arm_nnfunctions.h 48.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
/*
 * Copyright (C) 2010-2018 Arm Limited or its affiliates. All rights reserved.
 *
 * SPDX-License-Identifier: Apache-2.0
 *
 * Licensed under the Apache License, Version 2.0 (the License); you may
 * not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an AS IS BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* ----------------------------------------------------------------------
 * Project:      CMSIS NN Library
 * Title:        arm_nnfunctions.h
 * Description:  Public header file for CMSIS NN Library
 *
 * $Date:        13. July 2018
 * $Revision:    V.1.0.0
 *
 * Target Processor:  Cortex-M cores
 * -------------------------------------------------------------------- */

/**
   \mainpage CMSIS NN Software Library
   *
   * Introduction
   * ------------
   *
   * This user manual describes the CMSIS NN software library,
   * a collection of efficient neural network kernels developed to maximize the 
   * performance and minimize the memory footprint of neural networks on Cortex-M processor cores.
   *
   * The library is divided into a number of functions each covering a specific category:
   * - Neural Network Convolution Functions
   * - Neural Network Activation Functions
   * - Fully-connected Layer Functions
   * - Neural Network Pooling Functions
   * - Softmax Functions
   * - Neural Network Support Functions
   *
   * The library has separate functions for operating on different weight and activation data
   * types including 8-bit integers (q7_t) and 16-bit integers (q15_t). The descrition of the
   * kernels are included in the function description. The implementation details are also 
   * described in this paper [1]. 
   *
   * Block Diagram
   * --------
   * \image html CMSIS-NN-OVERVIEW.PNG
   *
   * Examples
   * --------
   *
   * The library ships with a number of examples which demonstrate how to use the library functions.
   *
   * Pre-processor Macros
   * ------------
   *
   * Each library project have differant pre-processor macros.
   *
   * - ARM_MATH_DSP:
   *
   * Define macro ARM_MATH_DSP, If the silicon supports DSP instructions.
   *
   * - ARM_MATH_BIG_ENDIAN:
   *
   * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
   *
   * - ARM_NN_TRUNCATE:
   *
   * Define macro ARM_NN_TRUNCATE to use floor instead of round-to-the-nearest-int for the computation.
   *
   * Copyright Notice
   * ------------
   *
   * Copyright (C) 2010-2018 Arm Limited. All rights reserved.
   *
   * [1] CMSIS-NN: Efficient Neural Network Kernels for Arm Cortex-M CPUs https://arxiv.org/abs/1801.06601
   */

/**
 * @defgroup groupNN Neural Network Functions
 * These functions perform basic operations for neural network layers. 
 */

#ifndef _ARM_NNFUNCTIONS_H
#define _ARM_NNFUNCTIONS_H

#include "arm_nnsupportfunctions.h"
#include "arm_nn_tables.h"

#define USE_INTRINSIC

//#define ARM_NN_TRUNCATE /* This config the rounding model to floor or round to the nearest int */

#ifdef __cplusplus
extern    "C"
{
#endif

/**
 * @defgroup NNConv Neural Network Convolution Functions
 *
 * Perform convolution layer
 *
 * The convolution is implemented in 2 steps: im2col and GEMM
 *
 * im2col is a process of converting each patch of image data into 
 * a column. After im2col, the convolution is computed as matrix-matrix
 * multiplication.
 * 
 * To reduce the memory footprint, the im2col is performed partially.
 * Each iteration, only a few column (i.e., patches) are generated and 
 * computed with GEMM kernels similar to CMSIS-DSP arm_mat_mult functions.
 *
 */

  /**
   * @brief Basic Q7 convolution function
   * @param[in]       Im_in       pointer to input tensor
   * @param[in]       dim_im_in   input tensor dimention
   * @param[in]       ch_im_in    number of input tensor channels
   * @param[in]       wt          pointer to kernel weights
   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
   * @param[in]       dim_kernel  filter kernel size
   * @param[in]       padding     padding sizes
   * @param[in]       stride      convolution stride
   * @param[in]       bias        pointer to bias
   * @param[in]       bias_shift  amount of left-shift for bias
   * @param[in]       out_shift   amount of right-shift for output
   * @param[in,out]   Im_out      pointer to output tensor
   * @param[in]       dim_im_out  output tensor dimension
   * @param[in,out]   bufferA     pointer to buffer space for input 
   * @param[in,out]   bufferB     pointer to buffer space for output
   * @return     The function returns <code>ARM_MATH_SUCCESS</code> 
   *
   */

    arm_status arm_convolve_HWC_q7_basic(const q7_t * Im_in,
                                         const uint16_t dim_im_in,
                                         const uint16_t ch_im_in,
                                         const q7_t * wt,
                                         const uint16_t ch_im_out,
                                         const uint16_t dim_kernel,
                                         const uint16_t padding,
                                         const uint16_t stride,
                                         const q7_t * bias,
                                         const uint16_t bias_shift,
                                         const uint16_t out_shift,
                                         q7_t * Im_out, 
                                         const uint16_t dim_im_out, 
                                         q15_t * bufferA, 
                                         q7_t * bufferB);

