arm_conv_partial_opt_q15.c 21.2 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
/* ----------------------------------------------------------------------    
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
*    
* $Date:        19. March 2015
* $Revision: 	V.1.4.5
*    
* Project: 	    CMSIS DSP Library    
* Title:		arm_conv_partial_opt_q15.c    
*    
* Description:	Partial convolution of Q15 sequences.   
*    
* Target Processor: Cortex-M4/Cortex-M3
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.  
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**    
 * @ingroup groupFilters    
 */

/**    
 * @addtogroup PartialConv    
 * @{    
 */

/**    
 * @brief Partial convolution of Q15 sequences.    
 * @param[in]       *pSrcA points to the first input sequence.    
 * @param[in]       srcALen length of the first input sequence.    
 * @param[in]       *pSrcB points to the second input sequence.    
 * @param[in]       srcBLen length of the second input sequence.    
 * @param[out]      *pDst points to the location where the output result is written.    
 * @param[in]       firstIndex is the first output sample to start with.    
 * @param[in]       numPoints is the number of output points to be computed.    
 * @param[in]       *pScratch1 points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.   
 * @param[in]       *pScratch2 points to scratch buffer of size min(srcALen, srcBLen).   
 * @return  Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].    
 *    
 * \par Restrictions    
 *  If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE    
 *	In this case input, output, state buffers should be aligned by 32-bit    
 *    
 * Refer to <code>arm_conv_partial_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.   
 *  
 * 
 */

#ifndef UNALIGNED_SUPPORT_DISABLE

arm_status arm_conv_partial_opt_q15(
  q15_t * pSrcA,
  uint32_t srcALen,
  q15_t * pSrcB,
  uint32_t srcBLen,
  q15_t * pDst,
  uint32_t firstIndex,
  uint32_t numPoints,
  q15_t * pScratch1,
  q15_t * pScratch2)
{

  q15_t *pOut = pDst;                            /* output pointer */
  q15_t *pScr1 = pScratch1;                      /* Temporary pointer for scratch1 */
  q15_t *pScr2 = pScratch2;                      /* Temporary pointer for scratch1 */
  q63_t acc0, acc1, acc2, acc3;                  /* Accumulator */
  q31_t x1, x2, x3;                              /* Temporary variables to hold state and coefficient values */
  q31_t y1, y2;                                  /* State variables */
  q15_t *pIn1;                                   /* inputA pointer */
  q15_t *pIn2;                                   /* inputB pointer */
  q15_t *px;                                     /* Intermediate inputA pointer  */
  q15_t *py;                                     /* Intermediate inputB pointer  */
  uint32_t j, k, blkCnt;                         /* loop counter */
  arm_status status;                             /* Status variable */
  uint32_t tapCnt;                               /* loop count */

  /* Check for range of output samples to be calculated */
  if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
  {
    /* Set status as ARM_MATH_ARGUMENT_ERROR */
    status = ARM_MATH_ARGUMENT_ERROR;
  }
  else
  {

    /* The algorithm implementation is based on the lengths of the inputs. */
    /* srcB is always made to slide across srcA. */
    /* So srcBLen is always considered as shorter or equal to srcALen */
    if(srcALen >= srcBLen)
    {
      /* Initialization of inputA pointer */
      pIn1 = pSrcA;

      /* Initialization of inputB pointer */
      pIn2 = pSrcB;
    }
    else
    {
      /* Initialization of inputA pointer */
      pIn1 = pSrcB;

      /* Initialization of inputB pointer */
      pIn2 = pSrcA;

      /* srcBLen is always considered as shorter or equal to srcALen */
      j = srcBLen;
      srcBLen = srcALen;
      srcALen = j;
    }

    /* Temporary pointer for scratch2 */
    py = pScratch2;

    /* pointer to take end of scratch2 buffer */
    pScr2 = pScratch2 + srcBLen - 1;

    /* points to smaller length sequence */
    px = pIn2;

    /* Apply loop unrolling and do 4 Copies simultaneously. */
    k = srcBLen >> 2u;

    /* First part of the processing with loop unrolling copies 4 data points at a time.       
     ** a second loop below copies for the remaining 1 to 3 samples. */
    while(k > 0u)
    {
      /* copy second buffer in reversal manner */
      *pScr2-- = *px++;
      *pScr2-- = *px++;
      *pScr2-- = *px++;
      *pScr2-- = *px++;

