocatedLocal
=
static_cast
<
int
**>
(
embb
::
base
::
Allocation
::
Allocate
(
sizeof
(
int
*
)
*
guaranteed_capacity_pool_
));
bool
full
=
false
;
while
(
!
full
)
{
full
=
true
;
for
(
unsigned
int
i
=
0
;
i
!=
guaranteed_capacity_pool_
;
++
i
)
{
if
(
shared_guarded_
[
i
]
==
0
)
{
full
=
false
;
break
;
}
}
// not all guards set
for
(
unsigned
int
i
=
0
;
i
!=
guaranteed_capacity_pool_
;
++
i
)
{
allocatedLocal
[
i
]
=
test_pool_
->
Allocate
();
shared_allocated_
[
i
].
Store
(
allocatedLocal
[
i
]);
}
// set my hazards. We do not have to check, this must be successful
// here.
SetRelativeGuards
();
// free
for
(
unsigned
int
i
=
0
;
i
!=
guaranteed_capacity_pool_
;
++
i
)
{
shared_allocated_
[
i
].
Store
(
0
);
hazard_pointer_
->
EnqueueForDeletion
(
allocatedLocal
[
i
]);
}
}
embb
::
base
::
Allocation
::
Free
(
allocatedLocal
);
}
void
HazardPointerTest2
::
HazardPointerTest2Slave
()
{
unsigned
int
thread_index
;
embb_internal_thread_index
(
&
thread_index
);
while
(
!
SetRelativeGuards
())
{}
}
void
HazardPointerTest2
::
HazardPointerTest2Pre
()
{
embb_internal_thread_index_reset
();
current_master_
=
0
;
sync1_
=
0
;
sync2_
=
0
;
// first the test pool has to be created
test_pool_
=
embb
::
base
::
Allocation
::
New
<
IntObjectTestPool
>
(
pool_size_using_hazard_pointer_
);
// after the pool has been created, we create the hp class
hazard_pointer_
=
embb
::
base
::
Allocation
::
New
<
embb
::
containers
::
internal
::
HazardPointer
<
int
*>
>
(
delete_pointer_callback_
,
static_cast
<
int
*>
(
NULL
),
static_cast
<
int
>
(
guards_per_phread_count_
),
n_threads
);
shared_guarded_
=
static_cast
<
embb
::
base
::
Atomic
<
int
*>*>
(
embb
::
base
::
Allocation
::
Allocate
(
sizeof
(
embb
::
base
::
Atomic
<
int
*>
)
*
guaranteed_capacity_pool_
));
for
(
unsigned
int
i
=
0
;
i
!=
guaranteed_capacity_pool_
;
++
i
)
{
// in-place new for each array cell
new
(
&
shared_guarded_
[
i
])
embb
::
base
::
Atomic
<
int
*
>
;
}
shared_allocated_
=
static_cast
<
embb
::
base
::
Atomic
<
int
*>*>
(
embb
::
base
::
Allocation
::
Allocate
(
sizeof
(
embb
::
base
::
Atomic
<
int
*>
)
*
guaranteed_capacity_pool_
));
for
(
unsigned
int
i
=
0
;
i
!=
guaranteed_capacity_pool_
;
++
i
)
{
// in-place new for each array cell
new
(
&
shared_allocated_
[
i
])
embb
::
base
::
Atomic
<
int
*
>
;
}
for
(
unsigned
int
i
=
0
;
i
!=
guaranteed_capacity_pool_
;
++
i
)
{
shared_guarded_
[
i
]
=
0
;
shared_allocated_
[
i
]
=
0
;
}
}
void
HazardPointerTest2
::
HazardPointerTest2Post
()
{
for
(
unsigned
int
i
=
0
;
i
!=
static_cast
<
unsigned
int
>
(
n_threads
);
++
i
)
{
for
(
unsigned
int
i2
=
0
;
i2
!=
static_cast
<
unsigned
int
>
(
n_threads
)
*
guards_per_phread_count_
;
++
i2
)
{
if
(
hazard_pointer_
