stm32f1xx_hal_irda.c 74.1 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131
/**
  ******************************************************************************
  * @file    stm32f1xx_hal_irda.c
  * @author  MCD Application Team
  * @brief   IRDA HAL module driver.
  *          This file provides firmware functions to manage the following 
  *          functionalities of the IrDA SIR ENDEC block (IrDA):
  *           + Initialization and de-initialization functions
  *           + IO operation functions
  *           + Peripheral Control functions 
  *           + Peripheral State and Errors functions  
  @verbatim
  ==============================================================================
                        ##### How to use this driver #####
  ==============================================================================
  [..]
    The IRDA HAL driver can be used as follows:

    (#) Declare a IRDA_HandleTypeDef handle structure.
    (#) Initialize the IRDA low level resources by implementing the HAL_IRDA_MspInit() API:
        (##) Enable the USARTx interface clock.
        (##) IRDA pins configuration:
            (+++) Enable the clock for the IRDA GPIOs.
            (+++) Configure the IRDA pins as alternate function pull-up.
        (##) NVIC configuration if you need to use interrupt process (HAL_IRDA_Transmit_IT()
             and HAL_IRDA_Receive_IT() APIs):
            (+++) Configure the USARTx interrupt priority.
            (+++) Enable the NVIC USART IRQ handle.
        (##) DMA Configuration if you need to use DMA process (HAL_IRDA_Transmit_DMA()
             and HAL_IRDA_Receive_DMA() APIs):
            (+++) Declare a DMA handle structure for the Tx/Rx channel.
            (+++) Enable the DMAx interface clock.
            (+++) Configure the declared DMA handle structure with the required Tx/Rx parameters.
            (+++) Configure the DMA Tx/Rx channel.
            (+++) Associate the initialized DMA handle to the IRDA DMA Tx/Rx handle.
            (+++) Configure the priority and enable the NVIC for the transfer complete interrupt on the DMA Tx/Rx channel.
            (+++) Configure the IRDAx interrupt priority and enable the NVIC USART IRQ handle
                  (used for last byte sending completion detection in DMA non circular mode)

    (#) Program the Baud Rate, Word Length, Parity, IrDA Mode, Prescaler 
        and Mode(Receiver/Transmitter) in the hirda Init structure.

    (#) Initialize the IRDA registers by calling the HAL_IRDA_Init() API:
        (++) This API configures also the low level Hardware GPIO, CLOCK, CORTEX...etc)
             by calling the customized HAL_IRDA_MspInit() API.
     [..] 
        (@) The specific IRDA interrupts (Transmission complete interrupt, 
             RXNE interrupt and Error Interrupts) will be managed using the macros
             __HAL_IRDA_ENABLE_IT() and __HAL_IRDA_DISABLE_IT() inside the transmit and receive process.
     [..]
        Three operation modes are available within this driver :
 
     *** Polling mode IO operation ***
     =================================
     [..]    
       (+) Send an amount of data in blocking mode using HAL_IRDA_Transmit() 
       (+) Receive an amount of data in blocking mode using HAL_IRDA_Receive()
       
     *** Interrupt mode IO operation ***
     ===================================
     [..]    
       (+) Send an amount of data in non blocking mode using HAL_IRDA_Transmit_IT() 
       (+) At transmission end of transfer HAL_IRDA_TxCpltCallback is executed and user can 
            add his own code by customization of function pointer HAL_IRDA_TxCpltCallback
       (+) Receive an amount of data in non blocking mode using HAL_IRDA_Receive_IT() 
       (+) At reception end of transfer HAL_IRDA_RxCpltCallback is executed and user can 
            add his own code by customization of function pointer HAL_IRDA_RxCpltCallback                                      
       (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can 
            add his own code by customization of function pointer HAL_IRDA_ErrorCallback

     *** DMA mode IO operation ***
     ==============================
     [..] 
       (+) Send an amount of data in non blocking mode (DMA) using HAL_IRDA_Transmit_DMA() 
       (+) At transmission end of half transfer HAL_IRDA_TxHalfCpltCallback is executed and user can 
            add his own code by customization of function pointer HAL_IRDA_TxHalfCpltCallback 
       (+) At transmission end of transfer HAL_IRDA_TxCpltCallback is executed and user can 
            add his own code by customization of function pointer HAL_IRDA_TxCpltCallback
       (+) Receive an amount of data in non blocking mode (DMA) using HAL_IRDA_Receive_DMA() 
       (+) At reception end of half transfer HAL_IRDA_RxHalfCpltCallback is executed and user can 
            add his own code by customization of function pointer HAL_IRDA_RxHalfCpltCallback 
       (+) At reception end of transfer HAL_IRDA_RxCpltCallback is executed and user can 
            add his own code by customization of function pointer HAL_IRDA_RxCpltCallback
       (+) In case of transfer Error, HAL_IRDA_ErrorCallback() function is executed and user can 
            add his own code by customization of function pointer HAL_IRDA_ErrorCallback
       (+) Pause the DMA Transfer using HAL_IRDA_DMAPause()
       (+) Resume the DMA Transfer using HAL_IRDA_DMAResume()
       (+) Stop the DMA Transfer using HAL_IRDA_DMAStop()

     *** IRDA HAL driver macros list ***
     ====================================
     [..]
       Below the list of most used macros in IRDA HAL driver.

