arm_matrix_example_f32.c 8.14 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2012 ARM Limited. All rights reserved.
*
* $Date:         17. January 2013
* $Revision:     V1.4.0
*
* Project:       CMSIS DSP Library
* Title:         arm_matrix_example_f32.c
*
* Description:   Example code demonstrating least square fit to data
*                using matrix functions
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
 * -------------------------------------------------------------------- */

/**
 * @ingroup groupExamples
 */

/**
 * @defgroup MatrixExample Matrix Example
 *
 * \par Description:
 * \par
 * Demonstrates the use of Matrix Transpose, Matrix Muliplication, and Matrix Inverse
 * functions to apply least squares fitting to input data. Least squares fitting is
 * the procedure for finding the best-fitting curve that minimizes the sum of the
 * squares of the offsets (least square error) from a given set of data.
 *
 * \par Algorithm:
 * \par
 * The linear combination of parameters considered is as follows:
 * \par
 * <code>A * X = B</code>, where \c X is the unknown value and can be estimated
 * from \c A & \c B.
 * \par
 * The least squares estimate \c X is given by the following equation:
 * \par
 * <code>X = Inverse(A<sup>T</sup> * A) *  A<sup>T</sup> * B</code>
 *
 * \par Block Diagram:
 * \par
 * \image html matrixExample.gif
 *
 * \par Variables Description:
 * \par
 * \li \c A_f32 input matrix in the linear combination equation
 * \li \c B_f32 output matrix in the linear combination equation
 * \li \c X_f32 unknown matrix estimated using \c A_f32 & \c B_f32 matrices
 *
 * \par CMSIS DSP Software Library Functions Used:
 * \par
 * - arm_mat_init_f32()
 * - arm_mat_trans_f32()
 * - arm_mat_mult_f32()
 * - arm_mat_inverse_f32()
 *
 * <b> Refer  </b>
 * \link arm_matrix_example_f32.c \endlink
 *
 */


/** \example arm_matrix_example_f32.c
  */

#include "arm_math.h"
#include "math_helper.h"

#define SNR_THRESHOLD   90

/* --------------------------------------------------------------------------------
* Test input data(Cycles) taken from FIR Q15 module for differant cases of blockSize
* and tapSize
* --------------------------------------------------------------------------------- */

const float32_t B_f32[4] =
{
  782.0, 7577.0, 470.0, 4505.0
};

/* --------------------------------------------------------------------------------
* Formula to fit is  C1 + C2 * numTaps + C3 * blockSize + C4 * numTaps * blockSize
* -------------------------------------------------------------------------------- */

const float32_t A_f32[16] =
{
  /* Const,   numTaps,   blockSize,   numTaps*blockSize */
  1.0,     32.0,      4.0,     128.0,
  1.0,     32.0,     64.0,    2048.0,
  1.0,     16.0,      4.0,      64.0,
  1.0,     16.0,     64.0,    1024.0,
};


/* ----------------------------------------------------------------------
* Temporary buffers  for storing intermediate values
* ------------------------------------------------------------------- */
/* Transpose of A Buffer */
float32_t AT_f32[16];
/* (Transpose of A * A) Buffer */
float32_t ATMA_f32[16];
/* Inverse(Transpose of A * A)  Buffer */
float32_t ATMAI_f32[16];
/* Test Output Buffer */
float32_t X_f32[4];

/* ----------------------------------------------------------------------
* Reference ouput buffer C1, C2, C3 and C4 taken from MATLAB
* ------------------------------------------------------------------- */
const float32_t xRef_f32[4] = {73.0, 8.0, 21.25, 2.875};

float32_t snr;


/* ----------------------------------------------------------------------
* Max magnitude FFT Bin test
* ------------------------------------------------------------------- */

int32_t main(void)
{

  arm_matrix_instance_f32 A;      /* Matrix A Instance */
  arm_matrix_instance_f32 AT;     /* Matrix AT(A transpose) instance */
  arm_matrix_instance_f32 ATMA;   /* Matrix ATMA( AT multiply with A) instance */
  arm_matrix_instance_f32 ATMAI;  /* Matrix ATMAI(Inverse of ATMA) instance */
  arm_matrix_instance_f32 B;      /* Matrix B instance */
  arm_matrix_instance_f32 X;      /* Matrix X(Unknown Matrix) instance */

  uint32_t srcRows, srcColumns;  /* Temporary variables */
  arm_status status;

  /* Initialise A Matrix Instance with numRows, numCols and data array(A_f32) */
  srcRows = 4;
  srcColumns = 4;
  arm_mat_init_f32(&A, srcRows, srcColumns, (float32_t *)A_f32);

  /* Initialise Matrix Instance AT with numRows, numCols and data array(AT_f32) */
  srcRows = 4;
  srcColumns = 4;
  arm_mat_init_f32(&AT, srcRows, srcColumns, AT_f32);

  /* calculation of A transpose */
  status = arm_mat_trans_f32(&A, &AT);


  /* Initialise ATMA Matrix Instance with numRows, numCols and data array(ATMA_f32) */
  srcRows = 4;
  srcColumns = 4;
  arm_mat_init_f32(&ATMA, srcRows, srcColumns, ATMA_f32);

  /* calculation of AT Multiply with A */
  status = arm_mat_mult_f32(&AT, &A, &ATMA);

  /* Initialise ATMAI Matrix Instance with numRows, numCols and data array(ATMAI_f32) */
  srcRows = 4;
  srcColumns = 4;
  arm_mat_init_f32(&ATMAI, srcRows, srcColumns, ATMAI_f32);

  /* calculation of Inverse((Transpose(A) * A) */
  status = arm_mat_inverse_f32(&ATMA, &ATMAI);

  /* calculation of (Inverse((Transpose(A) * A)) *  Transpose(A)) */
  status = arm_mat_mult_f32(&ATMAI, &AT, &ATMA);

  /* Initialise B Matrix Instance with numRows, numCols and data array(B_f32) */
  srcRows = 4;
  srcColumns = 1;
  arm_mat_init_f32(&B, srcRows, srcColumns, (float32_t *)B_f32);

  /* Initialise X Matrix Instance with numRows, numCols and data array(X_f32) */
  srcRows = 4;
  srcColumns = 1;
  arm_mat_init_f32(&X, srcRows, srcColumns, X_f32);

  /* calculation ((Inverse((Transpose(A) * A)) *  Transpose(A)) * B) */
  status = arm_mat_mult_f32(&ATMA, &B, &X);

  /* Comparison of reference with test output */
  snr = arm_snr_f32((float32_t *)xRef_f32, X_f32, 4);

  /*------------------------------------------------------------------------------
  *            Initialise status depending on SNR calculations
  *------------------------------------------------------------------------------*/
  if( snr > SNR_THRESHOLD)
  {
    status = ARM_MATH_SUCCESS;
  }
  else
  {
    status = ARM_MATH_TEST_FAILURE;
  }


  /* ----------------------------------------------------------------------
  ** Loop here if the signals fail the PASS check.
  ** This denotes a test failure
  ** ------------------------------------------------------------------- */
  if( status != ARM_MATH_SUCCESS)
  {
    while(1);
  }

  while(1);                             /* main function does not return */
}

 /** \endlink */