/* * Copyright (c) 2014, Siemens AG. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef EMBB_ALGORITHMS_PERF_REDUCE_PERF_H_ #define EMBB_ALGORITHMS_PERF_REDUCE_PERF_H_ #include namespace embb { namespace algorithms { namespace perf { template class TransformOp { T step_size; size_t load_factor; public: explicit TransformOp(T stepSize, const embb::base::perf::CallArgs & args) : step_size(stepSize), load_factor(args.LoadFactor()) { } TransformOp(const TransformOp & other) : step_size(other.step_size), load_factor(other.load_factor) { } TransformOp & operator=(const TransformOp & other) { step_size = other.step_size; load_factor = other.load_factor; } T operator()(T val) const { T x = 0; // Simulate more complex operation depending on // load factor. Default load factor is 100. for (size_t i = 0; i < load_factor * 10; ++i) { x = (val + static_cast(0.5)) * step_size * i; x = static_cast(4.0 / (1.0 + x * x / load_factor)); } return x; } }; template class SerialReduce { public: explicit SerialReduce( const embb::base::perf::CallArgs & args); ~SerialReduce(); void Pre() { } void Run(); void Post() { } private: const embb::base::perf::CallArgs & cargs; const size_t vector_size; T *v; T result; /* prohibit copy and assignment */ SerialReduce(const SerialReduce &other); SerialReduce& operator=(const SerialReduce &other); }; template class ParallelReduce { public: explicit ParallelReduce( const embb::base::perf::CallArgs & args); ~ParallelReduce(); void Pre(); void Run(unsigned int numThreads); void Post() { } private: const embb::base::perf::CallArgs & cargs; const size_t vector_size; T *v; T result; /* prohibit copy and assignment */ ParallelReduce(const ParallelReduce &other); ParallelReduce& operator=(const ParallelReduce &other); }; } } } #include #endif /* EMBB_ALGORITHMS_PERF_REDUCE_PERF_H_ */