  /**
   * @brief Basic Q7 convolution function (non-sqaure shape)
   * @param[in]       Im_in        pointer to input tensor
   * @param[in]       dim_im_in_x  input tensor dimention x
   * @param[in]       dim_im_in_y  input tensor dimention y
   * @param[in]       ch_im_in     number of input tensor channels
   * @param[in]       wt           pointer to kernel weights
   * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
   * @param[in]       dim_kernel_x filter kernel size x
   * @param[in]       dim_kernel_y filter kernel size y
   * @param[in]       padding_x    padding size x
   * @param[in]       padding_y    padding size y
   * @param[in]       stride_x     convolution stride x
   * @param[in]       stride_y     convolution stride y
   * @param[in]       bias         pointer to bias
   * @param[in]       bias_shift   amount of left-shift for bias
   * @param[in]       out_shift    amount of right-shift for output
   * @param[in,out]   Im_out       pointer to output tensor
   * @param[in]       dim_im_out_x output tensor dimension x
   * @param[in]       dim_im_out_y output tensor dimension y
   * @param[in,out]   bufferA      pointer to buffer space for input
   * @param[in,out]   bufferB      pointer to buffer space for output
   * @return     The function returns <code>ARM_MATH_SUCCESS</code> 
   */

    arm_status arm_convolve_HWC_q7_basic_nonsquare(const q7_t * Im_in,
                                                  const uint16_t dim_im_in_x,
                                                  const uint16_t dim_im_in_y,
                                                  const uint16_t ch_im_in,
                                                  const q7_t * wt,
                                                  const uint16_t ch_im_out,
                                                  const uint16_t dim_kernel_x,
                                                  const uint16_t dim_kernel_y,
                                                  const uint16_t padding_x,
                                                  const uint16_t padding_y,
                                                  const uint16_t stride_x,
                                                  const uint16_t stride_y,
                                                  const q7_t * bias,
                                                  const uint16_t bias_shift,
                                                  const uint16_t out_shift,
                                                  q7_t * Im_out,
                                                  const uint16_t dim_im_out_x,
                                                  const uint16_t dim_im_out_y,
                                                  q15_t * bufferA,
                                                  q7_t * bufferB);

  /**
   * @brief Basic Q15 convolution function
   * @param[in]       Im_in       pointer to input tensor
   * @param[in]       dim_im_in   input tensor dimention
   * @param[in]       ch_im_in    number of input tensor channels
   * @param[in]       wt          pointer to kernel weights
   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
   * @param[in]       dim_kernel  filter kernel size
   * @param[in]       padding     padding sizes
   * @param[in]       stride      convolution stride
   * @param[in]       bias        pointer to bias
   * @param[in]       bias_shift  amount of left-shift for bias
   * @param[in]       out_shift   amount of right-shift for output
   * @param[in,out]   Im_out      pointer to output tensor
   * @param[in]       dim_im_out  output tensor dimension
   * @param[in,out]   bufferA     pointer to buffer space for input 
   * @param[in,out]   bufferB     pointer to buffer space for output
   * @return     The function returns <code>ARM_MATH_SUCCESS</code> 
   *
   */

    arm_status arm_convolve_HWC_q15_basic(const q15_t * Im_in,
                                          const uint16_t dim_im_in,
                                          const uint16_t ch_im_in,
                                          const q15_t * wt,
                                          const uint16_t ch_im_out,
                                          const uint16_t dim_kernel,
                                          const uint16_t padding,
                                          const uint16_t stride,
                                          const q15_t * bias,
                                          const uint16_t bias_shift,
                                          const uint16_t out_shift,
                                          q15_t * Im_out, 
                                          const uint16_t dim_im_out, 
                                          q15_t * bufferA, 
                                          q7_t * bufferB);

  /**
   * @brief Fast Q7 convolution function
   * @param[in]       Im_in       pointer to input tensor
   * @param[in]       dim_im_in   input tensor dimention
   * @param[in]       ch_im_in    number of input tensor channels
   * @param[in]       wt          pointer to kernel weights
   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
   * @param[in]       dim_kernel  filter kernel size
   * @param[in]       padding     padding sizes
   * @param[in]       stride      convolution stride
   * @param[in]       bias        pointer to bias
   * @param[in]       bias_shift  amount of left-shift for bias
   * @param[in]       out_shift   amount of right-shift for output
   * @param[in,out]   Im_out      pointer to output tensor
   * @param[in]       dim_im_out  output tensor dimension
   * @param[in,out]   bufferA     pointer to buffer space for input 
   * @param[in,out]   bufferB     pointer to buffer space for output
   * @return     The function returns either
   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
   *
   * This function is the version with full list of optimization tricks, but with
   * some contraints:
   *   ch_im_in is multiple of 4
   *   ch_im_out is multiple of 2
   */