->
thread_local_retired_lists_
[
i2
+
i
*
n_threads
*
guards_per_phread_count_
]
==
NULL
)
{
// all retired lists must be completely filled
PT_ASSERT
(
false
);
}
}
}
unsigned
int
checks
=
0
;
for
(
unsigned
int
i
=
0
;
i
!=
static_cast
<
unsigned
int
>
(
n_threads
);
++
i
)
{
for
(
unsigned
int
i2
=
0
;
i2
!=
static_cast
<
unsigned
int
>
(
n_threads
)
*
guards_per_phread_count_
;
++
i2
)
{
for
(
unsigned
int
j
=
0
;
j
!=
static_cast
<
unsigned
int
>
(
n_threads
);
++
j
)
{
for
(
unsigned
int
j2
=
0
;
j2
!=
static_cast
<
unsigned
int
>
(
n_threads
)
*
guards_per_phread_count_
;
++
j2
)
{
if
(
i2
==
j2
&&
i
==
j
)
continue
;
// all retired elements have to be disjoint
PT_ASSERT
(
hazard_pointer_
->
thread_local_retired_lists_
[
i2
+
i
*
n_threads
*
guards_per_phread_count_
]
!=
hazard_pointer_
->
thread_local_retired_lists_
[
j2
+
j
*
n_threads
*
guards_per_phread_count_
]);
checks
++
;
}
}
}
}
// sanity check on the count of expected comparisons.
PT_ASSERT
(
checks
==
n_threads
*
n_threads
*
guards_per_phread_count_
*
(
n_threads
*
n_threads
*
guards_per_phread_count_
-
1
));
std
::
vector
<
int
*
>
additionallyAllocated
;
// we should be able to still allocate the guaranteed capacity of
// elements from the pool.
for
(
unsigned
int
i
=
0
;
i
!=
guaranteed_capacity_pool_
;
++
i
)
{
int
*
allocated
=
test_pool_
->
Allocate
();
// allocated is not allowed to be zero
PT_ASSERT
(
allocated
!=
NULL
);
// push to vector, to check if elements are disjunctive and to release
// afterwards.
additionallyAllocated
.
push_back
(
allocated
);
}
// the pool should now be empty
PT_ASSERT
(
test_pool_
->
Allocate
()
==
NULL
);
// release allocated elements...
for
(
unsigned
int
i
=
0
;
i
!=
additionallyAllocated
.
size
();
++
i
)
{
test_pool_
->
Release
(
additionallyAllocated
[
i
]);
}
// the additionallyAllocated elements shall be disjoint
for
(
unsigned
int
i
=
0
;
i
!=
additionallyAllocated
.
size
();
++
i
)
{
for
(
unsigned
int
i2
=
0
;
i2
!=
additionallyAllocated
.
size
();
++
i2
)
{
if
(
i
==
i2
)
continue
;
PT_ASSERT
(
additionallyAllocated
[
i
]
!=
additionallyAllocated
[
i2
]);
}
}
// no allocated element should be in any retired list...
for
(
unsigned
int
a
=
0
;
a
!=
additionallyAllocated
.
size
();
++
a
)
{
for
(
unsigned
int
i
=
0
;
i
!=
static_cast
<
unsigned
int
>
(
n_threads
);
++
i
)
{
for
(
unsigned
int
i2
=
0
;
i2
!=
static_cast
<
unsigned
int
>
(
n_threads
)
*
guards_per_phread_count_
;
++
i2
)
{
PT_ASSERT
(
hazard_pointer_
->
thread_local_retired_lists_
[
i2
+
i
*
n_threads
*
guards_per_phread_count_
]
!=
additionallyAllocated
[
a
]);
}
}
}
for
(
unsigned
int
i
=
0
;
i
!=
guaranteed_capacity_pool_
;
++
i
)
{
// in-place new for each array cell
shared_guarded_
[
i
].