       (+) __HAL_IRDA_ENABLE: Enable the IRDA peripheral 
       (+) __HAL_IRDA_DISABLE: Disable the IRDA peripheral
       (+) __HAL_IRDA_GET_FLAG : Check whether the specified IRDA flag is set or not
       (+) __HAL_IRDA_CLEAR_FLAG : Clear the specified IRDA pending flag
       (+) __HAL_IRDA_ENABLE_IT: Enable the specified IRDA interrupt
       (+) __HAL_IRDA_DISABLE_IT: Disable the specified IRDA interrupt
       (+) __HAL_IRDA_GET_IT_SOURCE: Check whether the specified IRDA interrupt has occurred or not

     [..]
       (@) You can refer to the IRDA HAL driver header file for more useful macros
  @endverbatim
     [..]
       (@) Additionnal remark: If the parity is enabled, then the MSB bit of the data written
           in the data register is transmitted but is changed by the parity bit.
           Depending on the frame length defined by the M bit (8-bits or 9-bits),
           the possible IRDA frame formats are as listed in the following table:
    +-------------------------------------------------------------+
    |   M bit |  PCE bit  |            IRDA frame                 |
    |---------------------|---------------------------------------|
    |    0    |    0      |    | SB | 8 bit data | 1 STB |          |
    |---------|-----------|---------------------------------------|
    |    0    |    1      |    | SB | 7 bit data | PB | 1 STB |     |
    |---------|-----------|---------------------------------------|
    |    1    |    0      |    | SB | 9 bit data | 1 STB |          |
    |---------|-----------|---------------------------------------|
    |    1    |    1      |    | SB | 8 bit data | PB | 1 STB |     |
    +-------------------------------------------------------------+
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2017 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"

/** @addtogroup STM32F1xx_HAL_Driver
  * @{
  */

/** @defgroup IRDA IRDA
  * @brief HAL IRDA module driver
  * @{
  */
#ifdef HAL_IRDA_MODULE_ENABLED

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @addtogroup IRDA_Private_Constants
  * @{
  */
/**
  * @}
  */
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @addtogroup IRDA_Private_Functions
  * @{
  */
static void IRDA_SetConfig (IRDA_HandleTypeDef *hirda);
static HAL_StatusTypeDef IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda);
static HAL_StatusTypeDef IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda);
static HAL_StatusTypeDef IRDA_Receive_IT(IRDA_HandleTypeDef *hirda);
static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma);
static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma);
static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma);
static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma);
static void IRDA_DMAError(DMA_HandleTypeDef *hdma);
static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma);
static void IRDA_DMATxAbortCallback(DMA_HandleTypeDef *hdma);
static void IRDA_DMARxAbortCallback(DMA_HandleTypeDef *hdma);
static void IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
static void IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma);
static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status, uint32_t Tickstart,uint32_t Timeout);
static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda);
static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda);
/**
  * @}
  */
/* Exported functions ---------------------------------------------------------*/
/** @defgroup IRDA_Exported_Functions IrDA Exported Functions
  * @{
  */

/** @defgroup IRDA_Exported_Functions_Group1 IrDA Initialization and de-initialization functions 
  *  @brief    Initialization and Configuration functions 
  *
@verbatim
  ==============================================================================
            ##### Initialization and Configuration functions #####
  ==============================================================================
    [..]
    This subsection provides a set of functions allowing to initialize the USARTx or the UARTy 
    in IrDA mode.
      (+) For the asynchronous mode only these parameters can be configured: 
        (++) BaudRate
        (++) WordLength 
        (++) Parity: If the parity is enabled, then the MSB bit of the data written
             in the data register is transmitted but is changed by the parity bit.
             Depending on the frame length defined by the M bit (8-bits or 9-bits),
             please refer to Reference manual for possible IRDA frame formats.
        (++) Prescaler: A pulse of width less than two and greater than one PSC period(s) may or may
             not be rejected. The receiver set up time should be managed by software. The IrDA physical layer
             specification specifies a minimum of 10 ms delay between transmission and 
             reception (IrDA is a half duplex protocol).
        (++) Mode: Receiver/transmitter modes
        (++) IrDAMode: the IrDA can operate in the Normal mode or in the Low power mode.
    [..]
    The HAL_IRDA_Init() API follows IRDA configuration procedures (details for the procedures
    are available in reference manual).