    arm_status arm_convolve_HWC_q7_fast(const q7_t * Im_in,
                                        const uint16_t dim_im_in,
                                        const uint16_t ch_im_in,
                                        const q7_t * wt,
                                        const uint16_t ch_im_out,
                                        const uint16_t dim_kernel,
                                        const uint16_t padding,
                                        const uint16_t stride,
                                        const q7_t * bias,
                                        const uint16_t bias_shift,
                                        const uint16_t out_shift,
                                        q7_t * Im_out, 
                                        const uint16_t dim_im_out, 
                                        q15_t * bufferA, 
                                        q7_t * bufferB);

  /**
   * @brief Fast Q7 convolution function (non-sqaure shape)
   * @param[in]       Im_in        pointer to input tensor
   * @param[in]       dim_im_in_x  input tensor dimention x
   * @param[in]       dim_im_in_y  input tensor dimention y
   * @param[in]       ch_im_in     number of input tensor channels
   * @param[in]       wt           pointer to kernel weights
   * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
   * @param[in]       dim_kernel_x filter kernel size x
   * @param[in]       dim_kernel_y filter kernel size y
   * @param[in]       padding_x    padding size x
   * @param[in]       padding_y    padding size y
   * @param[in]       stride_x     convolution stride x
   * @param[in]       stride_y     convolution stride y
   * @param[in]       bias         pointer to bias
   * @param[in]       bias_shift   amount of left-shift for bias
   * @param[in]       out_shift    amount of right-shift for output
   * @param[in,out]   Im_out       pointer to output tensor
   * @param[in]       dim_im_out_x output tensor dimension x
   * @param[in]       dim_im_out_y output tensor dimension y
   * @param[in,out]   bufferA      pointer to buffer space for input 
   * @param[in,out]   bufferB      pointer to buffer space for output
   * @return     The function returns either
   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
   *
   * This function is the version with full list of optimization tricks, but with
   * some contraints:
   *   ch_im_in is multiple of 4
   *   ch_im_out is multiple of 2
   */

    arm_status arm_convolve_HWC_q7_fast_nonsquare(const q7_t * Im_in,
                                                  const uint16_t dim_im_in_x,
                                                  const uint16_t dim_im_in_y,
                                                  const uint16_t ch_im_in,
                                                  const q7_t * wt,
                                                  const uint16_t ch_im_out,
                                                  const uint16_t dim_kernel_x,
                                                  const uint16_t dim_kernel_y,
                                                  const uint16_t padding_x,
                                                  const uint16_t padding_y,
                                                  const uint16_t stride_x,
                                                  const uint16_t stride_y,
                                                  const q7_t * bias,
                                                  const uint16_t bias_shift,
                                                  const uint16_t out_shift,
                                                  q7_t * Im_out,
                                                  const uint16_t dim_im_out_x,
                                                  const uint16_t dim_im_out_y,
                                                  q15_t * bufferA,
                                                  q7_t * bufferB);

  /**
   * @brief Fast Q7 version of 1x1 convolution (non-sqaure shape)
   * @param[in]       Im_in        pointer to input tensor
   * @param[in]       dim_im_in_x  input tensor dimention x
   * @param[in]       dim_im_in_y  input tensor dimention y
   * @param[in]       ch_im_in     number of input tensor channels
   * @param[in]       wt           pointer to kernel weights
   * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
   * @param[in]       dim_kernel_x filter kernel size x
   * @param[in]       dim_kernel_y filter kernel size y
   * @param[in]       padding_x    padding size x
   * @param[in]       padding_y    padding size y
   * @param[in]       stride_x     convolution stride x
   * @param[in]       stride_y     convolution stride y
   * @param[in]       bias         pointer to bias
   * @param[in]       bias_shift   amount of left-shift for bias
   * @param[in]       out_shift    amount of right-shift for output
   * @param[in,out]   Im_out       pointer to output tensor
   * @param[in]       dim_im_out_x output tensor dimension x
   * @param[in]       dim_im_out_y output tensor dimension y
   * @param[in,out]   bufferA      pointer to buffer space for input 
   * @param[in,out]   bufferB      pointer to buffer space for output
   * @return     The function returns either
   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
   *
   * This function implement convolution with 1x1 kernel size (i.e., dim_kernel_x=1
   * and dim_kernel_y=1). It can be used for
   * second half of MobileNets after depthwise separable convolution.
   *
   * This function is the version with full list of optimization tricks, but with
   * some contraints:
   *   ch_im_in is multiple of 4
   *   ch_im_out is multiple of 2
   */
    arm_status arm_convolve_1x1_HWC_q7_fast_nonsquare(const q7_t * Im_in,
                                                      const uint16_t dim_im_in_x,
                                                      const uint16_t dim_im_in_y,
                                                      const uint16_t ch_im_in,
                                                      const q7_t * wt,
                                                      const uint16_t ch_im_out,
                                                      const uint16_t dim_kernel_x,
                                                      const uint16_t dim_kernel_y,
                                                      const uint16_t padding_x,
                                                      const uint16_t padding_y,
                                                      const uint16_t stride_x,
                                                      const uint16_t stride_y,
                                                      const q7_t * bias,
                                                      const uint16_t bias_shift,
                                                      const uint16_t out_shift,
                                                      q7_t * Im_out,
                                                      const uint16_t dim_im_out_x,
                                                      const uint16_t dim_im_out_y,
                                                      q15_t * bufferA,
                                                      q7_t * bufferB);