~
Atomic
();
}
embb
::
base
::
Allocation
::
Free
(
shared_guarded_
);
for
(
unsigned
int
i
=
0
;
i
!=
guaranteed_capacity_pool_
;
++
i
)
{
// in-place new for each array cell
shared_allocated_
[
i
].
~
Atomic
();
}
embb
::
base
::
Allocation
::
Free
(
shared_allocated_
);
embb
::
base
::
Allocation
::
Delete
(
hazard_pointer_
);
// after deleting the hazard pointer object, all retired pointers have
// to be returned to the pool!
std
::
vector
<
int
*>
elementsInPool
;
int
*
nextElement
;
while
((
nextElement
=
test_pool_
->
Allocate
())
!=
NULL
)
{
for
(
unsigned
int
i
=
0
;
i
!=
elementsInPool
.
size
();
++
i
)
{
// all elements need to be disjoint
PT_ASSERT
(
elementsInPool
[
i
]
!=
nextElement
);
}
elementsInPool
.
push_back
(
nextElement
);
}
// all elements should have been returned by the hp object, so we should be
// able to acquire all elements.
PT_ASSERT
(
elementsInPool
.
size
()
==
pool_size_using_hazard_pointer_
);
embb
::
base
::
Allocation
::
Delete
(
test_pool_
);
}
void
HazardPointerTest2
::
HazardPointerTest2ThreadMethod
()
{
for
(;;)
{
unsigned
int
thread_index
;
embb_internal_thread_index
(
&
thread_index
);
if
(
thread_index
==
current_master_
)
{
HazardPointerTest2Master
();
}
else
{
HazardPointerTest2Slave
();
}
sync1_
.
FetchAndAdd
(
1
);
// wait until cleanup thread signals to be finished
while
(
sync1_
!=
0
)
{
int
expected
=
n_threads
;
int
desired
=
FINISH_MARKER
;
// select thread, responsible for cleanup
if
(
sync1_
.
CompareAndSwap
(
expected
,
desired
))
{
// wipe arrays!
for
(
unsigned
int
i
=
0
;
i
!=
guaranteed_capacity_pool_
;
++
i
)
{
shared_guarded_
[
i
]
=
0
;
shared_allocated_
[
i
]
=
0
;
}
// increase master
current_master_
.
FetchAndAdd
(
1
);
sync2_
=
0
;
sync1_
.
Store
(
0
);
}
}
// wait for all threads to reach this position
sync2_
.
FetchAndAdd
(
1
);
while
(
sync2_
!=
static_cast
<
unsigned
int
>
(
n_threads
))
{}
// if each thread was master once, terminate.
if
(
current_master_
==
static_cast
<
unsigned
int
>
(
n_threads
))
{
return
;
}
}
}
HazardPointerTest2
::
HazardPointerTest2
()
:
n_threads
(
static_cast
<
int
>
(
partest
::
TestSuite
::
GetDefaultNumThreads
())),
#ifdef EMBB_PLATFORM_COMPILER_MSVC
#pragma warning(push)
#pragma warning(disable:4355)
#endif
delete_pointer_callback_
(
*
this
,
&
HazardPointerTest2
::
DeletePointerCallback
)
#ifdef EMBB_PLATFORM_COMPILER_MSVC
#pragma warning(pop)
#endif
{
guards_per_phread_count_
=
5
;
guaranteed_capacity_pool_
=
guards_per_phread_count_
*
n_threads
;
pool_size_using_hazard_pointer_
=
guaranteed_capacity_pool_
+
guards_per_phread_count_
*
n_threads
*
n_threads
;
embb
::
base
::
Thread
::
GetThreadsMaxCount
();
CreateUnit
(
"HazardPointerTestSimulateMemoryWorstCase"
).
Pre
(
&
HazardPointerTest2
::
HazardPointerTest2Pre
,
this
).
Add
(
&
HazardPointerTest2
::
HazardPointerTest2ThreadMethod
,
this
,
static_cast
<
size_t
>
(
n_threads
)).
Post
(
&
HazardPointerTest2
::
HazardPointerTest2Post
,
this
);
}
}
}
// namespace test
}
// namespace test
}
// namespace containers
}
// namespace containers
...
