gcm.c 14.7 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
/*
 *  NIST SP800-38D compliant GCM implementation
 *
 *  Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
 *  SPDX-License-Identifier: Apache-2.0
 *
 *  Licensed under the Apache License, Version 2.0 (the "License"); you may
 *  not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *  http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *  This file is part of mbed TLS (https://tls.mbed.org)
 */

/*
 * http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
 *
 * See also:
 * [MGV] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
 *
 * We use the algorithm described as Shoup's method with 4-bit tables in
 * [MGV] 4.1, pp. 12-13, to enhance speed without using too much memory.
 */

Enrico Pozzobon committed
32
#include "platform_util.h"
Sebastian Renner committed
33 34

#include "gcm.h"
Enrico Pozzobon committed
35
#include "aes.h"
Sebastian Renner committed
36
#include "api.h"
37
#include "crypto_aead.h"
Sebastian Renner committed
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

#include <string.h>

/* Parameter validation macros */
#define GCM_VALIDATE_RET( cond ) \
    MBEDTLS_INTERNAL_VALIDATE_RET( cond, MBEDTLS_ERR_GCM_BAD_INPUT )
#define GCM_VALIDATE( cond ) \
    MBEDTLS_INTERNAL_VALIDATE( cond )

/*
 * 32-bit integer manipulation macros (big endian)
 */
#ifndef GET_UINT32_BE
#define GET_UINT32_BE(n,b,i)                            \
{                                                       \
    (n) = ( (uint32_t) (b)[(i)    ] << 24 )             \
        | ( (uint32_t) (b)[(i) + 1] << 16 )             \
        | ( (uint32_t) (b)[(i) + 2] <<  8 )             \
        | ( (uint32_t) (b)[(i) + 3]       );            \
}
#endif

#ifndef PUT_UINT32_BE
#define PUT_UINT32_BE(n,b,i)                            \
{                                                       \
    (b)[(i)    ] = (unsigned char) ( (n) >> 24 );       \
    (b)[(i) + 1] = (unsigned char) ( (n) >> 16 );       \
    (b)[(i) + 2] = (unsigned char) ( (n) >>  8 );       \
    (b)[(i) + 3] = (unsigned char) ( (n)       );       \
}
#endif

70 71


Sebastian Renner committed
72 73 74 75 76 77 78 79 80
/*
 * Initialize a context
 */
void mbedtls_gcm_init( mbedtls_gcm_context *ctx )
{
    GCM_VALIDATE( ctx != NULL );
    memset( ctx, 0, sizeof( mbedtls_gcm_context ) );
}

Enrico Pozzobon committed
81 82 83
#define mbedtls_cipher_update(ctx, input, output) \
	mbedtls_aes_crypt_ecb((ctx)->cipher_ctx, MBEDTLS_ENCRYPT, input, output)

Sebastian Renner committed
84
/*
85 86 87 88 89 90 91 92 93 94 95
 * Encrypt function for NIST API
*/
int crypto_aead_encrypt(
      unsigned char *c,unsigned long long *clen,
      const unsigned char *m,unsigned long long mlen,
      const unsigned char *ad,unsigned long long adlen,
      const unsigned char *nsec,
      const unsigned char *npub,
      const unsigned char *k
      )
{
Enrico Pozzobon committed
96
  (void) nsec;
97
  mbedtls_gcm_context ctx;
Enrico Pozzobon committed
98
  mbedtls_aes_context aes;
99
  int ret;
Sebastian Renner committed
100
  unsigned char tag_buf[CRYPTO_ABYTES];
101
  *clen = mlen + CRYPTO_ABYTES;
102 103

  mbedtls_gcm_init( &ctx );
Enrico Pozzobon committed
104 105
  ctx.cipher_ctx.cipher_ctx = &aes;
  ret = mbedtls_gcm_setkey( &ctx, k, 128);
106 107 108
  if (ret != 0) {
    return ret;
  }
109 110
  ret = mbedtls_gcm_crypt_and_tag( &ctx, 1, mlen, npub, 12, ad, adlen, m, c, 16, tag_buf );
  mbedtls_gcm_free( &ctx );
Enrico Pozzobon committed
111
  mbedtls_platform_zeroize( &aes, sizeof( aes ) );
112
  memcpy(c + mlen, tag_buf, CRYPTO_ABYTES);
113 114 115 116 117 118 119 120 121 122 123 124
  return ret;
}