  /**
   * @brief Q7 version of convolution for RGB image
   * @param[in]       Im_in       pointer to input tensor
   * @param[in]       dim_im_in   input tensor dimention
   * @param[in]       ch_im_in    number of input tensor channels
   * @param[in]       wt          pointer to kernel weights
   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
   * @param[in]       dim_kernel  filter kernel size
   * @param[in]       padding     padding sizes
   * @param[in]       stride      convolution stride
   * @param[in]       bias        pointer to bias
   * @param[in]       bias_shift  amount of left-shift for bias
   * @param[in]       out_shift   amount of right-shift for output
   * @param[in,out]   Im_out      pointer to output tensor
   * @param[in]       dim_im_out  output tensor dimension
   * @param[in,out]   bufferA     pointer to buffer space for input 
   * @param[in,out]   bufferB     pointer to buffer space for output
   * @return     The function returns either
   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
   *
   * This kernel is written exclusively for convolution with ch_im_in
   * equals 3. This applies on the first layer of CNNs which has input
   * image with RGB format.
   */

    arm_status arm_convolve_HWC_q7_RGB(const q7_t * Im_in,
                                       const uint16_t dim_im_in,
                                       const uint16_t ch_im_in,
                                       const q7_t * wt,
                                       const uint16_t ch_im_out,
                                       const uint16_t dim_kernel,
                                       const uint16_t padding,
                                       const uint16_t stride,
                                       const q7_t * bias,
                                       const uint16_t bias_shift,
                                       const uint16_t out_shift,
                                       q7_t * Im_out, 
                                       const uint16_t dim_im_out, 
                                       q15_t * bufferA, 
                                       q7_t * bufferB);

  /**
   * @brief Fast Q15 convolution function
   * @param[in]       Im_in       pointer to input tensor
   * @param[in]       dim_im_in   input tensor dimention
   * @param[in]       ch_im_in    number of input tensor channels
   * @param[in]       wt          pointer to kernel weights
   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
   * @param[in]       dim_kernel  filter kernel size
   * @param[in]       padding     padding sizes
   * @param[in]       stride      convolution stride
   * @param[in]       bias        pointer to bias
   * @param[in]       bias_shift  amount of left-shift for bias
   * @param[in]       out_shift   amount of right-shift for output
   * @param[in,out]   Im_out      pointer to output tensor
   * @param[in]       dim_im_out  output tensor dimension
   * @param[in,out]   bufferA     pointer to buffer space for input 
   * @param[in,out]   bufferB     pointer to buffer space for output
   * @return     The function returns either
   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
   *
   * This function is the version with full list of optimization tricks, but with
   * some contraints:
   *   ch_im_in is multiple of 2
   *   ch_im_out is multiple of 2
   */

    arm_status arm_convolve_HWC_q15_fast(const q15_t * Im_in,
                                         const uint16_t dim_im_in,
                                         const uint16_t ch_im_in,
                                         const q15_t * wt,
                                         const uint16_t ch_im_out,
                                         const uint16_t dim_kernel,
                                         const uint16_t padding,
                                         const uint16_t stride,
                                         const q15_t * bias,
                                         const uint16_t bias_shift,
                                         const uint16_t out_shift,
                                         q15_t * Im_out, 
                                         const uint16_t dim_im_out, 
                                         q15_t * bufferA, 
                                         q7_t * bufferB);

