/* ---------------------------------------------------------------------- * Copyright (C) 2010-2014 ARM Limited. All rights reserved. * * $Date: 19. March 2015 * $Revision: V.1.4.5 * * Project: CMSIS DSP Library * Title: arm_cfft_q15.c * * Description: Combined Radix Decimation in Q15 Frequency CFFT processing function * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" extern void arm_radix4_butterfly_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pCoef, uint32_t twidCoefModifier); extern void arm_radix4_butterfly_inverse_q15( q15_t * pSrc, uint32_t fftLen, q15_t * pCoef, uint32_t twidCoefModifier); extern void arm_bitreversal_16( uint16_t * pSrc, const uint16_t bitRevLen, const uint16_t * pBitRevTable); void arm_cfft_radix4by2_q15( q15_t * pSrc, uint32_t fftLen, const q15_t * pCoef); void arm_cfft_radix4by2_inverse_q15( q15_t * pSrc, uint32_t fftLen, const q15_t * pCoef); /** * @ingroup groupTransforms */ /** * @addtogroup ComplexFFT * @{ */ /** * @details * @brief Processing function for the Q15 complex FFT. * @param[in] *S points to an instance of the Q15 CFFT structure. * @param[in, out] *p1 points to the complex data buffer of size 2*fftLen. Processing occurs in-place. * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. * @return none. */ void arm_cfft_q15( const arm_cfft_instance_q15 * S, q15_t * p1, uint8_t ifftFlag, uint8_t bitReverseFlag) { uint32_t L = S->fftLen; if(ifftFlag == 1u) { switch (L) { case 16: case 64: case 256: case 1024: case 4096: arm_radix4_butterfly_inverse_q15 ( p1, L, (q15_t*)S->pTwiddle, 1 ); break; case 32: case 128: case 512: case 2048: arm_cfft_radix4by2_inverse_q15 ( p1, L, S->pTwiddle ); break; } } else { switch (L) { case 16: case 64: case 256: case 1024: case 4096: arm_radix4_butterfly_q15 ( p1, L, (q15_t*)S->pTwiddle, 1 ); break; case 32: case 128: case 512: case 2048: arm_cfft_radix4by2_q15 ( p1, L, S->pTwiddle ); break; } } if( bitReverseFlag ) arm_bitreversal_16((uint16_t*)p1,S->bitRevLength,S->pBitRevTable); } /** * @} end of ComplexFFT group */ void arm_cfft_radix4by2_q15( q15_t * pSrc, uint32_t fftLen, const q15_t * pCoef) { uint32_t i; uint32_t n2; q15_t p0, p1, p2, p3; #ifndef ARM_MATH_CM0_FAMILY q31_t T, S, R; q31_t coeff, out1, out2; const q15_t *pC = pCoef; q15_t *pSi = pSrc; q15_t *pSl = pSrc + fftLen; #else uint32_t ia, l; q15_t xt, yt, cosVal, sinVal; #endif n2 = fftLen >> 1; #ifndef ARM_MATH_CM0_FAMILY for (i = n2; i > 0; i--) { coeff = _SIMD32_OFFSET(pC); pC += 2; T = _SIMD32_OFFSET(pSi); T = __SHADD16(T, 0); // this is just a SIMD arithmetic shift right by 1 S = _SIMD32_OFFSET(pSl); S = __SHADD16(S, 0); // this is just a SIMD arithmetic shift right by 1 R = __QSUB16(T, S); _SIMD32_OFFSET(pSi) = __SHADD16(T, S); pSi += 2; #ifndef ARM_MATH_BIG_ENDIAN out1 = __SMUAD(coeff, R) >> 16; out2 = __SMUSDX(coeff, R); #else out1 = __SMUSDX(R, coeff) >> 16u; out2 = __SMUAD(coeff, R); #endif // #ifndef ARM_MATH_BIG_ENDIAN _SIMD32_OFFSET(pSl) = (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); pSl += 2; } #else // #ifndef