...
containers_cpp/test/hazard_pointer_test.h
View file @
d793c0c6
...
@@ -36,32 +36,112 @@
...
@@ -36,32 +36,112 @@
namespace
embb
{
namespace
embb
{
namespace
containers
{
namespace
containers
{
namespace
test
{
namespace
test
{
class
HazardPointerTest
:
public
partest
::
TestCase
{
/**
* @brief a very simple wait-free object pool implementation to have tests
* being independent of the EMBB object pool implementation.
*/
class
IntObjectTestPool
{
private
:
private
:
embb
::
base
::
Function
<
void
,
embb
::
base
::
Atomic
<
int
>*>
delete_pointer_callback
;
int
*
simplePoolObjects
;
embb
::
base
::
Atomic
<
int
>*
simplePool
;
//used to allocate random stuff, we will just use the pointers, not the
public
:
//contents
static
const
int
ALLOCATED_MARKER
=
1
;
embb
::
containers
::
ObjectPool
<
embb
::
base
::
Atomic
<
int
>
>*
object_pool
;
static
const
int
FREE_MARKER
=
0
;
unsigned
int
poolSize
;
//used to move pointer between threads
explicit
IntObjectTestPool
(
unsigned
int
pool_size
);
embb
::
containers
::
LockFreeStack
<
embb
::
base
::
Atomic
<
int
>*
>*
stack
;
embb
::
base
::
Mutex
vector_mutex
;
~
IntObjectTestPool
();
embb
::
containers
::
internal
::
HazardPointer
<
embb
::
base
::
Atomic
<
int
>*>*
hp
;
std
::
vector
<
embb
::
base
::
Atomic
<
int
>*
>
deleted_vector
;
int
n_threads
;
int
n_elements_per_thread
;
int
n_elements
;
/**
* Allocate object from the pool
*
* @return the allocated object
*/
int
*
Allocate
();
/**
* Return an element to the pool
*
* @param objectPointer the object to be freed
*/
void
Release
(
int
*
object_pointer
);
};
class
HazardPointerTest
:
public
partest
::
TestCase
{
public
:
public
:
/**
/**
* Adds test methods.
* Adds test methods.
*/
*/
HazardPointerTest
();
HazardPointerTest
();
void
HazardPointerTest1
_
Pre
();
void
HazardPointerTest1Pre
();
void
HazardPointerTest1
_
Post
();
void
HazardPointerTest1Post
();
void
HazardPointerTest1
_
ThreadMethod
();
void
HazardPointerTest1ThreadMethod
();
void
DeletePointerCallback
(
embb
::
base
::
Atomic
<
int
>*
to_delete
);
void
DeletePointerCallback
(
embb
::
base
::
Atomic
<
int
>*
to_delete
);
private
:
embb
::
base
::
Function
<
void
,
embb
::
base
::
Atomic
<
int
>*>
delete_pointer_callback_
;
//used to allocate random stuff, we will just use the pointers, not the
//contents
embb
::
containers
::
ObjectPool
<
embb
::
base
::
Atomic
<
int
>
>*
object_pool_
;
//used to move pointer between threads
embb
::
containers
::
LockFreeStack
<
embb
::
base
::
Atomic
<
int
>*
>*
stack_
;
embb
::
base
::
Mutex
vector_mutex_
;
embb
::
containers
::
internal
::
HazardPointer
<
embb
::
base
::
Atomic
<
int
>*>*
hazard_pointer_
;
std
::
vector
<
embb
::
base
::
Atomic
<
int
>*
>
deleted_vector_
;
int
n_threads_
;
int
n_elements_per_thread_
;
int
n_elements_
;
};
class
HazardPointerTest2
:
public
partest
::
TestCase
{
public
:
void
DeletePointerCallback
(
int
*
to_delete
);
bool
SetRelativeGuards
();
void
HazardPointerTest2Master
();
void
HazardPointerTest2Slave
();
void
HazardPointerTest2Pre
();
void
HazardPointerTest2Post
();
void
HazardPointerTest2ThreadMethod
();
HazardPointerTest2
();
private
:
// number of threads, participating in that test
int
n_threads
;
embb
::
base
::
Function
<
void
,
int
*>
delete_pointer_callback_
;
// the thread id of the master
embb
::
base
::
Atomic
<
unsigned
int
>
current_master_
;
// variables, to synchronize threads. At each point in time, one master,
// the master changes each round until each thread was assigned master once.