  /**
   * @brief Fast Q15 convolution function (non-sqaure shape)
   * @param[in]       Im_in        pointer to input tensor
   * @param[in]       dim_im_in_x  input tensor dimention x
   * @param[in]       dim_im_in_y  input tensor dimention y
   * @param[in]       ch_im_in     number of input tensor channels
   * @param[in]       wt           pointer to kernel weights
   * @param[in]       ch_im_out    number of filters, i.e., output tensor channels
   * @param[in]       dim_kernel_x filter kernel size x
   * @param[in]       dim_kernel_y filter kernel size y
   * @param[in]       padding_x    padding size x
   * @param[in]       padding_y    padding size y
   * @param[in]       stride_x     convolution stride x
   * @param[in]       stride_y     convolution stride y
   * @param[in]       bias         pointer to bias
   * @param[in]       bias_shift   amount of left-shift for bias
   * @param[in]       out_shift    amount of right-shift for output
   * @param[in,out]   Im_out       pointer to output tensor
   * @param[in]       dim_im_out_x output tensor dimension x
   * @param[in]       dim_im_out_y output tensor dimension y
   * @param[in,out]   bufferA      pointer to buffer space for input 
   * @param[in,out]   bufferB      pointer to buffer space for output
   * @return     The function returns either
   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
   *
   * @details
   *
   * <b>Buffer size:</b>
   *
   * bufferA size: 2*ch_im_in*dim_kernel*dim_kernel
   *
   * bufferB size: 0
   *
   * <b>Input dimension constraints:</b>
   *
   * ch_im_in is multiple of 2 
   *
   * ch_im_out is multipe of 2
   *
   */

    arm_status
    arm_convolve_HWC_q15_fast_nonsquare(const q15_t * Im_in,
                              const uint16_t dim_im_in_x,
                              const uint16_t dim_im_in_y,
                              const uint16_t ch_im_in,
                              const q15_t * wt,
                              const uint16_t ch_im_out,
                              const uint16_t dim_kernel_x,
                              const uint16_t dim_kernel_y,
                              const uint16_t padding_x,
                              const uint16_t padding_y,
                              const uint16_t stride_x,
                              const uint16_t stride_y,
                              const q15_t * bias,
                              const uint16_t bias_shift,
                              const uint16_t out_shift,
                              q15_t * Im_out,
                              const uint16_t dim_im_out_x,
                              const uint16_t dim_im_out_y, 
                              q15_t * bufferA, 
                              q7_t * bufferB);
										 
  /**
   * @brief Q7 depthwise separable convolution function
   * @param[in]       Im_in       pointer to input tensor
   * @param[in]       dim_im_in   input tensor dimention
   * @param[in]       ch_im_in    number of input tensor channels
   * @param[in]       wt          pointer to kernel weights
   * @param[in]       ch_im_out   number of filters, i.e., output tensor channels
   * @param[in]       dim_kernel  filter kernel size
   * @param[in]       padding     padding sizes
   * @param[in]       stride      convolution stride
   * @param[in]       bias        pointer to bias
   * @param[in]       bias_shift  amount of left-shift for bias
   * @param[in]       out_shift   amount of right-shift for output
   * @param[in,out]   Im_out      pointer to output tensor
   * @param[in]       dim_im_out  output tensor dimension
   * @param[in,out]   bufferA     pointer to buffer space for input 
   * @param[in,out]   bufferB     pointer to buffer space for output
   * @return     The function returns either
   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
   *
   * This function is the version with full list of optimization tricks, but with
   * some contraints:
   *   ch_im_in is multiple of 2
   *   ch_im_out is multiple of 2
   */

    arm_status arm_depthwise_separable_conv_HWC_q7(const q7_t * Im_in,
                                                   const uint16_t dim_im_in,
                                                   const uint16_t ch_im_in,
                                                   const q7_t * wt,
                                                   const uint16_t ch_im_out,
                                                   const uint16_t dim_kernel,
                                                   const uint16_t padding,
                                                   const uint16_t stride,
                                                   const q7_t * bias,
                                                   const uint16_t bias_shift,
                                                   const uint16_t out_shift,
                                                   q7_t * Im_out,
                                                   const uint16_t dim_im_out, 
                                                   q15_t * bufferA, 
                                                   q7_t * bufferB);

  /**
   * @brief Q7 depthwise separable convolution function (non-square shape)
   * @param[in]       Im_in         pointer to input tensor
   * @param[in]       dim_im_in_x   input tensor dimention x
   * @param[in]       dim_im_in_y   input tensor dimention y
   * @param[in]       ch_im_in      number of input tensor channels
   * @param[in]       wt            pointer to kernel weights
   * @param[in]       ch_im_out     number of filters, i.e., output tensor channels
   * @param[in]       dim_kernel_x  filter kernel size x
   * @param[in]       dim_kernel_y  filter kernel size y
   * @param[in]       padding_x     padding sizes x
   * @param[in]       padding_y     padding sizes y
   * @param[in]       stride_x      convolution stride x
   * @param[in]       stride_y      convolution stride y
   * @param[in]       bias          pointer to bias
   * @param[in]       bias_shift    amount of left-shift for bias
   * @param[in]       out_shift     amount of right-shift for output
   * @param[in,out]   Im_out        pointer to output tensor
   * @param[in]       dim_im_out_x  output tensor dimension x
   * @param[in]       dim_im_out_y  output tensor dimension y
   * @param[in,out]   bufferA       pointer to buffer space for input 
   * @param[in,out]   bufferB       pointer to buffer space for output
   * @return     The function returns either
   * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
   *
   * This function is the version with full list of optimization tricks, but with
   * some contraints:
   *   ch_im_in is multiple of 2
   *   ch_im_out is multiple of 2
   */
    arm_status arm_depthwise_separable_conv_HWC_q7_nonsquare(const q7_t * Im_in,
                                                             const uint16_t dim_im_in_x,
                                                             const uint16_t dim_im_in_y,
                                                             const uint16_t ch_im_in,
                                                             const q7_t * wt,
                                                             const uint16_t ch_im_out,
                                                             const uint16_t dim_kernel_x,
                                                             const uint16_t dim_kernel_y,
                                                             const uint16_t padding_x,
                                                             const uint16_t padding_y,
                                                             const uint16_t stride_x,
                                                             const uint16_t stride_y,
                                                             const q7_t * bias,
                                                             const uint16_t bias_shift,
                                                             const uint16_t out_shift,
                                                             q7_t * Im_out,
                                                             const uint16_t dim_im_out_x,
                                                             const uint16_t dim_im_out_y,
                                                             q15_t * bufferA,
                                                             q7_t * bufferB);