@endverbatim
  * @{
  */

/**
  * @brief  Initializes the IRDA mode according to the specified
  *         parameters in the IRDA_InitTypeDef and create the associated handle.
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_Init(IRDA_HandleTypeDef *hirda)
{
  /* Check the IRDA handle allocation */
  if(hirda == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the parameters */
  assert_param(IS_IRDA_INSTANCE(hirda->Instance));

  if(hirda->gState == HAL_IRDA_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    hirda->Lock = HAL_UNLOCKED;
    /* Init the low level hardware : GPIO, CLOCK, CORTEX...etc */
    HAL_IRDA_MspInit(hirda);
  }
  
  hirda->gState = HAL_IRDA_STATE_BUSY;
  
  /* Disable the IRDA peripheral */
  __HAL_IRDA_DISABLE(hirda);
  
  /* Set the IRDA communication parameters */
  IRDA_SetConfig(hirda);
  
  /* In IrDA mode, the following bits must be kept cleared: 
  - LINEN, STOP and CLKEN bits in the USART_CR2 register,
  - SCEN and HDSEL bits in the USART_CR3 register.*/
  CLEAR_BIT(hirda->Instance->CR2, (USART_CR2_LINEN | USART_CR2_STOP | USART_CR2_CLKEN));
  CLEAR_BIT(hirda->Instance->CR3, (USART_CR3_SCEN | USART_CR3_HDSEL));
  
  /* Enable the IRDA peripheral */
  __HAL_IRDA_ENABLE(hirda);
  
  /* Set the prescaler */
  MODIFY_REG(hirda->Instance->GTPR, USART_GTPR_PSC, hirda->Init.Prescaler);
  
  /* Configure the IrDA mode */
  MODIFY_REG(hirda->Instance->CR3, USART_CR3_IRLP, hirda->Init.IrDAMode);
  
  /* Enable the IrDA mode by setting the IREN bit in the CR3 register */
  SET_BIT(hirda->Instance->CR3, USART_CR3_IREN);
  
  /* Initialize the IRDA state*/
  hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
  hirda->gState= HAL_IRDA_STATE_READY;
  hirda->RxState= HAL_IRDA_STATE_READY;
  
  return HAL_OK;
}

/**
  * @brief  DeInitializes the IRDA peripheral
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_DeInit(IRDA_HandleTypeDef *hirda)
{
  /* Check the IRDA handle allocation */
  if(hirda == NULL)
  {
    return HAL_ERROR;
  }

  /* Check the parameters */
  assert_param(IS_IRDA_INSTANCE(hirda->Instance));
  
  hirda->gState = HAL_IRDA_STATE_BUSY;
  
  /* Disable the Peripheral */
  __HAL_IRDA_DISABLE(hirda);

  /* DeInit the low level hardware */
  HAL_IRDA_MspDeInit(hirda);

  hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
  hirda->gState = HAL_IRDA_STATE_RESET; 
  hirda->RxState = HAL_IRDA_STATE_RESET;
  
  /* Release Lock */
  __HAL_UNLOCK(hirda);

  return HAL_OK;
}

/**
  * @brief  IRDA MSP Init.
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval None
  */
__weak void HAL_IRDA_MspInit(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);
  /* NOTE: This function should not be modified, when the callback is needed,
           the HAL_IRDA_MspInit can be implemented in the user file
  */
}

/**
  * @brief  IRDA MSP DeInit.
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval None
  */
__weak void HAL_IRDA_MspDeInit(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);
  /* NOTE: This function should not be modified, when the callback is needed,
           the HAL_IRDA_MspDeInit can be implemented in the user file
  */
}

/**
  * @}
  */

/** @defgroup IRDA_Exported_Functions_Group2 IO operation functions 
  *  @brief   IRDA Transmit and Receive functions 
  *
@verbatim
  ==============================================================================
                         ##### IO operation functions #####
  ==============================================================================
  [..]
    This subsection provides a set of functions allowing to manage the IRDA data transfers.
    IrDA is a half duplex communication protocol. If the Transmitter is busy, any data
    on the IrDA receive line will be ignored by the IrDA decoder and if the Receiver 
    is busy, data on the TX from the USART to IrDA will not be encoded by IrDA.
    While receiving data, transmission should be avoided as the data to be transmitted
    could be corrupted.

    (#) There are two modes of transfer:
        (++) Blocking mode: The communication is performed in polling mode. 
             The HAL status of all data processing is returned by the same function 
             after finishing transfer.  
        (++) No-Blocking mode: The communication is performed using Interrupts 
             or DMA, these APIs return the HAL status.
             The end of the data processing will be indicated through the 
             dedicated IRDA IRQ when using Interrupt mode or the DMA IRQ when 
             using DMA mode.
             The HAL_IRDA_TxCpltCallback(), HAL_IRDA_RxCpltCallback() user callbacks 
             will be executed respectively at the end of the transmit or Receive process
             The HAL_IRDA_ErrorCallback() user callback will be executed when a communication 
             error is detected

    (#) Blocking mode APIs are:
        (++) HAL_IRDA_Transmit()
        (++) HAL_IRDA_Receive()
        
    (#) Non Blocking mode APIs with Interrupt are:
        (++) HAL_IRDA_Transmit_IT()
        (++) HAL_IRDA_Receive_IT()
        (++) HAL_IRDA_IRQHandler()

