/* ---------------------------------------------------------------------- * Copyright (C) 2010-2014 ARM Limited. All rights reserved. * * $Date: 19. March 2015 * $Revision: V.1.4.5 * * Project: CMSIS DSP Library * Title: arm_cfft_q31.c * * Description: Combined Radix Decimation in Frequency CFFT fixed point processing function * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" extern void arm_radix4_butterfly_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pCoef, uint32_t twidCoefModifier); extern void arm_radix4_butterfly_inverse_q31( q31_t * pSrc, uint32_t fftLen, q31_t * pCoef, uint32_t twidCoefModifier); extern void arm_bitreversal_32( uint32_t * pSrc, const uint16_t bitRevLen, const uint16_t * pBitRevTable); void arm_cfft_radix4by2_q31( q31_t * pSrc, uint32_t fftLen, const q31_t * pCoef); void arm_cfft_radix4by2_inverse_q31( q31_t * pSrc, uint32_t fftLen, const q31_t * pCoef); /** * @ingroup groupTransforms */ /** * @addtogroup ComplexFFT * @{ */ /** * @details * @brief Processing function for the fixed-point complex FFT in Q31 format. * @param[in] *S points to an instance of the fixed-point CFFT structure. * @param[in, out] *p1 points to the complex data buffer of size 2*fftLen. Processing occurs in-place. * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. * @return none. */ void arm_cfft_q31( const arm_cfft_instance_q31 * S, q31_t * p1, uint8_t ifftFlag, uint8_t bitReverseFlag) { uint32_t L = S->fftLen; if(ifftFlag == 1u) { switch (L) { case 16: case 64: case 256: case 1024: case 4096: arm_radix4_butterfly_inverse_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 ); break; case 32: case 128: case 512: case 2048: arm_cfft_radix4by2_inverse_q31 ( p1, L, S->pTwiddle ); break; } } else { switch (L) { case 16: case 64: case 256: case 1024: case 4096: arm_radix4_butterfly_q31 ( p1, L, (q31_t*)S->pTwiddle, 1 ); break; case 32: case 128: case 512: case 2048: arm_cfft_radix4by2_q31 ( p1, L, S->pTwiddle ); break; } } if( bitReverseFlag ) arm_bitreversal_32((uint32_t*)p1,S->bitRevLength,S->pBitRevTable); } /** * @} end of ComplexFFT group */ void arm_cfft_radix4by2_q31( q31_t * pSrc, uint32_t fftLen, const q31_t * pCoef) { uint32_t i, l; uint32_t n2, ia; q31_t xt, yt, cosVal, sinVal; q31_t p0, p1; n2 = fftLen >> 1; ia = 0; for (i = 0; i < n2; i++) { cosVal = pCoef[2*ia]; sinVal = pCoef[2*ia + 1]; ia++; l = i + n2; xt = (pSrc[2 * i] >> 2) - (pSrc[2 * l] >> 2); pSrc[2 * i] = (pSrc[2 * i] >> 2) + (pSrc[2 * l] >> 2); yt = (pSrc[2 * i + 1] >> 2) - (pSrc[2 * l + 1] >> 2); pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2) + (pSrc[2 * i + 1] >> 2); mult_32x32_keep32_R(p0, xt, cosVal); mult_32x32_keep32_R(p1, yt, cosVal); multAcc_32x32_keep32_R(p0, yt, sinVal); multSub_32x32_keep32_R(p1, xt, sinVal); pSrc[2u * l] = p0 << 1; pSrc[2u * l + 1u] = p1 << 1; } // first col arm_radix4_butterfly_q31( pSrc, n2, (q31_t*)pCoef, 2u); // second col arm_radix4_butterfly_q31( pSrc + fftLen, n2, (q31_t*)pCoef, 2u); for (i = 0; i < fftLen >> 1; i++) { p0 = pSrc[4*i+0]; p1 = pSrc[4*i+1]; xt = pSrc[4*i+2]; yt = pSrc[4*i+3]; p0 <<= 1; p1 <<= 1; xt <<= 1; yt <<= 1; pSrc[4*i+0] = p0; pSrc[4*i+1] = p1; pSrc[4*i+2] = xt; pSrc[4*i+3] = yt; } } void arm_cfft_radix4by2_inverse_q31( q31_t * pSrc, uint32_t fftLen, const q31_t * pCoef) { uint32_t i, l; uint32_t n2, ia; q31_t xt, yt, cosVal, sinVal; q31_t p0, p1; n2 = fftLen >> 1; ia = 0; for (i = 0; i < n2; i++) { cosVal = pCoef[2*ia]; sinVal = pCoef[2*ia + 1]; ia++; l = i + n2; xt = (pSrc[2 * i] >> 2) - (pSrc[2 * l] >> 2); pSrc[2 * i] = (pSrc[2 * i] >> 2) + (pSrc[2 * l] >> 2); yt = (pSrc[2 * i + 1] >> 2) - (pSrc[2 * l + 1] >> 2); pSrc[2 * i + 1] = (pSrc[2 * l + 1] >> 2) + (pSrc[2 * i + 1] >> 2); mult_32x32_keep32_R(p0, xt, cosVal); mult_32x32_keep32_R(p1, yt, cosVal); multSub_32x32_keep32_R(p0, yt, sinVal); multAcc_32x32_keep32_R(p1, xt, sinVal); pSrc[2u * l] = p0 << 1; pSrc[2u * l + 1u] = p1 << 1; } // first col arm_radix4_butterfly_inverse_q31( pSrc, n2, (q31_t*)pCoef, 2u); // second col arm_radix4_butterfly_inverse_q31( pSrc + fftLen, n2, (q31_t*)pCoef, 2u); for (i = 0; i < fftLen >> 1; i++) { p0 = pSrc[4*i+0]; p1 = pSrc[4*i+1]; xt = pSrc[4*i+2]; yt = pSrc[4*i+3]; p0 <<= 1; p1 <<= 1; xt <<= 1; yt <<= 1; pSrc[4*i+0] = p0; pSrc[4*i+1] = p1; pSrc[4*i+2] = xt; pSrc[4*i+3] = yt; } }