arm_convolution_example_f32.c 10.8 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2012 ARM Limited. All rights reserved.
*
* $Date:         17. January 2013
* $Revision:     V1.4.0
*
* Project:       CMSIS DSP Library
* Title:         arm_convolution_example_f32.c
*
* Description:   Example code demonstrating Convolution of two input signals using fft.
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
* -------------------------------------------------------------------- */

/**
 * @ingroup groupExamples
 */

/**
 * @defgroup ConvolutionExample Convolution Example
 *
 * \par Description:
 * \par
 * Demonstrates the convolution theorem with the use of the Complex FFT, Complex-by-Complex
 * Multiplication, and Support Functions.
 *
 * \par Algorithm:
 * \par
 * The convolution theorem states that convolution in the time domain corresponds to
 * multiplication in the frequency domain. Therefore, the Fourier transform of the convoution of
 * two signals is equal to the product of their individual Fourier transforms.
 * The Fourier transform of a signal can be evaluated efficiently using the Fast Fourier Transform (FFT).
 * \par
 * Two input signals, <code>a[n]</code> and <code>b[n]</code>, with lengths \c n1 and \c n2 respectively,
 * are zero padded so that their lengths become \c N, which is greater than or equal to <code>(n1+n2-1)</code>
 * and is a power of 4 as FFT implementation is radix-4.
 * The convolution of <code>a[n]</code> and <code>b[n]</code> is obtained by taking the FFT of the input
 * signals, multiplying the Fourier transforms of the two signals, and taking the inverse FFT of
 * the multiplied result.
 * \par
 * This is denoted by the following equations:
 * <pre> A[k] = FFT(a[n],N)
 * B[k] = FFT(b[n],N)
 * conv(a[n], b[n]) = IFFT(A[k] * B[k], N)</pre>
 * where <code>A[k]</code> and <code>B[k]</code> are the N-point FFTs of the signals <code>a[n]</code>
 * and <code>b[n]</code> respectively.
 * The length of the convolved signal is <code>(n1+n2-1)</code>.
 *
 * \par Block Diagram:
 * \par
 * \image html Convolution.gif
 *
 * \par Variables Description:
 * \par
 * \li \c testInputA_f32 points to the first input sequence
 * \li \c srcALen length of the first input sequence
 * \li \c testInputB_f32 points to the second input sequence
 * \li \c srcBLen length of the second input sequence
 * \li \c outLen length of convolution output sequence, <code>(srcALen + srcBLen - 1)</code>
 * \li \c AxB points to the output array where the product of individual FFTs of inputs is stored.
 *
 * \par CMSIS DSP Software Library Functions Used:
 * \par
 * - arm_fill_f32()
 * - arm_copy_f32()
 * - arm_cfft_radix4_init_f32()
 * - arm_cfft_radix4_f32()
 * - arm_cmplx_mult_cmplx_f32()
 *
 * <b> Refer  </b>
 * \link arm_convolution_example_f32.c \endlink
 *
 */


/** \example arm_convolution_example_f32.c
  */

#include "arm_math.h"
#include "math_helper.h"

/* ----------------------------------------------------------------------
* Defines each of the tests performed
* ------------------------------------------------------------------- */
#define MAX_BLOCKSIZE   128
#define DELTA           (0.000001f)
#define SNR_THRESHOLD   90

/* ----------------------------------------------------------------------
* Declare I/O buffers
* ------------------------------------------------------------------- */
float32_t Ak[MAX_BLOCKSIZE];        /* Input A */
float32_t Bk[MAX_BLOCKSIZE];        /* Input B */
float32_t AxB[MAX_BLOCKSIZE * 2];   /* Output */

/* ----------------------------------------------------------------------
* Test input data for Floating point Convolution example for 32-blockSize
* Generated by the MATLAB randn() function
* ------------------------------------------------------------------- */
float32_t testInputA_f32[64] =
{
  -0.808920,   1.357369,   1.180861,  -0.504544,   1.762637,  -0.703285,
   1.696966,   0.620571,  -0.151093,  -0.100235,  -0.872382,  -0.403579,
  -0.860749,  -0.382648,  -1.052338,   0.128113,  -0.646269,   1.093377,
  -2.209198,   0.471706,   0.408901,   1.266242,   0.598252,   1.176827,
  -0.203421,   0.213596,  -0.851964,  -0.466958,   0.021841,  -0.698938,
  -0.604107,   0.461778,  -0.318219,   0.942520,   0.577585,   0.417619,
   0.614665,   0.563679,  -1.295073,  -0.764437,   0.952194,  -0.859222,
  -0.618554,  -2.268542,  -1.210592,   1.655853,  -2.627219,  -0.994249,
  -1.374704,   0.343799,   0.025619,   1.227481,  -0.708031,   0.069355,
  -1.845228,  -1.570886,   1.010668,  -1.802084,   1.630088,   1.286090,
  -0.161050,  -0.940794,   0.367961,   0.291907