    (#) Non Blocking mode functions with DMA are:
        (++) HAL_IRDA_Transmit_DMA()
        (++) HAL_IRDA_Receive_DMA()
        (++) HAL_IRDA_DMAPause()
        (++) HAL_IRDA_DMAResume()
        (++) HAL_IRDA_DMAStop()

    (#) A set of Transfer Complete Callbacks are provided in non Blocking mode:
        (++) HAL_IRDA_TxHalfCpltCallback()
        (++) HAL_IRDA_TxCpltCallback()
        (++) HAL_IRDA_RxHalfCpltCallback()
        (++) HAL_IRDA_RxCpltCallback()
        (++) HAL_IRDA_ErrorCallback()

@endverbatim
  * @{
  */

/**
  * @brief  Sends an amount of data in blocking mode.
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @param  Timeout: Specify timeout value  
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_Transmit(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
  uint16_t* tmp;
  uint32_t tickstart = 0U;
  
  /* Check that a Tx process is not already ongoing */
  if(hirda->gState == HAL_IRDA_STATE_READY)
  {
    if((pData == NULL) || (Size == 0U))
    {
      return  HAL_ERROR;
    }
    
    /* Process Locked */
    __HAL_LOCK(hirda);
    
    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
    hirda->gState = HAL_IRDA_STATE_BUSY_TX;

    /* Init tickstart for timeout managment */
    tickstart = HAL_GetTick();

    hirda->TxXferSize = Size;
    hirda->TxXferCount = Size;
    while(hirda->TxXferCount > 0U)
    {
      hirda->TxXferCount--;
      if(hirda->Init.WordLength == IRDA_WORDLENGTH_9B)
      {
        if(IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
        {
          return HAL_TIMEOUT;
        }
        tmp = (uint16_t*) pData;
        hirda->Instance->DR = (*tmp & (uint16_t)0x01FF);
        if(hirda->Init.Parity == IRDA_PARITY_NONE)
        {
          pData +=2U;
        }
        else
        {
          pData +=1U;
        }
      }
      else
      {
        if(IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TXE, RESET, tickstart, Timeout) != HAL_OK)
        {
          return HAL_TIMEOUT;
        }
        hirda->Instance->DR = (*pData++ & (uint8_t)0xFF);
      }
    }
    
    if(IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_TC, RESET, tickstart, Timeout) != HAL_OK)
    { 
      return HAL_TIMEOUT;
    }
    
    /* At end of Tx process, restore hirda->gState to Ready */
    hirda->gState = HAL_IRDA_STATE_READY;
    
    /* Process Unlocked */
    __HAL_UNLOCK(hirda);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Receive an amount of data in blocking mode. 
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be received
  * @param  Timeout: Specify timeout value    
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_Receive(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size, uint32_t Timeout)
{
  uint16_t* tmp;
  uint32_t tickstart = 0U;
  
  /* Check that a Rx process is not already ongoing */
  if(hirda->RxState == HAL_IRDA_STATE_READY) 
  {
    if((pData == NULL) || (Size == 0U))
    {
      return  HAL_ERROR;
    }
    
    /* Process Locked */
    __HAL_LOCK(hirda);
    
    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
    hirda->RxState = HAL_IRDA_STATE_BUSY_RX;

    /* Init tickstart for timeout managment */
    tickstart = HAL_GetTick();

    hirda->RxXferSize = Size;
    hirda->RxXferCount = Size;

    /* Check the remain data to be received */
    while(hirda->RxXferCount > 0U)
    {
      hirda->RxXferCount--;
      if(hirda->Init.WordLength == IRDA_WORDLENGTH_9B)
      {
        if(IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
        {
          return HAL_TIMEOUT;
        }
        tmp = (uint16_t*)pData;
        if(hirda->Init.Parity == IRDA_PARITY_NONE)
        {
          *tmp = (uint16_t)(hirda->Instance->DR & (uint16_t)0x01FF);
          pData +=2U;
        }
        else
        {
          *tmp = (uint16_t)(hirda->Instance->DR & (uint16_t)0x00FF);
          pData +=1U;
        }
      } 
      else
      {
        if(IRDA_WaitOnFlagUntilTimeout(hirda, IRDA_FLAG_RXNE, RESET, tickstart, Timeout) != HAL_OK)
        {
          return HAL_TIMEOUT;
        }
        if(hirda->Init.Parity == IRDA_PARITY_NONE)
        {
          *pData++ = (uint8_t)(hirda->Instance->DR & (uint8_t)0x00FF);
        }
        else
        {
          *pData++ = (uint8_t)(hirda->Instance->DR & (uint8_t)0x007F);
        }
      }
    }
    
    /* At end of Rx process, restore hirda->RxState to Ready */
    hirda->RxState = HAL_IRDA_STATE_READY;
    