/**
 * @defgroup FC Fully-connected Layer Functions
 *
 * Perform fully-connected layer
 *
 * Fully-connected layer is basically a matrix-vector multiplication
 * with bias. The matrix is the weights and the input/output vectors
 * are the activation values. Supported {weight, activation} precisions
 * include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}.
 *
 * Here we have two types of kernel functions. The basic function
 * implements the function using regular GEMV approach. The opt functions
 * operates with weights in interleaved formats. 
 *
 */

  /**
   * @brief Q7 basic fully-connected layer function
   * @param[in]       pV          pointer to input vector
   * @param[in]       pM          pointer to matrix weights
   * @param[in]       dim_vec     length of the vector
   * @param[in]       num_of_rows number of rows in weight matrix
   * @param[in]       bias_shift  amount of left-shift for bias
   * @param[in]       out_shift   amount of right-shift for output
   * @param[in]       bias        pointer to bias
   * @param[in,out]   pOut        pointer to output vector
   * @param[in,out]   vec_buffer  pointer to buffer space for input
   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
   *
   */

    arm_status arm_fully_connected_q7(const q7_t * pV,
                                      const q7_t * pM,
                                      const uint16_t dim_vec,
                                      const uint16_t num_of_rows,
                                      const uint16_t bias_shift,
                                      const uint16_t out_shift, 
                                      const q7_t * bias, 
                                      q7_t * pOut, 
                                      q15_t * vec_buffer);

  /**
   * @brief Q7 opt fully-connected layer function
   * @param[in]       pV          pointer to input vector
   * @param[in]       pM          pointer to matrix weights
   * @param[in]       dim_vec     length of the vector
   * @param[in]       num_of_rows number of rows in weight matrix
   * @param[in]       bias_shift  amount of left-shift for bias
   * @param[in]       out_shift   amount of right-shift for output
   * @param[in]       bias        pointer to bias
   * @param[in,out]   pOut        pointer to output vector
   * @param[in,out]   vec_buffer  pointer to buffer space for input
   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
   *
   */

    arm_status arm_fully_connected_q7_opt(const q7_t * pV,
                                          const q7_t * pM,
                                          const uint16_t dim_vec,
                                          const uint16_t num_of_rows,
                                          const uint16_t bias_shift,
                                          const uint16_t out_shift, 
                                          const q7_t * bias, 
                                          q7_t * pOut, 
                                          q15_t * vec_buffer);

  /**
   * @brief Q15 basic fully-connected layer function
   * @param[in]       pV          pointer to input vector
   * @param[in]       pM          pointer to matrix weights
   * @param[in]       dim_vec     length of the vector
   * @param[in]       num_of_rows number of rows in weight matrix
   * @param[in]       bias_shift  amount of left-shift for bias
   * @param[in]       out_shift   amount of right-shift for output
   * @param[in]       bias        pointer to bias
   * @param[in,out]   pOut        pointer to output vector
   * @param[in,out]   vec_buffer  pointer to buffer space for input
   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
   *
   */

    arm_status arm_fully_connected_q15(const q15_t * pV,
                                       const q15_t * pM,
                                       const uint16_t dim_vec,
                                       const uint16_t num_of_rows,
                                       const uint16_t bias_shift,
                                       const uint16_t out_shift, 
                                       const q15_t * bias, 
                                       q15_t * pOut, 
                                       q15_t * vec_buffer);

