
1 Masked Ascon Software Implementations
This repository contains high-level masked (shared) Ascon software implemen-
tations, mostly written in C. These implementations can be used as a starting
point to generate device specific C/ASM implementations.

Masked C implementations requires a minimum amount of ASM instructions.
Otherwise, the compiler may heavily optimize the code and even combine shares.
Obviously, the output generated is very sensitive to compiler and environment
changes and any generated output needs to be security evaluated.

A preliminary evaluation of these implementations has been performed on some
ChipWhisperer devices. The results can be reproduced by performing the
following steps:

• Make sure this repository is checked out in the hardware/victims/firmware
folder of your chipwhisperer installation.

• Make sure the jupyter/*.ipynb scripts are located in the jupyter folder
of your chipwhisperer installation.

• Run the shared simpleserial interface jupyter script jupyter/ascon_sca_sss.ipynb.

The masked software interface follows the Call for Protected Software Imple-
mentations of the Cryptographic Engineering Research Group for finalists in
the NIST Lightweight Cryptography Competition. The number of shares are
defined by the parameters NUM_SHARES_KEY, NUM_SHARES_NPUB, NUM_SHARES_AD,
NUM_SHARES_M and NUM_SHARES_C in the api.h file.

Additionally, most masked Ascon implementations assume that the shares are
(32/64-bit) rotated against each other using the parameter ASCON_ROR_SHARES
defined in the api.h file. The Ascon specific masking and rotation functions are
defined in the Python functions generate_shares and combine_shares as well
as in the C functions generate_shares_encrypt, generate_shares_decrypt,
combine_shares_encrypt and combine_shares_decrypt.

Note that an ASCON_ROR_SHARES value of x corresponds to a right rotation
of each internal 32-bit share i by x*i mod 32 bits. For 32-bit interleaved
implementations of Ascon, this corresponds to a right rotation of each 64-bit
share i by 2*x*i mod 32 bits at the interface level.

2 Protection Methods
• Name of the applied countermeasures:

– Masking with (almost) no fresh randomness
– Rotation of shares against each other
– Mode-level security (mask init/final, plain ad/pt/ct)

• Tag comparison:
– XOR masked tag to state (x3,x4)
– Set remaining state to masked zero

1

https://ascon.iaik.tugraz.at/
https://www.newae.com/chipwhisperer
https://cryptography.gmu.edu/athena/LWC/Call_for_Protected_Software_Implementations.pdf
https://cryptography.gmu.edu/athena/LWC/Call_for_Protected_Software_Implementations.pdf
https://cryptography.gmu.edu/
https://csrc.nist.gov/projects/lightweight-cryptography


– Compute masked PB permutation
– Plain comparison of result with known output of PB(0)

• Available implementations:
– protected_bi32_armv6 supporting 2, 3, 4 rotated shares (equal num-

ber of shares for key, nonce, adata, plaintext and ciphertext)
– protected_bi32_armv6_leveled supporting 2, 3, 4 rotated shares

for key and 1 share for nonce, adata, plaintext and ciphertext
• Primary references for masking Ascon:

– Joan Daemen, Christoph Dobraunig, Maria Eichlseder, Hannes Groß,
Florian Mendel, Robert Primas: “Protecting against Statistical Ineffec-
tive Fault Attacks”. CHES 2020. https://doi.org/10.13154/tches.v2020.i3.508-
543

– Aein Rezaei Shahmirzadi, Amir Moradi: “Second-Order SCA
Security with almost no Fresh Randomness”. CHES 2021.
https://doi.org/10.46586/tches.v2021.i3.708-755

– Hannes Groß, Stefan Mangard: “Reconciling d+1 Masking in Hard-
ware and Software”. CHES 2017. https://eprint.iacr.org/2017/103

• Primary references for mode-level security of Ascon:
– Alexandre Adomnicai, Jacques J. A. Fournier, Laurent Masson:
“Masking the Lightweight Authenticated Ciphers ACORN and As-
con in Software”. Cryptology ePrint Archive, Report 2018/708.
https://eprint.iacr.org/2018/708

– Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent
Grosso, Chun Guo, Charles Momin, Olivier Pereira, Thomas Peters,
François-Xavier Standaert: “Mode-Level vs. Implementation-Level
Physical Security in Symmetric Cryptography - A Practical
Guide Through the Leakage-Resistance Jungle”. CRYPTO 2020.
https://eprint.iacr.org/2020/211

3 Experimental Setup
• Measurement platform and device-under-evaluation:

– ChipWhisperer, CW308 with STM32F303 UFO target
– ChipWhisperer, CW308 with STM32F415 UFO target
– ChipWhisperer, CW308 with STM32F405 UFO target

• STM32F303, STM32F415:
– Oscilloscope: ChipWhisperer Lite Scope
– Measurement: see ChipWhisperer specification
– Sampling rate: clkgen x4

• STM32F405:
– Oszilloscope: Picoscope 6404d
– Measurement: CW501 differential probe
– Sampling rate: 1GS

The experimental setup and evalutions for STM32F303 and STM32F415 are

2



given in the jupyter scripts in this repository.