ARM_MATH_CM0_FAMILY ia = 0; for (i = 0; i < n2; i++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia++; l = i + n2; xt = (pSrc[2 * i] >> 1u) - (pSrc[2 * l] >> 1u); pSrc[2 * i] = ((pSrc[2 * i] >> 1u) + (pSrc[2 * l] >> 1u)) >> 1u; yt = (pSrc[2 * i + 1] >> 1u) - (pSrc[2 * l + 1] >> 1u); pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 1u) + (pSrc[2 * i + 1] >> 1u)) >> 1u; pSrc[2u * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) + ((int16_t) (((q31_t) yt * sinVal) >> 16))); pSrc[2u * l + 1u] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) - ((int16_t) (((q31_t) xt * sinVal) >> 16))); } #endif // #ifndef ARM_MATH_CM0_FAMILY // first col arm_radix4_butterfly_q15( pSrc, n2, (q15_t*)pCoef, 2u); // second col arm_radix4_butterfly_q15( pSrc + fftLen, n2, (q15_t*)pCoef, 2u); for (i = 0; i < fftLen >> 1; i++) { p0 = pSrc[4*i+0]; p1 = pSrc[4*i+1]; p2 = pSrc[4*i+2]; p3 = pSrc[4*i+3]; p0 <<= 1; p1 <<= 1; p2 <<= 1; p3 <<= 1; pSrc[4*i+0] = p0; pSrc[4*i+1] = p1; pSrc[4*i+2] = p2; pSrc[4*i+3] = p3; } } void arm_cfft_radix4by2_inverse_q15( q15_t * pSrc, uint32_t fftLen, const q15_t * pCoef) { uint32_t i; uint32_t n2; q15_t p0, p1, p2, p3; #ifndef ARM_MATH_CM0_FAMILY q31_t T, S, R; q31_t coeff, out1, out2; const q15_t *pC = pCoef; q15_t *pSi = pSrc; q15_t *pSl = pSrc + fftLen; #else uint32_t ia, l; q15_t xt, yt, cosVal, sinVal; #endif n2 = fftLen >> 1; #ifndef ARM_MATH_CM0_FAMILY for (i = n2; i > 0; i--) { coeff = _SIMD32_OFFSET(pC); pC += 2; T = _SIMD32_OFFSET(pSi); T = __SHADD16(T, 0); // this is just a SIMD arithmetic shift right by 1 S = _SIMD32_OFFSET(pSl); S = __SHADD16(S, 0); // this is just a SIMD arithmetic shift right by 1 R = __QSUB16(T, S); _SIMD32_OFFSET(pSi) = __SHADD16(T, S); pSi += 2; #ifndef ARM_MATH_BIG_ENDIAN out1 = __SMUSD(coeff, R) >> 16; out2 = __SMUADX(coeff, R); #else out1 = __SMUADX(R, coeff) >> 16u; out2 = __SMUSD(__QSUB(0, coeff), R); #endif // #ifndef ARM_MATH_BIG_ENDIAN _SIMD32_OFFSET(pSl) = (q31_t) ((out2) & 0xFFFF0000) | (out1 & 0x0000FFFF); pSl += 2; } #else // #ifndef ARM_MATH_CM0_FAMILY ia = 0; for (i = 0; i < n2; i++) { cosVal = pCoef[ia * 2]; sinVal = pCoef[(ia * 2) + 1]; ia++; l = i + n2; xt = (pSrc[2 * i] >> 1u) - (pSrc[2 * l] >> 1u); pSrc[2 * i] = ((pSrc[2 * i] >> 1u) + (pSrc[2 * l] >> 1u)) >> 1u; yt = (pSrc[2 * i + 1] >> 1u) - (pSrc[2 * l + 1] >> 1u); pSrc[2 * i + 1] = ((pSrc[2 * l + 1] >> 1u) + (pSrc[2 * i + 1] >> 1u)) >> 1u; pSrc[2u * l] = (((int16_t) (((q31_t) xt * cosVal) >> 16)) - ((int16_t) (((q31_t) yt * sinVal) >> 16))); pSrc[2u * l + 1u] = (((int16_t) (((q31_t) yt * cosVal) >> 16)) + ((int16_t) (((q31_t) xt * sinVal) >> 16))); } #endif // #ifndef ARM_MATH_CM0_FAMILY // first col arm_radix4_butterfly_inverse_q15( pSrc, n2, (q15_t*)pCoef, 2u); // second col arm_radix4_butterfly_inverse_q15( pSrc + fftLen, n2, (q15_t*)pCoef, 2u); for (i = 0; i < fftLen >> 1; i++) { p0 = pSrc[4*i+0]; p1 = pSrc[4*i+1]; p2 = pSrc[4*i+2]; p3 = pSrc[4*i+3]; p0 <<= 1; p1 <<= 1; p2 <<= 1; p3 <<= 1; pSrc[4*i+0] = p0; pSrc[4*i+1] = p1; pSrc[4*i+2] = p2; pSrc[4*i+3] = p3; } }