      /* Decrement the loop counter */
      k--;
    }

    /* If the count is not a multiple of 4, copy remaining samples here.       
     ** No loop unrolling is used. */
    k = srcBLen % 0x4u;

    while(k > 0u)
    {
      /* copy second buffer in reversal manner for remaining samples */
      *pScr2-- = *px++;

      /* Decrement the loop counter */
      k--;
    }

    /* Initialze temporary scratch pointer */
    pScr1 = pScratch1;

    /* Fill (srcBLen - 1u) zeros in scratch buffer */
    arm_fill_q15(0, pScr1, (srcBLen - 1u));

    /* Update temporary scratch pointer */
    pScr1 += (srcBLen - 1u);

    /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */

    /* Copy (srcALen) samples in scratch buffer */
    arm_copy_q15(pIn1, pScr1, srcALen);

    /* Update pointers */
    pScr1 += srcALen;

    /* Fill (srcBLen - 1u) zeros at end of scratch buffer */
    arm_fill_q15(0, pScr1, (srcBLen - 1u));

    /* Update pointer */
    pScr1 += (srcBLen - 1u);

    /* Initialization of pIn2 pointer */
    pIn2 = py;

    pScratch1 += firstIndex;

    pOut = pDst + firstIndex;

    /* Actual convolution process starts here */
    blkCnt = (numPoints) >> 2;

    while(blkCnt > 0)
    {
      /* Initialze temporary scratch pointer as scratch1 */
      pScr1 = pScratch1;

      /* Clear Accumlators */
      acc0 = 0;
      acc1 = 0;
      acc2 = 0;
      acc3 = 0;

      /* Read two samples from scratch1 buffer */
      x1 = *__SIMD32(pScr1)++;

      /* Read next two samples from scratch1 buffer */
      x2 = *__SIMD32(pScr1)++;

      tapCnt = (srcBLen) >> 2u;

      while(tapCnt > 0u)
      {

        /* Read four samples from smaller buffer */
        y1 = _SIMD32_OFFSET(pIn2);
        y2 = _SIMD32_OFFSET(pIn2 + 2u);

        /* multiply and accumlate */
        acc0 = __SMLALD(x1, y1, acc0);
        acc2 = __SMLALD(x2, y1, acc2);

        /* pack input data */
#ifndef ARM_MATH_BIG_ENDIAN
        x3 = __PKHBT(x2, x1, 0);
#else
        x3 = __PKHBT(x1, x2, 0);
#endif

        /* multiply and accumlate */
        acc1 = __SMLALDX(x3, y1, acc1);

        /* Read next two samples from scratch1 buffer */
        x1 = _SIMD32_OFFSET(pScr1);

        /* multiply and accumlate */
        acc0 = __SMLALD(x2, y2, acc0);
        acc2 = __SMLALD(x1, y2, acc2);

        /* pack input data */
#ifndef ARM_MATH_BIG_ENDIAN
        x3 = __PKHBT(x1, x2, 0);
#else
        x3 = __PKHBT(x2, x1, 0);
#endif

        acc3 = __SMLALDX(x3, y1, acc3);
        acc1 = __SMLALDX(x3, y2, acc1);

        x2 = _SIMD32_OFFSET(pScr1 + 2u);

#ifndef ARM_MATH_BIG_ENDIAN
        x3 = __PKHBT(x2, x1, 0);
#else
        x3 = __PKHBT(x1, x2, 0);
#endif

        acc3 = __SMLALDX(x3, y2, acc3);

        /* update scratch pointers */
        pIn2 += 4u;
        pScr1 += 4u;


        /* Decrement the loop counter */
        tapCnt--;
      }

      /* Update scratch pointer for remaining samples of smaller length sequence */
      pScr1 -= 4u;

      /* apply same above for remaining samples of smaller length sequence */
      tapCnt = (srcBLen) & 3u;

      while(tapCnt > 0u)
      {
        /* accumlate the results */
        acc0 += (*pScr1++ * *pIn2);
        acc1 += (*pScr1++ * *pIn2);
        acc2 += (*pScr1++ * *pIn2);
        acc3 += (*pScr1++ * *pIn2++);

        pScr1 -= 3u;