4 Attack/Leakage Assessment Characteristics
• Data inputs and performed operations:

– encrypt/decrypt using plain CW simpleserial interface defined in
jupyter/ascon_sca.ipynb

– encrypt/decrypt using shared CW simpleserial interface defined in
jupyter/ascon_sca_sss.ipynb

– STM32F303 and STM32F415: ASCON_PA_ROUNDS and ASCON_PB_ROUNDS
reduced to 2 rounds to mostly fit within 24400 samples

• Source of random and pseudorandom inputs:
– STM32F415: randombytes.c using STM32F415 hardware RNG
– STM32F303 and STM32F415: custom randombytes.c function using

stdlib.h rand() and srand()
– Python random.getrandbits function for shared interface

• Trigger location relative to the execution start time of the algorithm:
– Prior and after the call to crypto_aead_encrypt_shared and

crypto_aead_decrypt_shared
• Time required to collect data for a given attack/leakage assessment:

– 30 iterations/second using a target baud rate of 230400
– 8 iterations/second using a target baud rate of 38400

• Total time of the attack/assessment:
– About 9 hours per 1 million traces

• Total size of all traces: not stored

5 Attack Specific Data
• Number of traces used: up to 8M depending on device and implementation

• Attack point:

– trigger prior and after crypto_aead_encrypt_shared
– trigger prior and after crypto_aead_decrypt_shared (with final

ascon_iszero)
– key, nonce and data are assumed to be randomly masked in each

en/decryption

• Attack/leakage assessment type: Test Vector Leakage Assessment with

– fixed key, fixed nonce, fixed 4-byte adata, fixed 4-byte plaintext
(ciphertext) vs.

– fixed key, random nonce, random 4-byte adata, random 4-byte plain-
text (ciphertext)

• Note that using mode-level countermeasures, parts of the computations are
computed in plain. This is the case for the final ascon_iszero function or

3



large parts of the protected_bi32_armv6_leveled implementation. Plain
computations need to be excluded from the t-test evaluation by setting
the trigger locations accordingly.

6 Documentation of Results
Attack script using shared simpleserial interface: jupyter/ascon_sca_sss.ipynb

Note that for the ChipWhisperer Lite Scope only the first 24400 samples have
been recorded. To cover larger parts of the implementation, the number of
rounds have been reduced to 2 rounds for PA and PB. This results in about
25000 samples for decrypt and slightly less than 25000 samples for encrypt using
2 shares and clkgen x4.

6.1 3 rotated shares
• Decryption (2 PA/PB rounds) of protected_bi32_armv6 on STM32F303

using 3 rotated shares and 8M traces:

6.2 2 rotated shares with device specific fixes
Contrary to 3 shares, masking software implementations using only 2 shares is a
much more difficult challenge, since the 2 shares might easily collide in hardware.
Although rotating the shares reduces the number of possible situations where
these 2 shares may collide, device specific fixes are usually still needed at some
places.

The device specific fix for the STM32F405 and STM32F415 targets is to add
a MOV <rd>, #0 instruction between locations where shares are unrotated (e.g.
during bit interleaving or in non-linear functions). Similar fixes might exist for
other devices.

4



• Encryption (12/6 PA/PB rounds) of protected_bi32_armv6 on
STM32F405 using 2 rotated shares, device specific fixes, external bit
interleaving (can be computed offline, does not depend on key) and ~4.2M
traces:

• Decryption (2 PA/PB rounds) of protected_bi32_armv6 on STM32F415
using 2 rotated shares with device specific fixes and 4M and 5M traces:

5



6.3 2 rotated shares without device specific fixes
Without device specific fixes, peaks in the t-test are shown after a low number
of traces (<10k). In the following we show such example graphs.

• Decryption (2 PA/PB rounds) of protected_bi32_armv6 on STM32F415
using 2 rotated shares, without device specific fixes and 100k traces:

• Decryption (2 PA/PB rounds) of protected_bi32_armv6 on STM32F303
using 2 rotated shares, without device specific fixes and 10k traces:

6



7 Authors
Florian Dietrich, Christoph Dobraunig, Florian Mendel, Robert Primas, Martin
Schläffer

7


	Masked Ascon Software Implementations
	Protection Methods
	Experimental Setup
	Attack/Leakage Assessment Characteristics
	Attack Specific Data
	Documentation of Results
	3 rotated shares
	2 rotated shares with device specific fixes
	2 rotated shares without device specific fixes

	Authors