    /* Process Unlocked */
    __HAL_UNLOCK(hirda);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Sends an amount of data in non blocking mode.
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
{
  /* Check that a Tx process is not already ongoing */
  if(hirda->gState == HAL_IRDA_STATE_READY)
  {
    if((pData == NULL) || (Size == 0U)) 
    {
      return HAL_ERROR;
    }
    /* Process Locked */
    __HAL_LOCK(hirda);
    
    hirda->pTxBuffPtr = pData;
    hirda->TxXferSize = Size;
    hirda->TxXferCount = Size;

    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
    hirda->gState = HAL_IRDA_STATE_BUSY_TX;

    /* Process Unlocked */
    __HAL_UNLOCK(hirda);

    /* Enable the IRDA Transmit data register empty Interrupt */
    __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_TXE);
    
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Receives an amount of data in non blocking mode. 
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be received
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_Receive_IT(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
{
  /* Check that a Rx process is not already ongoing */
  if(hirda->RxState == HAL_IRDA_STATE_READY)
  {
    if((pData == NULL) || (Size == 0U))
    {
      return HAL_ERROR;
    }
    
    /* Process Locked */
    __HAL_LOCK(hirda);
    
    hirda->pRxBuffPtr = pData;
    hirda->RxXferSize = Size;
    hirda->RxXferCount = Size;

    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
    hirda->RxState = HAL_IRDA_STATE_BUSY_RX;
    
    /* Process Unlocked */
    __HAL_UNLOCK(hirda);

    /* Enable the IRDA Parity Error Interrupt */
    __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_PE);

    /* Enable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
    __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_ERR);

    /* Enable the IRDA Data Register not empty Interrupt */
    __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_RXNE);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Sends an amount of data in non blocking mode. 
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be sent
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_Transmit_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
{
  uint32_t *tmp;
  
  /* Check that a Tx process is not already ongoing */
  if(hirda->gState == HAL_IRDA_STATE_READY)
  {
    if((pData == NULL) || (Size == 0U))
    {
      return HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(hirda);

    hirda->pTxBuffPtr = pData;
    hirda->TxXferSize = Size;
    hirda->TxXferCount = Size;

    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
    hirda->gState = HAL_IRDA_STATE_BUSY_TX;

    /* Set the IRDA DMA transfer complete callback */
    hirda->hdmatx->XferCpltCallback = IRDA_DMATransmitCplt;

    /* Set the IRDA DMA half transfer complete callback */
    hirda->hdmatx->XferHalfCpltCallback = IRDA_DMATransmitHalfCplt;

    /* Set the DMA error callback */
    hirda->hdmatx->XferErrorCallback = IRDA_DMAError;

    /* Set the DMA abort callback */
    hirda->hdmatx->XferAbortCallback = NULL;

    /* Enable the IRDA transmit DMA Channel */
    tmp = (uint32_t*)&pData;
    HAL_DMA_Start_IT(hirda->hdmatx, *(uint32_t*)tmp, (uint32_t)&hirda->Instance->DR, Size);

    /* Clear the TC flag in the SR register by writing 0 to it */
    __HAL_IRDA_CLEAR_FLAG(hirda, IRDA_FLAG_TC);
    
    /* Process Unlocked */
    __HAL_UNLOCK(hirda);

    /* Enable the DMA transfer for transmit request by setting the DMAT bit
       in the USART CR3 register */
    SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Receives an amount of data in non blocking mode. 
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @param  pData: Pointer to data buffer
  * @param  Size: Amount of data to be received
  * @note   When the IRDA parity is enabled (PCE = 1) the data received contain the parity bit.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_Receive_DMA(IRDA_HandleTypeDef *hirda, uint8_t *pData, uint16_t Size)
{
  uint32_t *tmp;
  
  /* Check that a Rx process is not already ongoing */
  if(hirda->RxState == HAL_IRDA_STATE_READY) 
  {
    if((pData == NULL) || (Size == 0U))
    {
      return HAL_ERROR;
    }

    /* Process Locked */
    __HAL_LOCK(hirda);

    hirda->pRxBuffPtr = pData;
    hirda->RxXferSize = Size;

    hirda->ErrorCode = HAL_IRDA_ERROR_NONE; 
    hirda->RxState = HAL_IRDA_STATE_BUSY_RX;

    /* Set the IRDA DMA transfer complete callback */
    hirda->hdmarx->XferCpltCallback = IRDA_DMAReceiveCplt;

    /* Set the IRDA DMA half transfer complete callback */
    hirda->hdmarx->XferHalfCpltCallback = IRDA_DMAReceiveHalfCplt;

    /* Set the DMA error callback */
    hirda->hdmarx->XferErrorCallback = IRDA_DMAError;

    /* Set the DMA abort callback */
    hirda->hdmarx->XferAbortCallback = NULL;

    /* Enable the DMA channel */
    tmp = (uint32_t*)&pData;
    HAL_DMA_Start_IT(hirda->hdmarx, (uint32_t)&hirda->Instance->DR, *(uint32_t*)tmp, Size);