        /* Decrement the loop counter */
        tapCnt--;
      }

      blkCnt--;


      /* Store the results in the accumulators in the destination buffer. */

#ifndef  ARM_MATH_BIG_ENDIAN

      *__SIMD32(pOut)++ =
        __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
      *__SIMD32(pOut)++ =
        __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);

#else

      *__SIMD32(pOut)++ =
        __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
      *__SIMD32(pOut)++ =
        __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);

#endif /*      #ifndef  ARM_MATH_BIG_ENDIAN    */

      /* Initialization of inputB pointer */
      pIn2 = py;

      pScratch1 += 4u;

    }


    blkCnt = numPoints & 0x3;

    /* Calculate convolution for remaining samples of Bigger length sequence */
    while(blkCnt > 0)
    {
      /* Initialze temporary scratch pointer as scratch1 */
      pScr1 = pScratch1;

      /* Clear Accumlators */
      acc0 = 0;

      tapCnt = (srcBLen) >> 1u;

      while(tapCnt > 0u)
      {

        /* Read next two samples from scratch1 buffer */
        x1 = *__SIMD32(pScr1)++;

        /* Read two samples from smaller buffer */
        y1 = *__SIMD32(pIn2)++;

        acc0 = __SMLALD(x1, y1, acc0);

        /* Decrement the loop counter */
        tapCnt--;
      }

      tapCnt = (srcBLen) & 1u;

      /* apply same above for remaining samples of smaller length sequence */
      while(tapCnt > 0u)
      {

        /* accumlate the results */
        acc0 += (*pScr1++ * *pIn2++);

        /* Decrement the loop counter */
        tapCnt--;
      }

      blkCnt--;

      /* Store the result in the accumulator in the destination buffer. */
      *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16));

      /* Initialization of inputB pointer */
      pIn2 = py;

      pScratch1 += 1u;

    }

    /* set status as ARM_MATH_SUCCESS */
    status = ARM_MATH_SUCCESS;

  }

  /* Return to application */
  return (status);
}

#else

arm_status arm_conv_partial_opt_q15(
  q15_t * pSrcA,
  uint32_t srcALen,
  q15_t * pSrcB,
  uint32_t srcBLen,
  q15_t * pDst,
  uint32_t firstIndex,
  uint32_t numPoints,
  q15_t * pScratch1,
  q15_t * pScratch2)
{

  q15_t *pOut = pDst;                            /* output pointer */
  q15_t *pScr1 = pScratch1;                      /* Temporary pointer for scratch1 */
  q15_t *pScr2 = pScratch2;                      /* Temporary pointer for scratch1 */
  q63_t acc0, acc1, acc2, acc3;                  /* Accumulator */
  q15_t *pIn1;                                   /* inputA pointer */
  q15_t *pIn2;                                   /* inputB pointer */
  q15_t *px;                                     /* Intermediate inputA pointer  */
  q15_t *py;                                     /* Intermediate inputB pointer  */
  uint32_t j, k, blkCnt;                         /* loop counter */
  arm_status status;                             /* Status variable */
  uint32_t tapCnt;                               /* loop count */
  q15_t x10, x11, x20, x21;                      /* Temporary variables to hold srcA buffer */
  q15_t y10, y11;                                /* Temporary variables to hold srcB buffer */


  /* Check for range of output samples to be calculated */
  if((firstIndex + numPoints) > ((srcALen + (srcBLen - 1u))))
  {
    /* Set status as ARM_MATH_ARGUMENT_ERROR */
    status = ARM_MATH_ARGUMENT_ERROR;
  }
  else
  {

    /* The algorithm implementation is based on the lengths of the inputs. */
    /* srcB is always made to slide across srcA. */
    /* So srcBLen is always considered as shorter or equal to srcALen */
    if(srcALen >= srcBLen)
    {
      /* Initialization of inputA pointer */
      pIn1 = pSrcA;

      /* Initialization of inputB pointer */
      pIn2 = pSrcB;
    }
    else
    {
      /* Initialization of inputA pointer */
      pIn1 = pSrcB;

      /* Initialization of inputB pointer */
      pIn2 = pSrcA;