  /**
   * @brief Q15 opt fully-connected layer function
   * @param[in]       pV          pointer to input vector
   * @param[in]       pM          pointer to matrix weights
   * @param[in]       dim_vec     length of the vector
   * @param[in]       num_of_rows number of rows in weight matrix
   * @param[in]       bias_shift  amount of left-shift for bias
   * @param[in]       out_shift   amount of right-shift for output
   * @param[in]       bias        pointer to bias
   * @param[in,out]   pOut        pointer to output vector
   * @param[in,out]   vec_buffer  pointer to buffer space for input
   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
   *
   */

    arm_status arm_fully_connected_q15_opt(const q15_t * pV,
                                           const q15_t * pM,
                                           const uint16_t dim_vec,
                                           const uint16_t num_of_rows,
                                           const uint16_t bias_shift,
                                           const uint16_t out_shift,
                                           const q15_t * bias, 
                                           q15_t * pOut, 
                                           q15_t * vec_buffer);

  /**
   * @brief Mixed Q15-Q7 fully-connected layer function
   * @param[in]       pV          pointer to input vector
   * @param[in]       pM          pointer to matrix weights
   * @param[in]       dim_vec     length of the vector
   * @param[in]       num_of_rows number of rows in weight matrix
   * @param[in]       bias_shift  amount of left-shift for bias
   * @param[in]       out_shift   amount of right-shift for output
   * @param[in]       bias        pointer to bias
   * @param[in,out]   pOut        pointer to output vector
   * @param[in,out]   vec_buffer  pointer to buffer space for input
   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
   *
   */

    arm_status arm_fully_connected_mat_q7_vec_q15(const q15_t * pV,
                                                  const q7_t * pM,
                                                  const uint16_t dim_vec,
                                                  const uint16_t num_of_rows,
                                                  const uint16_t bias_shift,
                                                  const uint16_t out_shift,
                                                  const q7_t * bias, 
                                                  q15_t * pOut, 
                                                  q15_t * vec_buffer);

  /**
   * @brief Mixed Q15-Q7 opt fully-connected layer function
   * @param[in]       pV          pointer to input vector
   * @param[in]       pM          pointer to matrix weights
   * @param[in]       dim_vec     length of the vector
   * @param[in]       num_of_rows number of rows in weight matrix
   * @param[in]       bias_shift  amount of left-shift for bias
   * @param[in]       out_shift   amount of right-shift for output
   * @param[in]       bias        pointer to bias
   * @param[in,out]   pOut        pointer to output vector
   * @param[in,out]   vec_buffer  pointer to buffer space for input
   * @return     The function returns <code>ARM_MATH_SUCCESS</code>
   *
   */

    arm_status arm_fully_connected_mat_q7_vec_q15_opt(const q15_t * pV,
                                                      const q7_t * pM,
                                                      const uint16_t dim_vec,
                                                      const uint16_t num_of_rows,
                                                      const uint16_t bias_shift,
                                                      const uint16_t out_shift,
                                                      const q7_t * bias, 
                                                      q15_t * pOut, 
                                                      q15_t * vec_buffer);

/**
 * @brief Matrix-Multiplication Kernels for Convolution
 *
 * These functions are used within convolution layer functions for 
 * matrix multiplication.
 * 
 * The implementation is similar to CMSIS-DSP arm_mat_mult functions
 * with one Q7 and one Q15 operands. The Q15 operand is the im2col
 * output which is always with 2 columns.
 *
 */

  /**
   * @brief Matrix-multiplication function for convolution
   * @param[in]       pA          pointer to operand A
   * @param[in]       pInBuffer   pointer to operand B, always conssists of 2 vectors
   * @param[in]       ch_im_out   numRow of A
   * @param[in]       numCol_A    numCol of A
   * @param[in]       bias_shift  amount of left-shift for bias
   * @param[in]       out_shift   amount of right-shift for output
   * @param[in]       bias        the bias
   * @param[in,out]   pOut        pointer to output
   * @return     The function returns the incremented output pointer
   */

    q7_t     *arm_nn_mat_mult_kernel_q7_q15(const q7_t * pA,
                                            const q15_t * pInBuffer,
                                            const uint16_t ch_im_out,
                                            const uint16_t numCol_A,
                                            const uint16_t bias_shift,
                                            const uint16_t out_shift, 
                                            const q7_t * bias, 
                                            q7_t * pOut);

  /**
   * @brief Matrix-multiplication function for convolution with reordered columns
   * @param[in]       pA          pointer to operand A
   * @param[in]       pInBuffer   pointer to operand B, always conssists of 2 vectors
   * @param[in]       ch_im_out   numRow of A
   * @param[in]       numCol_A    numCol of A
   * @param[in]       bias_shift  amount of left-shift for bias
   * @param[in]       out_shift   amount of right-shift for output
   * @param[in]       bias        the bias
   * @param[in,out]   pOut        pointer to output
   * @return     The function returns the incremented output pointer
   */

    q7_t     *arm_nn_mat_mult_kernel_q7_q15_reordered(const q7_t * pA,
                                                      const q15_t * pInBuffer,
                                                      const uint16_t ch_im_out,
                                                      const uint16_t numCol_A,
                                                      const uint16_t bias_shift,
                                                      const uint16_t out_shift, 
                                                      const q7_t * bias, 
                                                      q7_t * pOut);