    /* Clear the Overrun flag just before enabling the DMA Rx request: can be mandatory for the second transfer */
    __HAL_IRDA_CLEAR_OREFLAG(hirda);

    /* Process Unlocked */
    __HAL_UNLOCK(hirda);

    /* Enable the IRDA Parity Error Interrupt */
    SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE);

    /* Enable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
    SET_BIT(hirda->Instance->CR3, USART_CR3_EIE);

    /* Enable the DMA transfer for the receiver request by setting the DMAR bit 
    in the USART CR3 register */
    SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR);

    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief Pauses the DMA Transfer.
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_DMAPause(IRDA_HandleTypeDef *hirda)
{
  uint32_t dmarequest = 0x00U;

  /* Process Locked */
  __HAL_LOCK(hirda);

  dmarequest = HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT);
  if((hirda->gState == HAL_IRDA_STATE_BUSY_TX) && dmarequest)
  {
    /* Disable the IRDA DMA Tx request */
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
  }

  dmarequest = HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR);
  if((hirda->RxState == HAL_IRDA_STATE_BUSY_RX) && dmarequest)
  {
    /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
    CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);

    /* Disable the IRDA DMA Rx request */
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
  }

  /* Process Unlocked */
  __HAL_UNLOCK(hirda);
  
  return HAL_OK;
}

/**
  * @brief Resumes the DMA Transfer.
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_DMAResume(IRDA_HandleTypeDef *hirda)
{
  /* Process Locked */
  __HAL_LOCK(hirda);
  
  if(hirda->gState == HAL_IRDA_STATE_BUSY_TX)
  {
    /* Enable the IRDA DMA Tx request */
    SET_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
  }

  if(hirda->RxState == HAL_IRDA_STATE_BUSY_RX)
  {
    /* Clear the Overrun flag before resuming the Rx transfer */
    __HAL_IRDA_CLEAR_OREFLAG(hirda);
    
    /* Reenable PE and ERR (Frame error, noise error, overrun error) interrupts */
    SET_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
    SET_BIT(hirda->Instance->CR3, USART_CR3_EIE);
    
    /* Enable the IRDA DMA Rx request */
    SET_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
  }

  /* Process Unlocked */
  __HAL_UNLOCK(hirda);
  
  return HAL_OK;
}

/**
  * @brief Stops the DMA Transfer.
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_IRDA_DMAStop(IRDA_HandleTypeDef *hirda)
{
  uint32_t dmarequest = 0x00U;
  /* The Lock is not implemented on this API to allow the user application
  to call the HAL IRDA API under callbacks HAL_IRDA_TxCpltCallback() / HAL_IRDA_RxCpltCallback():
  when calling HAL_DMA_Abort() API the DMA TX/RX Transfer complete interrupt is generated
  and the correspond call back is executed HAL_IRDA_TxCpltCallback() / HAL_IRDA_RxCpltCallback()
  */

  /* Stop IRDA DMA Tx request if ongoing */
  dmarequest = HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT);
  if((hirda->gState == HAL_IRDA_STATE_BUSY_TX) && dmarequest)
  {
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);

    /* Abort the IRDA DMA Tx channel */
    if(hirda->hdmatx != NULL)
    {
      HAL_DMA_Abort(hirda->hdmatx);
    }
    IRDA_EndTxTransfer(hirda);
  }

  /* Stop IRDA DMA Rx request if ongoing */
  dmarequest = HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR);
  if((hirda->RxState == HAL_IRDA_STATE_BUSY_RX) && dmarequest)
  {
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);
    
    /* Abort the IRDA DMA Rx channel */
    if(hirda->hdmarx != NULL)
    {
      HAL_DMA_Abort(hirda->hdmarx);
    }
    IRDA_EndRxTransfer(hirda);
  }

  return HAL_OK;
}

/**
  * @brief  Abort ongoing transfers (blocking mode).
  * @param  hirda IRDA handle.
  * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. 
  *         This procedure performs following operations :
  *           - Disable PPP Interrupts
  *           - Disable the DMA transfer in the peripheral register (if enabled)
  *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
  *           - Set handle State to READY
  * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
  * @retval HAL status
*/
HAL_StatusTypeDef HAL_IRDA_Abort(IRDA_HandleTypeDef *hirda)
{
  /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
  CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
  
  /* Disable the IRDA DMA Tx request if enabled */
  if(HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
  {
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);

    /* Abort the IRDA DMA Tx channel: use blocking DMA Abort API (no callback) */
    if(hirda->hdmatx != NULL)
    {
      /* Set the IRDA DMA Abort callback to Null. 
         No call back execution at end of DMA abort procedure */
      hirda->hdmatx->XferAbortCallback = NULL;

      HAL_DMA_Abort(hirda->hdmatx);
    }
  }

  /* Disable the IRDA DMA Rx request if enabled */
  if(HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
  {
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);

    /* Abort the IRDA DMA Rx channel: use blocking DMA Abort API (no callback) */
    if(hirda->hdmarx != NULL)
    {
      /* Set the IRDA DMA Abort callback to Null. 
         No call back execution at end of DMA abort procedure */
      hirda->hdmarx->XferAbortCallback = NULL;