int crypto_aead_decrypt(
  unsigned char *m, unsigned long long *mlen,
  unsigned char *nsec,
  const unsigned char *c, unsigned long long clen,
  const unsigned char *ad, unsigned long long adlen,
  const unsigned char *npub,
  const unsigned char *k
)
{
Enrico Pozzobon committed
125
  (void) nsec;
126
  mbedtls_gcm_context ctx;
Enrico Pozzobon committed
127
  mbedtls_aes_context aes;
128
  int ret;
Sebastian Renner committed
129 130 131 132 133
  unsigned char tag_buf[CRYPTO_ABYTES];
  
  clen -= CRYPTO_ABYTES;
  memcpy(tag_buf, c + clen, CRYPTO_ABYTES);
  *mlen = clen;
134 135

  mbedtls_gcm_init( &ctx );
Enrico Pozzobon committed
136 137
  ctx.cipher_ctx.cipher_ctx = &aes;
  ret = mbedtls_gcm_setkey( &ctx, k, 128);
138
  ret = mbedtls_gcm_auth_decrypt( &ctx, clen, npub, 12, ad, adlen, tag_buf, 16, c, m);
139
  mbedtls_gcm_free( &ctx );
Enrico Pozzobon committed
140
  mbedtls_platform_zeroize( &aes, sizeof( aes ) );
141 142 143 144 145
  
  return ret;

}
/*
Sebastian Renner committed
146 147 148 149 150 151 152
 * Precompute small multiples of H, that is set
 *      HH[i] || HL[i] = H times i,
 * where i is seen as a field element as in [MGV], ie high-order bits
 * correspond to low powers of P. The result is stored in the same way, that
 * is the high-order bit of HH corresponds to P^0 and the low-order bit of HL
 * corresponds to P^127.
 */
153

Sebastian Renner committed
154 155 156 157 158 159 160 161
static int gcm_gen_table( mbedtls_gcm_context *ctx )
{
    int ret, i, j;
    uint64_t hi, lo;
    uint64_t vl, vh;
    unsigned char h[16];

    memset( h, 0, 16 );
Enrico Pozzobon committed
162
    if( ( ret = mbedtls_cipher_update( &ctx->cipher_ctx, h, h ) ) != 0 )
Sebastian Renner committed
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
        return( ret );

    /* pack h as two 64-bits ints, big-endian */
    GET_UINT32_BE( hi, h,  0  );
    GET_UINT32_BE( lo, h,  4  );
    vh = (uint64_t) hi << 32 | lo;

    GET_UINT32_BE( hi, h,  8  );
    GET_UINT32_BE( lo, h,  12 );
    vl = (uint64_t) hi << 32 | lo;

    /* 8 = 1000 corresponds to 1 in GF(2^128) */
    ctx->HL[8] = vl;
    ctx->HH[8] = vh;

    /* 0 corresponds to 0 in GF(2^128) */
    ctx->HH[0] = 0;
    ctx->HL[0] = 0;

    for( i = 4; i > 0; i >>= 1 )
    {
        uint32_t T = ( vl & 1 ) * 0xe1000000U;
        vl  = ( vh << 63 ) | ( vl >> 1 );
        vh  = ( vh >> 1 ) ^ ( (uint64_t) T << 32);

        ctx->HL[i] = vl;
        ctx->HH[i] = vh;
    }

    for( i = 2; i <= 8; i *= 2 )
    {
        uint64_t *HiL = ctx->HL + i, *HiH = ctx->HH + i;
        vh = *HiH;
        vl = *HiL;
        for( j = 1; j < i; j++ )
        {
            HiH[j] = vh ^ ctx->HH[j];
            HiL[j] = vl ^ ctx->HL[j];
        }
    }

    return( 0 );
}

int mbedtls_gcm_setkey( mbedtls_gcm_context *ctx,
                        const unsigned char *key,
                        unsigned int keybits )
{
    int ret;