#ifdef __cplusplus
}
#endif

/*
 *  Other functions
 *  These layers are typically not timing critical
 *  Basic implementation is supported here
 */

#ifdef __cplusplus
extern    "C"
{
#endif

/**
 * @defgroup Acti Neural Network Activation Functions
 *
 * Perform activation layers, including ReLU (Rectified Linear Unit),
 * sigmoid and tanh
 *
 */

  /**
   * @brief Q7 RELU function
   * @param[in,out]   data        pointer to input
   * @param[in]       size        number of elements
   * @return none.
   */

    void      arm_relu_q7(q7_t * data, uint16_t size);

  /**
   * @brief Q15 RELU function
   * @param[in,out]   data        pointer to input
   * @param[in]       size        number of elements
   * @return none.
   */

    void      arm_relu_q15(q15_t * data, uint16_t size);

  /**
   * @brief Q7 neural network activation function using direct table look-up
   * @param[in,out]   data        pointer to input
   * @param[in]       size        number of elements
   * @param[in]       int_width   bit-width of the integer part, assume to be smaller than 3
   * @param[in]       type        type of activation functions
   * @return none.
   */

    void      arm_nn_activations_direct_q7(q7_t * data, uint16_t size, uint16_t int_width, 
                                           arm_nn_activation_type type);

  /**
   * @brief Q15 neural network activation function using direct table look-up
   * @param[in,out]   data        pointer to input
   * @param[in]       size        number of elements
   * @param[in]       int_width   bit-width of the integer part, assume to be smaller than 3
   * @param[in]       type        type of activation functions
   * @return none.
   */

    void      arm_nn_activations_direct_q15(q15_t * data, uint16_t size, uint16_t int_width,
                                            arm_nn_activation_type type);

/**
 * @defgroup Pooling Neural Network Pooling Functions
 *
 * Perform pooling functions, including max pooling and average pooling
 *
 */

  /**
   * @brief Q7 max pooling function
   * @param[in]       Im_in       pointer to input tensor
   * @param[in]       dim_im_in   input tensor dimention
   * @param[in]       ch_im_in    number of input tensor channels
   * @param[in]       dim_kernel  filter kernel size
   * @param[in]       padding     padding sizes
   * @param[in]       stride      convolution stride
   * @param[in]       dim_im_out  output tensor dimension
   * @param[in,out]   bufferA     pointer to buffer space for input
   * @param[in,out]   Im_out      pointer to output tensor
   * @return none.
   *
   */

    void      arm_maxpool_q7_HWC(q7_t * Im_in,
                                 const uint16_t dim_im_in,
                                 const uint16_t ch_im_in,
                                 const uint16_t dim_kernel,
                                 const uint16_t padding,
                                 const uint16_t stride, 
                                 const uint16_t dim_im_out, 
                                 q7_t * bufferA, 
                                 q7_t * Im_out);

  /**
   * @brief Q7 average pooling function
   * @param[in]       Im_in       pointer to input tensor
   * @param[in]       dim_im_in   input tensor dimention
   * @param[in]       ch_im_in    number of input tensor channels
   * @param[in]       dim_kernel  filter kernel size
   * @param[in]       padding     padding sizes
   * @param[in]       stride      convolution stride
   * @param[in]       dim_im_out  output tensor dimension
   * @param[in,out]   bufferA     pointer to buffer space for input
   * @param[in,out]   Im_out      pointer to output tensor
   * @return none.
   *
   */

    void      arm_avepool_q7_HWC(q7_t * Im_in,
                                 const uint16_t dim_im_in,
                                 const uint16_t ch_im_in,
                                 const uint16_t dim_kernel,
                                 const uint16_t padding,
                                 const uint16_t stride, 
                                 const uint16_t dim_im_out, 
                                 q7_t * bufferA, 
                                 q7_t * Im_out);

/**
 * @defgroup Softmax Softmax Functions
 *
 * EXP(2) based softmax function
 *
 */

  /**
   * @brief Q7 softmax function
   * @param[in]       vec_in      pointer to input vector
   * @param[in]       dim_vec     input vector dimention
   * @param[out]      p_out       pointer to output vector
   * @return none.
   *
   */

    void      arm_softmax_q7(const q7_t * vec_in, const uint16_t dim_vec, q7_t * p_out);

  /**
   * @brief Q15 softmax function
   * @param[in]       vec_in      pointer to input vector
   * @param[in]       dim_vec     input vector dimention
   * @param[out]      p_out       pointer to output vector
   * @return none.
   *
   */

    void      arm_softmax_q15(const q15_t * vec_in, const uint16_t dim_vec, q15_t * p_out);

#ifdef __cplusplus
}
#endif

#endif