#include #include #include #include #include #include "crypto_aead.h" #include "api.h" #include "uartp.h" #include "main.h" #define MAX_BYTES 100 uint8_t npub[CRYPTO_NPUBBYTES]; uint8_t nsec[CRYPTO_NSECBYTES]; uint8_t k[CRYPTO_KEYBYTES]; uint8_t ad[MAX_BYTES]; unsigned long long int adlen; uint8_t m[MAX_BYTES]; unsigned long long int mlen; uint8_t c[MAX_BYTES]; unsigned long long int clen; int res; void setup(); void loop(); #define uart_buf_len 256 static uint8_t uart_buf[uart_buf_len]; static uint8_t uart_buf_read_idx = 0; volatile static uint8_t uart_buf_write_idx = 0; void uart_wbyte(uint8_t x) { while (!LL_USART_IsActiveFlag_TXE(USART2)); LL_USART_TransmitData8(USART2, x); } uint8_t uart_rbyte() { while (uart_buf_read_idx == uart_buf_write_idx); uint8_t r = uart_buf[uart_buf_read_idx]; uart_buf_read_idx = (uart_buf_read_idx + 1) % uart_buf_len; return r; } void test_uart_handler() { if (LL_USART_IsActiveFlag_RXNE(USART2)) { uint8_t r = (uint8_t) LL_USART_ReceiveData8(USART2); uart_buf[uart_buf_write_idx] = r; uart_buf_write_idx = (uart_buf_write_idx + 1) % uart_buf_len; } } static inline void noInterrupts() { // TODO: if necessary, provide a way to disable interrupts } static inline void interrupts() { // TODO: if necessary, provide a way to enable interrupts } void my_assert(bool b) { if (b) return; Error_Handler(); for(;;); } void test_setup() { LL_GPIO_SetOutputPin(CRYPTO_BUSY_GPIO_Port, CRYPTO_BUSY_Pin); LL_mDelay(100); for (int i = 0; i < 13; i++) { uart_wbyte("Hello, World!"[i]); } LL_USART_ReceiveData8(USART2); LL_USART_EnableIT_RXNE(USART2); } void test_loop() { static uint8_t buf[256]; uint16_t len = uartp_recv(buf, 255); uint8_t action = buf[0]; if (len == 0 || len > 255) return; uint16_t l = len - 1; uint16_t rl = 0; uint8_t *var = buf+1; switch (action) { case 'm': my_assert(l <= MAX_BYTES); memcpy(m, var, l); mlen = l; break; case 'c': my_assert(l <= MAX_BYTES); memcpy(c, var, l); clen = l; break; case 'a': my_assert(l <= MAX_BYTES); memcpy(ad, var, l); adlen = l; break; case 'k': my_assert(l == CRYPTO_KEYBYTES); memcpy(k, var, l); break; case 'p': my_assert(l == CRYPTO_NPUBBYTES); memcpy(npub, var, l); break; case 's': my_assert(l == CRYPTO_NSECBYTES); memcpy(nsec, var, l); break; case 'e': noInterrupts(); asm("nop"); LL_GPIO_ResetOutputPin(CRYPTO_BUSY_GPIO_Port, CRYPTO_BUSY_Pin); res = crypto_aead_encrypt(c, &clen, m, mlen, ad, adlen, nsec, npub, k); LL_GPIO_SetOutputPin(CRYPTO_BUSY_GPIO_Port, CRYPTO_BUSY_Pin); asm("nop"); interrupts(); break; case 'd': noInterrupts(); asm("nop"); LL_GPIO_ResetOutputPin(CRYPTO_BUSY_GPIO_Port, CRYPTO_BUSY_Pin); res = crypto_aead_decrypt(m, &mlen, nsec, c, clen, ad, adlen, npub, k); LL_GPIO_SetOutputPin(CRYPTO_BUSY_GPIO_Port, CRYPTO_BUSY_Pin); asm("nop"); interrupts(); break; case'M': var = m; rl = mlen; break; case'C': var = c; rl = clen; break; case'A': var = ad; rl = adlen; break; case'K': var = k; rl = CRYPTO_KEYBYTES; break; case'P': var = npub; rl = CRYPTO_NPUBBYTES; break; case'S': var = nsec; rl = CRYPTO_NSECBYTES; break; case'R': var = (uint8_t *) &res; rl = sizeof(res); break; default: my_assert(false); } buf[0] = action; memcpy(buf+1, var, rl); uartp_send(buf, rl+1); }