      HAL_DMA_Abort(hirda->hdmarx);
    }
  }

  /* Reset Tx and Rx transfer counters */
  hirda->TxXferCount = 0x00U;
  hirda->RxXferCount = 0x00U;

  /* Reset ErrorCode */
  hirda->ErrorCode = HAL_IRDA_ERROR_NONE;

  /* Restore hirda->RxState and hirda->gState to Ready */
  hirda->RxState = HAL_IRDA_STATE_READY;
  hirda->gState = HAL_IRDA_STATE_READY;

  return HAL_OK;
}

/**
  * @brief  Abort ongoing Transmit transfer (blocking mode).
  * @param  hirda IRDA handle.
  * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. 
  *         This procedure performs following operations :
  *           - Disable PPP Interrupts
  *           - Disable the DMA transfer in the peripheral register (if enabled)
  *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
  *           - Set handle State to READY
  * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
  * @retval HAL status
*/
HAL_StatusTypeDef HAL_IRDA_AbortTransmit(IRDA_HandleTypeDef *hirda)
{
  /* Disable TXEIE and TCIE interrupts */
  CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));

  /* Disable the IRDA DMA Tx request if enabled */
  if(HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
  {
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);

    /* Abort the IRDA DMA Tx channel : use blocking DMA Abort API (no callback) */
    if(hirda->hdmatx != NULL)
    {
      /* Set the IRDA DMA Abort callback to Null. 
         No call back execution at end of DMA abort procedure */
      hirda->hdmatx->XferAbortCallback = NULL;

      HAL_DMA_Abort(hirda->hdmatx);
    }
  }

  /* Reset Tx transfer counter */
  hirda->TxXferCount = 0x00U;

  /* Restore hirda->gState to Ready */
  hirda->gState = HAL_IRDA_STATE_READY;

  return HAL_OK;
}

/**
  * @brief  Abort ongoing Receive transfer (blocking mode).
  * @param  hirda IRDA handle.
  * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. 
  *         This procedure performs following operations :
  *           - Disable PPP Interrupts
  *           - Disable the DMA transfer in the peripheral register (if enabled)
  *           - Abort DMA transfer by calling HAL_DMA_Abort (in case of transfer in DMA mode)
  *           - Set handle State to READY
  * @note   This procedure is executed in blocking mode : when exiting function, Abort is considered as completed.
  * @retval HAL status
*/
HAL_StatusTypeDef HAL_IRDA_AbortReceive(IRDA_HandleTypeDef *hirda)
{
  /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
  CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);

  /* Disable the IRDA DMA Rx request if enabled */
  if(HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
  {
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);

    /* Abort the IRDA DMA Rx channel : use blocking DMA Abort API (no callback) */
    if(hirda->hdmarx != NULL)
    {
      /* Set the IRDA DMA Abort callback to Null. 
         No call back execution at end of DMA abort procedure */
      hirda->hdmarx->XferAbortCallback = NULL;

      HAL_DMA_Abort(hirda->hdmarx);
    }
  }

  /* Reset Rx transfer counter */
  hirda->RxXferCount = 0x00U;

  /* Restore hirda->RxState to Ready */
  hirda->RxState = HAL_IRDA_STATE_READY;

  return HAL_OK;
}

/**
  * @brief  Abort ongoing transfers (Interrupt mode).
  * @param  hirda IRDA handle.
  * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. 
  *         This procedure performs following operations :
  *           - Disable PPP Interrupts
  *           - Disable the DMA transfer in the peripheral register (if enabled)
  *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
  *           - Set handle State to READY
  *           - At abort completion, call user abort complete callback
  * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
  *         considered as completed only when user abort complete callback is executed (not when exiting function).
  * @retval HAL status
*/
HAL_StatusTypeDef HAL_IRDA_Abort_IT(IRDA_HandleTypeDef *hirda)
{
  uint32_t AbortCplt = 0x01U;

  /* Disable TXEIE, TCIE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE | USART_CR1_TCIE));
  CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);

  /* If DMA Tx and/or DMA Rx Handles are associated to IRDA Handle, DMA Abort complete callbacks should be initialised
     before any call to DMA Abort functions */
  /* DMA Tx Handle is valid */
  if(hirda->hdmatx != NULL)
  {
    /* Set DMA Abort Complete callback if IRDA DMA Tx request if enabled.
       Otherwise, set it to NULL */
    if(HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
    {
      hirda->hdmatx->XferAbortCallback = IRDA_DMATxAbortCallback;
    }
    else
    {
      hirda->hdmatx->XferAbortCallback = NULL;
    }
  }
  /* DMA Rx Handle is valid */
  if(hirda->hdmarx != NULL)
  {
    /* Set DMA Abort Complete callback if IRDA DMA Rx request if enabled.
       Otherwise, set it to NULL */
    if(HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
    {
      hirda->hdmarx->XferAbortCallback = IRDA_DMARxAbortCallback;
    }
    else
    {
      hirda->hdmarx->XferAbortCallback = NULL;
    }
  }