      /* srcBLen is always considered as shorter or equal to srcALen */
      j = srcBLen;
      srcBLen = srcALen;
      srcALen = j;
    }

    /* Temporary pointer for scratch2 */
    py = pScratch2;

    /* pointer to take end of scratch2 buffer */
    pScr2 = pScratch2 + srcBLen - 1;

    /* points to smaller length sequence */
    px = pIn2;

    /* Apply loop unrolling and do 4 Copies simultaneously. */
    k = srcBLen >> 2u;

    /* First part of the processing with loop unrolling copies 4 data points at a time.       
     ** a second loop below copies for the remaining 1 to 3 samples. */
    while(k > 0u)
    {
      /* copy second buffer in reversal manner */
      *pScr2-- = *px++;
      *pScr2-- = *px++;
      *pScr2-- = *px++;
      *pScr2-- = *px++;

      /* Decrement the loop counter */
      k--;
    }

    /* If the count is not a multiple of 4, copy remaining samples here.       
     ** No loop unrolling is used. */
    k = srcBLen % 0x4u;

    while(k > 0u)
    {
      /* copy second buffer in reversal manner for remaining samples */
      *pScr2-- = *px++;

      /* Decrement the loop counter */
      k--;
    }

    /* Initialze temporary scratch pointer */
    pScr1 = pScratch1;

    /* Fill (srcBLen - 1u) zeros in scratch buffer */
    arm_fill_q15(0, pScr1, (srcBLen - 1u));

    /* Update temporary scratch pointer */
    pScr1 += (srcBLen - 1u);

    /* Copy bigger length sequence(srcALen) samples in scratch1 buffer */


    /* Apply loop unrolling and do 4 Copies simultaneously. */
    k = srcALen >> 2u;

    /* First part of the processing with loop unrolling copies 4 data points at a time.       
     ** a second loop below copies for the remaining 1 to 3 samples. */
    while(k > 0u)
    {
      /* copy second buffer in reversal manner */
      *pScr1++ = *pIn1++;
      *pScr1++ = *pIn1++;
      *pScr1++ = *pIn1++;
      *pScr1++ = *pIn1++;

      /* Decrement the loop counter */
      k--;
    }

    /* If the count is not a multiple of 4, copy remaining samples here.       
     ** No loop unrolling is used. */
    k = srcALen % 0x4u;

    while(k > 0u)
    {
      /* copy second buffer in reversal manner for remaining samples */
      *pScr1++ = *pIn1++;

      /* Decrement the loop counter */
      k--;
    }


    /* Apply loop unrolling and do 4 Copies simultaneously. */
    k = (srcBLen - 1u) >> 2u;

    /* First part of the processing with loop unrolling copies 4 data points at a time.       
     ** a second loop below copies for the remaining 1 to 3 samples. */
    while(k > 0u)
    {
      /* copy second buffer in reversal manner */
      *pScr1++ = 0;
      *pScr1++ = 0;
      *pScr1++ = 0;
      *pScr1++ = 0;

      /* Decrement the loop counter */
      k--;
    }

    /* If the count is not a multiple of 4, copy remaining samples here.       
     ** No loop unrolling is used. */
    k = (srcBLen - 1u) % 0x4u;

    while(k > 0u)
    {
      /* copy second buffer in reversal manner for remaining samples */
      *pScr1++ = 0;

      /* Decrement the loop counter */
      k--;
    }


    /* Initialization of pIn2 pointer */
    pIn2 = py;

    pScratch1 += firstIndex;

    pOut = pDst + firstIndex;

    /* Actual convolution process starts here */
    blkCnt = (numPoints) >> 2;

    while(blkCnt > 0)
    {
      /* Initialze temporary scratch pointer as scratch1 */
      pScr1 = pScratch1;

      /* Clear Accumlators */
      acc0 = 0;
      acc1 = 0;
      acc2 = 0;
      acc3 = 0;

      /* Read two samples from scratch1 buffer */
      x10 = *pScr1++;
      x11 = *pScr1++;

      /* Read next two samples from scratch1 buffer */
      x20 = *pScr1++;
      x21 = *pScr1++;

      tapCnt = (srcBLen) >> 2u;

      while(tapCnt > 0u)
      {

        /* Read two samples from smaller buffer */
        y10 = *pIn2;
        y11 = *(pIn2 + 1u);