    GCM_VALIDATE_RET( ctx != NULL );
    GCM_VALIDATE_RET( key != NULL );
    GCM_VALIDATE_RET( keybits == 128 || keybits == 192 || keybits == 256 );

Enrico Pozzobon committed
217
    ctx->cipher_ctx.key_bitlen = keybits;
Sebastian Renner committed
218

Enrico Pozzobon committed
219
    if( ( ret = mbedtls_aes_setkey_enc( ctx->cipher_ctx.cipher_ctx, key, keybits ) ) != 0)
Sebastian Renner committed
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
    {
        return( ret );
    }

    if( ( ret = gcm_gen_table( ctx ) ) != 0 )
        return( ret );

    return( 0 );
}

/*
 * Shoup's method for multiplication use this table with
 *      last4[x] = x times P^128
 * where x and last4[x] are seen as elements of GF(2^128) as in [MGV]
 */
static const uint64_t last4[16] =
{
    0x0000, 0x1c20, 0x3840, 0x2460,
    0x7080, 0x6ca0, 0x48c0, 0x54e0,
    0xe100, 0xfd20, 0xd940, 0xc560,
    0x9180, 0x8da0, 0xa9c0, 0xb5e0
};

/*
 * Sets output to x times H using the precomputed tables.
 * x and output are seen as elements of GF(2^128) as in [MGV].
 */
static void gcm_mult( mbedtls_gcm_context *ctx, const unsigned char x[16],
                      unsigned char output[16] )
{
    int i = 0;
    unsigned char lo, hi, rem;
    uint64_t zh, zl;

    lo = x[15] & 0xf;

    zh = ctx->HH[lo];
    zl = ctx->HL[lo];

    for( i = 15; i >= 0; i-- )
    {
        lo = x[i] & 0xf;
        hi = x[i] >> 4;

        if( i != 15 )
        {
            rem = (unsigned char) zl & 0xf;
            zl = ( zh << 60 ) | ( zl >> 4 );
            zh = ( zh >> 4 );
            zh ^= (uint64_t) last4[rem] << 48;
            zh ^= ctx->HH[lo];
            zl ^= ctx->HL[lo];

        }

        rem = (unsigned char) zl & 0xf;
        zl = ( zh << 60 ) | ( zl >> 4 );
        zh = ( zh >> 4 );
        zh ^= (uint64_t) last4[rem] << 48;
        zh ^= ctx->HH[hi];
        zl ^= ctx->HL[hi];
    }

    PUT_UINT32_BE( zh >> 32, output, 0 );
    PUT_UINT32_BE( zh, output, 4 );
    PUT_UINT32_BE( zl >> 32, output, 8 );
    PUT_UINT32_BE( zl, output, 12 );
}

int mbedtls_gcm_starts( mbedtls_gcm_context *ctx,
                int mode,
                const unsigned char *iv,
                size_t iv_len,
                const unsigned char *add,
                size_t add_len )
{
    int ret;
    unsigned char work_buf[16];
    size_t i;
    const unsigned char *p;
Enrico Pozzobon committed
300
    size_t use_len;
Sebastian Renner committed
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351

    GCM_VALIDATE_RET( ctx != NULL );
    GCM_VALIDATE_RET( iv != NULL );
    GCM_VALIDATE_RET( add_len == 0 || add != NULL );