};

float32_t testInputB_f32[64] =
{
   0.933724,   0.046881,   1.316470,   0.438345,   0.332682,   2.094885,
   0.512081,   0.035546,   0.050894,  -2.320371,   0.168711,  -1.830493,
  -0.444834,  -1.003242,  -0.531494,  -1.365600,  -0.155420,  -0.757692,
  -0.431880,  -0.380021,   0.096243,  -0.695835,   0.558850,  -1.648962,
   0.020369,  -0.363630,   0.887146,   0.845503,  -0.252864,  -0.330397,
   1.269131,  -1.109295,  -1.027876,   0.135940,   0.116721,  -0.293399,
  -1.349799,   0.166078,  -0.802201,   0.369367,  -0.964568,  -2.266011,
   0.465178,   0.651222,  -0.325426,   0.320245,  -0.784178,  -0.579456,
   0.093374,   0.604778,  -0.048225,   0.376297,  -0.394412,   0.578182,
  -1.218141,  -1.387326,   0.692462,  -0.631297,   0.153137,  -0.638952,
  0.635474,   -0.970468,   1.334057,  -0.111370
};

const float testRefOutput_f32[127] =
{
   -0.818943,    1.229484,  -0.533664,    1.016604,   0.341875,  -1.963656,
    5.171476,    3.478033,   7.616361,    6.648384,   0.479069,   1.792012,
   -1.295591,   -7.447818,   0.315830,  -10.657445,  -2.483469,  -6.524236,
   -7.380591,   -3.739005,  -8.388957,    0.184147,  -1.554888,   3.786508,
   -1.684421,    5.400610,  -1.578126,    7.403361,   8.315999,   2.080267,
   11.077776,    2.749673,   7.138962,    2.748762,   0.660363,   0.981552,
    1.442275,    0.552721,  -2.576892,    4.703989,   0.989156,   8.759344,
   -0.564825,   -3.994680,   0.954710,   -5.014144,   6.592329,   1.599488,
  -13.979146,   -0.391891,  -4.453369,   -2.311242,  -2.948764,   1.761415,
   -0.138322,   10.433007,  -2.309103,    4.297153,   8.535523,   3.209462,
    8.695819,    5.569919,   2.514304,    5.582029,   2.060199,   0.642280,
    7.024616,    1.686615,  -6.481756,    1.343084,  -3.526451,   1.099073,
   -2.965764,   -0.173723,  -4.111484,    6.528384,  -6.965658,   1.726291,
    1.535172,   11.023435,   2.338401,   -4.690188,   1.298210,   3.943885,
    8.407885,    5.168365,   0.684131,    1.559181,   1.859998,   2.852417,
    8.574070,   -6.369078,   6.023458,   11.837963,  -6.027632,   4.469678,
   -6.799093,   -2.674048,   6.250367,   -6.809971,  -3.459360,   9.112410,
   -2.711621,   -1.336678,   1.564249,   -1.564297,  -1.296760,   8.904013,
   -3.230109,    6.878013,  -7.819823,    3.369909,  -1.657410,  -2.007358,
   -4.112825,    1.370685,  -3.420525,   -6.276605,   3.244873,  -3.352638,
    1.545372,    0.902211,   0.197489,   -1.408732,   0.523390,   0.348440, 0
};


/* ----------------------------------------------------------------------
* Declare Global variables
* ------------------------------------------------------------------- */
uint32_t srcALen = 64;   /* Length of Input A */
uint32_t srcBLen = 64;   /* Length of Input B */
uint32_t outLen;         /* Length of convolution output */
float32_t snr;           /* output SNR */

int32_t main(void)
{
  arm_status status;                           /* Status of the example */
  arm_cfft_radix4_instance_f32 cfft_instance;  /* CFFT Structure instance */

  /* CFFT Structure instance pointer */
  arm_cfft_radix4_instance_f32 *cfft_instance_ptr =
      (arm_cfft_radix4_instance_f32*) &cfft_instance;

  /* output length of convolution */
  outLen = srcALen + srcBLen - 1;

  /* Initialise the fft input buffers with all zeros */
  arm_fill_f32(0.0,  Ak, MAX_BLOCKSIZE);
  arm_fill_f32(0.0,  Bk, MAX_BLOCKSIZE);

  /* Copy the input values to the fft input buffers */
  arm_copy_f32(testInputA_f32,  Ak, MAX_BLOCKSIZE/2);
  arm_copy_f32(testInputB_f32,  Bk, MAX_BLOCKSIZE/2);

  /* Initialize the CFFT function to compute 64 point fft */
  status = arm_cfft_radix4_init_f32(cfft_instance_ptr, 64, 0, 1);

  /* Transform input a[n] from time domain to frequency domain A[k] */
  arm_cfft_radix4_f32(cfft_instance_ptr, Ak);
  /* Transform input b[n] from time domain to frequency domain B[k] */
  arm_cfft_radix4_f32(cfft_instance_ptr, Bk);

  /* Complex Multiplication of the two input buffers in frequency domain */
  arm_cmplx_mult_cmplx_f32(Ak, Bk, AxB, MAX_BLOCKSIZE/2);

  /* Initialize the CIFFT function to compute 64 point ifft */
  status = arm_cfft_radix4_init_f32(cfft_instance_ptr, 64, 1, 1);

  /* Transform the multiplication output from frequency domain to time domain,
     that gives the convolved output  */
  arm_cfft_radix4_f32(cfft_instance_ptr, AxB);

  /* SNR Calculation */
  snr = arm_snr_f32((float32_t *)testRefOutput_f32, AxB, srcALen + srcBLen - 1);

  /* Compare the SNR with threshold to test whether the
     computed output is matched with the reference output values. */
  if( snr > SNR_THRESHOLD)
  {
    status = ARM_MATH_SUCCESS;
  }

  if( status != ARM_MATH_SUCCESS)
  {
    while(1);
  }

  while(1);                             /* main function does not return */
}

 /** \endlink */