        /* multiply and accumlate */
        acc0 += (q63_t) x10 *y10;
        acc0 += (q63_t) x11 *y11;
        acc2 += (q63_t) x20 *y10;
        acc2 += (q63_t) x21 *y11;

        /* multiply and accumlate */
        acc1 += (q63_t) x11 *y10;
        acc1 += (q63_t) x20 *y11;

        /* Read next two samples from scratch1 buffer */
        x10 = *pScr1;
        x11 = *(pScr1 + 1u);

        /* multiply and accumlate */
        acc3 += (q63_t) x21 *y10;
        acc3 += (q63_t) x10 *y11;

        /* Read next two samples from scratch2 buffer */
        y10 = *(pIn2 + 2u);
        y11 = *(pIn2 + 3u);

        /* multiply and accumlate */
        acc0 += (q63_t) x20 *y10;
        acc0 += (q63_t) x21 *y11;
        acc2 += (q63_t) x10 *y10;
        acc2 += (q63_t) x11 *y11;
        acc1 += (q63_t) x21 *y10;
        acc1 += (q63_t) x10 *y11;

        /* Read next two samples from scratch1 buffer */
        x20 = *(pScr1 + 2);
        x21 = *(pScr1 + 3);

        /* multiply and accumlate */
        acc3 += (q63_t) x11 *y10;
        acc3 += (q63_t) x20 *y11;

        /* update scratch pointers */
        pIn2 += 4u;
        pScr1 += 4u;

        /* Decrement the loop counter */
        tapCnt--;
      }

      /* Update scratch pointer for remaining samples of smaller length sequence */
      pScr1 -= 4u;

      /* apply same above for remaining samples of smaller length sequence */
      tapCnt = (srcBLen) & 3u;

      while(tapCnt > 0u)
      {
        /* accumlate the results */
        acc0 += (*pScr1++ * *pIn2);
        acc1 += (*pScr1++ * *pIn2);
        acc2 += (*pScr1++ * *pIn2);
        acc3 += (*pScr1++ * *pIn2++);

        pScr1 -= 3u;

        /* Decrement the loop counter */
        tapCnt--;
      }

      blkCnt--;


      /* Store the results in the accumulators in the destination buffer. */
      *pOut++ = __SSAT((acc0 >> 15), 16);
      *pOut++ = __SSAT((acc1 >> 15), 16);
      *pOut++ = __SSAT((acc2 >> 15), 16);
      *pOut++ = __SSAT((acc3 >> 15), 16);


      /* Initialization of inputB pointer */
      pIn2 = py;

      pScratch1 += 4u;

    }


    blkCnt = numPoints & 0x3;

    /* Calculate convolution for remaining samples of Bigger length sequence */
    while(blkCnt > 0)
    {
      /* Initialze temporary scratch pointer as scratch1 */
      pScr1 = pScratch1;

      /* Clear Accumlators */
      acc0 = 0;

      tapCnt = (srcBLen) >> 1u;

      while(tapCnt > 0u)
      {

        /* Read next two samples from scratch1 buffer */
        x10 = *pScr1++;
        x11 = *pScr1++;

        /* Read two samples from smaller buffer */
        y10 = *pIn2++;
        y11 = *pIn2++;

        /* multiply and accumlate */
        acc0 += (q63_t) x10 *y10;
        acc0 += (q63_t) x11 *y11;

        /* Decrement the loop counter */
        tapCnt--;
      }

      tapCnt = (srcBLen) & 1u;

      /* apply same above for remaining samples of smaller length sequence */
      while(tapCnt > 0u)
      {

        /* accumlate the results */
        acc0 += (*pScr1++ * *pIn2++);

        /* Decrement the loop counter */
        tapCnt--;
      }

      blkCnt--;

      /* Store the result in the accumulator in the destination buffer. */
      *pOut++ = (q15_t) (__SSAT((acc0 >> 15), 16));


      /* Initialization of inputB pointer */
      pIn2 = py;

      pScratch1 += 1u;

    }

    /* set status as ARM_MATH_SUCCESS */
    status = ARM_MATH_SUCCESS;

  }

  /* Return to application */
  return (status);
}

#endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/


/**    
 * @} end of PartialConv group    
 */