    /* IV and AD are limited to 2^64 bits, so 2^61 bytes */
    /* IV is not allowed to be zero length */
    if( iv_len == 0 ||
      ( (uint64_t) iv_len  ) >> 61 != 0 ||
      ( (uint64_t) add_len ) >> 61 != 0 )
    {
        return( MBEDTLS_ERR_GCM_BAD_INPUT );
    }

    memset( ctx->y, 0x00, sizeof(ctx->y) );
    memset( ctx->buf, 0x00, sizeof(ctx->buf) );

    ctx->mode = mode;
    ctx->len = 0;
    ctx->add_len = 0;

    if( iv_len == 12 )
    {
        memcpy( ctx->y, iv, iv_len );
        ctx->y[15] = 1;
    }
    else
    {
        memset( work_buf, 0x00, 16 );
        PUT_UINT32_BE( iv_len * 8, work_buf, 12 );

        p = iv;
        while( iv_len > 0 )
        {
            use_len = ( iv_len < 16 ) ? iv_len : 16;

            for( i = 0; i < use_len; i++ )
                ctx->y[i] ^= p[i];

            gcm_mult( ctx, ctx->y, ctx->y );

            iv_len -= use_len;
            p += use_len;
        }

        for( i = 0; i < 16; i++ )
            ctx->y[i] ^= work_buf[i];

        gcm_mult( ctx, ctx->y, ctx->y );
    }

Enrico Pozzobon committed
352 353
    if( ( ret = mbedtls_cipher_update( &ctx->cipher_ctx, ctx->y,
                                       ctx->base_ectr ) ) != 0 )
Sebastian Renner committed
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
    {
        return( ret );
    }

    ctx->add_len = add_len;
    p = add;
    while( add_len > 0 )
    {
        use_len = ( add_len < 16 ) ? add_len : 16;

        for( i = 0; i < use_len; i++ )
            ctx->buf[i] ^= p[i];

        gcm_mult( ctx, ctx->buf, ctx->buf );

        add_len -= use_len;
        p += use_len;
    }

    return( 0 );
}

int mbedtls_gcm_update( mbedtls_gcm_context *ctx,
                size_t length,
                const unsigned char *input,
                unsigned char *output )
{
    int ret;
    unsigned char ectr[16];
    size_t i;
    const unsigned char *p;
    unsigned char *out_p = output;
Enrico Pozzobon committed
386
    size_t use_len;
Sebastian Renner committed
387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413

    GCM_VALIDATE_RET( ctx != NULL );
    GCM_VALIDATE_RET( length == 0 || input != NULL );
    GCM_VALIDATE_RET( length == 0 || output != NULL );

    if( output > input && (size_t) ( output - input ) < length )
        return( MBEDTLS_ERR_GCM_BAD_INPUT );

    /* Total length is restricted to 2^39 - 256 bits, ie 2^36 - 2^5 bytes
     * Also check for possible overflow */
    if( ctx->len + length < ctx->len ||
        (uint64_t) ctx->len + length > 0xFFFFFFFE0ull )
    {
        return( MBEDTLS_ERR_GCM_BAD_INPUT );
    }

    ctx->len += length;

    p = input;
    while( length > 0 )
    {
        use_len = ( length < 16 ) ? length : 16;

        for( i = 16; i > 12; i-- )
            if( ++ctx->y[i - 1] != 0 )
                break;

Enrico Pozzobon committed
414 415
        if( ( ret = mbedtls_cipher_update( &ctx->cipher_ctx, ctx->y, ectr
                                    ) ) != 0 )
Sebastian Renner committed
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562
        {
            return( ret );
        }

        for( i = 0; i < use_len; i++ )
        {
            if( ctx->mode == MBEDTLS_GCM_DECRYPT )
                ctx->buf[i] ^= p[i];
            out_p[i] = ectr[i] ^ p[i];
            if( ctx->mode == MBEDTLS_GCM_ENCRYPT )
                ctx->buf[i] ^= out_p[i];
        }

        gcm_mult( ctx, ctx->buf, ctx->buf );

        length -= use_len;
        p += use_len;
        out_p += use_len;
    }

    return( 0 );
}

int mbedtls_gcm_finish( mbedtls_gcm_context *ctx,
                unsigned char *tag,
                size_t tag_len )
{
    unsigned char work_buf[16];
    size_t i;
    uint64_t orig_len;
    uint64_t orig_add_len;