embb
::
base
::
Atomic
<
int
>
sync1_
;
embb
::
base
::
Atomic
<
unsigned
int
>
sync2_
;
unsigned
int
guards_per_phread_count_
;
unsigned
int
guaranteed_capacity_pool_
;
unsigned
int
pool_size_using_hazard_pointer_
;
// The threads write here, if they guarded an object successfully. Used to
// determine when all allocated objects were guarded successfully.
embb
::
base
::
Atomic
<
int
*>*
shared_guarded_
;
// This array is used by the master, to communicate and share what he has
// allocated with the slaves.
embb
::
base
::
Atomic
<
int
*>*
shared_allocated_
;
// Reference to the object pool
IntObjectTestPool
*
test_pool_
;
embb
::
containers
::
internal
::
HazardPointer
<
int
*>*
hazard_pointer_
;
static
const
int
FINISH_MARKER
=
-
1
;
};
};
}
// namespace test
}
// namespace test
}
// namespace containers
}
// namespace containers
...
...
containers_cpp/test/main.cc
View file @
d793c0c6
...
@@ -55,6 +55,7 @@ using embb::containers::test::HazardPointerTest;
...
@@ -55,6 +55,7 @@ using embb::containers::test::HazardPointerTest;
using
embb
::
containers
::
test
::
QueueTest
;
using
embb
::
containers
::
test
::
QueueTest
;
using
embb
::
containers
::
test
::
StackTest
;
using
embb
::
containers
::
test
::
StackTest
;
using
embb
::
containers
::
test
::
ObjectPoolTest
;
using
embb
::
containers
::
test
::
ObjectPoolTest
;
using
embb
::
containers
::
test
::
HazardPointerTest2
;
PT_MAIN
(
"Data Structures C++"
)
{
PT_MAIN
(
"Data Structures C++"
)
{
unsigned
int
max_threads
=
static_cast
<
unsigned
int
>
(
unsigned
int
max_threads
=
static_cast
<
unsigned
int
>
(
...
@@ -64,6 +65,7 @@ PT_MAIN("Data Structures C++") {
...
@@ -64,6 +65,7 @@ PT_MAIN("Data Structures C++") {
PT_RUN
(
PoolTest
<
WaitFreeArrayValuePool
<
int
COMMA
-
1
>
>
);
PT_RUN
(
PoolTest
<
WaitFreeArrayValuePool
<
int
COMMA
-
1
>
>
);
PT_RUN
(
PoolTest
<
LockFreeTreeValuePool
<
int
COMMA
-
1
>
>
);
PT_RUN
(
PoolTest
<
LockFreeTreeValuePool
<
int
COMMA
-
1
>
>
);
PT_RUN
(
HazardPointerTest
);
PT_RUN
(
HazardPointerTest
);
PT_RUN
(
HazardPointerTest2
);
PT_RUN
(
QueueTest
<
WaitFreeSPSCQueue
<
::
std
::
pair
<
size_t
COMMA
int
>
>
>
);
PT_RUN
(
QueueTest
<
WaitFreeSPSCQueue
<
::
std
::
pair
<
size_t
COMMA
int
>
>
>
);
PT_RUN
(
QueueTest
<
LockFreeMPMCQueue
<
::
std
::
pair
<
size_t
COMMA
int
>
>
PT_RUN
(
QueueTest
<
LockFreeMPMCQueue
<
::
std
::
pair
<
size_t
COMMA
int
>
>
COMMA
true
COMMA
true
>
);
COMMA
true
COMMA
true
>
);
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment