reduce_perf.h 3.26 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
/*
 * Copyright (c) 2014, Siemens AG. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * 1. Redistributions of source code must retain the above copyright notice,
 * this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 * this list of conditions and the following disclaimer in the documentation
 * and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef EMBB_ALGORITHMS_PERF_REDUCE_PERF_H_
#define EMBB_ALGORITHMS_PERF_REDUCE_PERF_H_

#include <embb/base/perf/call_args.h>

namespace embb {
namespace algorithms {
namespace perf {

template<typename T>
class TransformOp {
  T step_size;
  size_t load_factor;
public:
  explicit TransformOp(T stepSize, const embb::base::perf::CallArgs & args) :
    step_size(stepSize),
    load_factor(args.LoadFactor()) { }
  TransformOp(const TransformOp & other) :
    step_size(other.step_size),
    load_factor(other.load_factor) { }
  TransformOp & operator=(const TransformOp & other) {
    step_size = other.step_size;
    load_factor = other.load_factor;
  }
  T operator()(T val) const {
    T x = 0;
    // Simulate more complex operation depending on
54 55
    // load factor. Default load factor is 100.
    for (size_t i = 0; i < load_factor * 10; ++i) {
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
      x = (val + static_cast<T>(0.5)) * step_size * i;
      x = static_cast<T>(4.0 / (1.0 + x * x / load_factor));
    }
    return x;
  }
};

template<typename T>
class SerialReduce {
public:
  explicit SerialReduce(
    const embb::base::perf::CallArgs & args);
  ~SerialReduce();
  void Pre() { }
  void Run();
  void Post() { }

private:
  const embb::base::perf::CallArgs & cargs;
  const size_t vector_size;
  T *v;
  T result;

  /* prohibit copy and assignment */
  SerialReduce(const SerialReduce &other);
  SerialReduce& operator=(const SerialReduce &other);
};

template<typename T>
class ParallelReduce {
public:
  explicit ParallelReduce(
    const embb::base::perf::CallArgs & args);
  ~ParallelReduce();
90
  void Pre();
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
  void Run(unsigned int numThreads);
  void Post() { }

private:
  const embb::base::perf::CallArgs & cargs;
  const size_t vector_size;
  T *v;
  T result;
  
  /* prohibit copy and assignment */
  ParallelReduce(const ParallelReduce &other);
  ParallelReduce& operator=(const ParallelReduce &other);
};

}
}
}

#include <reduce_perf-inl.h>

#endif /* EMBB_ALGORITHMS_PERF_REDUCE_PERF_H_ */