    GCM_VALIDATE_RET( ctx != NULL );
    GCM_VALIDATE_RET( tag != NULL );

    orig_len = ctx->len * 8;
    orig_add_len = ctx->add_len * 8;

    if( tag_len > 16 || tag_len < 4 )
        return( MBEDTLS_ERR_GCM_BAD_INPUT );

    memcpy( tag, ctx->base_ectr, tag_len );

    if( orig_len || orig_add_len )
    {
        memset( work_buf, 0x00, 16 );

        PUT_UINT32_BE( ( orig_add_len >> 32 ), work_buf, 0  );
        PUT_UINT32_BE( ( orig_add_len       ), work_buf, 4  );
        PUT_UINT32_BE( ( orig_len     >> 32 ), work_buf, 8  );
        PUT_UINT32_BE( ( orig_len           ), work_buf, 12 );

        for( i = 0; i < 16; i++ )
            ctx->buf[i] ^= work_buf[i];

        gcm_mult( ctx, ctx->buf, ctx->buf );

        for( i = 0; i < tag_len; i++ )
            tag[i] ^= ctx->buf[i];
    }

    return( 0 );
}

int mbedtls_gcm_crypt_and_tag( mbedtls_gcm_context *ctx,
                       int mode,
                       size_t length,
                       const unsigned char *iv,
                       size_t iv_len,
                       const unsigned char *add,
                       size_t add_len,
                       const unsigned char *input,
                       unsigned char *output,
                       size_t tag_len,
                       unsigned char *tag )
{
    int ret;

    GCM_VALIDATE_RET( ctx != NULL );
    GCM_VALIDATE_RET( iv != NULL );
    GCM_VALIDATE_RET( add_len == 0 || add != NULL );
    GCM_VALIDATE_RET( length == 0 || input != NULL );
    GCM_VALIDATE_RET( length == 0 || output != NULL );
    GCM_VALIDATE_RET( tag != NULL );

    if( ( ret = mbedtls_gcm_starts( ctx, mode, iv, iv_len, add, add_len ) ) != 0 )
        return( ret );

    if( ( ret = mbedtls_gcm_update( ctx, length, input, output ) ) != 0 )
        return( ret );

    if( ( ret = mbedtls_gcm_finish( ctx, tag, tag_len ) ) != 0 )
        return( ret );

    return( 0 );
}

int mbedtls_gcm_auth_decrypt( mbedtls_gcm_context *ctx,
                      size_t length,
                      const unsigned char *iv,
                      size_t iv_len,
                      const unsigned char *add,
                      size_t add_len,
                      const unsigned char *tag,
                      size_t tag_len,
                      const unsigned char *input,
                      unsigned char *output )
{
    int ret;
    unsigned char check_tag[16];
    size_t i;
    int diff;

    GCM_VALIDATE_RET( ctx != NULL );
    GCM_VALIDATE_RET( iv != NULL );
    GCM_VALIDATE_RET( add_len == 0 || add != NULL );
    GCM_VALIDATE_RET( tag != NULL );
    GCM_VALIDATE_RET( length == 0 || input != NULL );
    GCM_VALIDATE_RET( length == 0 || output != NULL );

    if( ( ret = mbedtls_gcm_crypt_and_tag( ctx, MBEDTLS_GCM_DECRYPT, length,
                                   iv, iv_len, add, add_len,
                                   input, output, tag_len, check_tag ) ) != 0 )
    {
        return( ret );
    }

    /* Check tag in "constant-time" */
    for( diff = 0, i = 0; i < tag_len; i++ )
        diff |= tag[i] ^ check_tag[i];

    if( diff != 0 )
    {
        mbedtls_platform_zeroize( output, length );
        return( MBEDTLS_ERR_GCM_AUTH_FAILED );
    }

    return( 0 );
}

void mbedtls_gcm_free( mbedtls_gcm_context *ctx )
{
    if( ctx == NULL )
        return;
    mbedtls_platform_zeroize( ctx, sizeof( mbedtls_gcm_context ) );
}