  /* Disable the IRDA DMA Tx request if enabled */
  if(HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
  {
    /* Disable DMA Tx at IRDA level */
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);

    /* Abort the IRDA DMA Tx channel : use non blocking DMA Abort API (callback) */
    if(hirda->hdmatx != NULL)
    {
      /* IRDA Tx DMA Abort callback has already been initialised : 
         will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */

      /* Abort DMA TX */
      if(HAL_DMA_Abort_IT(hirda->hdmatx) != HAL_OK)
      {
        hirda->hdmatx->XferAbortCallback = NULL;
      }
      else
      {
        AbortCplt = 0x00U;
      }
    }
  }

  /* Disable the IRDA DMA Rx request if enabled */
  if(HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
  {
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);

    /* Abort the IRDA DMA Rx channel : use non blocking DMA Abort API (callback) */
    if(hirda->hdmarx != NULL)
    {
      /* IRDA Rx DMA Abort callback has already been initialised : 
         will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */

      /* Abort DMA RX */
      if(HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK)
      {
        hirda->hdmarx->XferAbortCallback = NULL;
        AbortCplt = 0x01U;
      }
      else
      {
        AbortCplt = 0x00U;
      }
    }
  }

  /* if no DMA abort complete callback execution is required => call user Abort Complete callback */
  if(AbortCplt == 0x01U)
  {
    /* Reset Tx and Rx transfer counters */
    hirda->TxXferCount = 0x00U; 
    hirda->RxXferCount = 0x00U;

    /* Reset ErrorCode */
    hirda->ErrorCode = HAL_IRDA_ERROR_NONE;

    /* Restore hirda->gState and hirda->RxState to Ready */
    hirda->gState  = HAL_IRDA_STATE_READY;
    hirda->RxState = HAL_IRDA_STATE_READY;

    /* As no DMA to be aborted, call directly user Abort complete callback */
    HAL_IRDA_AbortCpltCallback(hirda);
  }

  return HAL_OK;
}

/**
  * @brief  Abort ongoing Transmit transfer (Interrupt mode).
  * @param  hirda IRDA handle.
  * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. 
  *         This procedure performs following operations :
  *           - Disable PPP Interrupts
  *           - Disable the DMA transfer in the peripheral register (if enabled)
  *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
  *           - Set handle State to READY
  *           - At abort completion, call user abort complete callback
  * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
  *         considered as completed only when user abort complete callback is executed (not when exiting function).
  * @retval HAL status
*/
HAL_StatusTypeDef HAL_IRDA_AbortTransmit_IT(IRDA_HandleTypeDef *hirda)
{
  /* Disable TXEIE and TCIE interrupts */
  CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));

  /* Disable the IRDA DMA Tx request if enabled */
  if(HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT))
  {
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);

    /* Abort the IRDA DMA Tx channel : use blocking DMA Abort API (no callback) */
    if(hirda->hdmatx != NULL)
    {
      /* Set the IRDA DMA Abort callback : 
         will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
      hirda->hdmatx->XferAbortCallback = IRDA_DMATxOnlyAbortCallback;

      /* Abort DMA TX */
      if(HAL_DMA_Abort_IT(hirda->hdmatx) != HAL_OK)
      {
        /* Call Directly hirda->hdmatx->XferAbortCallback function in case of error */
        hirda->hdmatx->XferAbortCallback(hirda->hdmatx);
      }
    }
    else
    {
      /* Reset Tx transfer counter */
      hirda->TxXferCount = 0x00U;

      /* Restore hirda->gState to Ready */
      hirda->gState = HAL_IRDA_STATE_READY;

      /* As no DMA to be aborted, call directly user Abort complete callback */
      HAL_IRDA_AbortTransmitCpltCallback(hirda);
    }
  }
  else
  {
    /* Reset Tx transfer counter */
    hirda->TxXferCount = 0x00U;

    /* Restore hirda->gState to Ready */
    hirda->gState = HAL_IRDA_STATE_READY;

    /* As no DMA to be aborted, call directly user Abort complete callback */
    HAL_IRDA_AbortTransmitCpltCallback(hirda);
  }

  return HAL_OK;
}

/**
  * @brief  Abort ongoing Receive transfer (Interrupt mode).
  * @param  hirda IRDA handle.
  * @note   This procedure could be used for aborting any ongoing transfer started in Interrupt or DMA mode. 
  *         This procedure performs following operations :
  *           - Disable PPP Interrupts
  *           - Disable the DMA transfer in the peripheral register (if enabled)
  *           - Abort DMA transfer by calling HAL_DMA_Abort_IT (in case of transfer in DMA mode)
  *           - Set handle State to READY
  *           - At abort completion, call user abort complete callback
  * @note   This procedure is executed in Interrupt mode, meaning that abort procedure could be
  *         considered as completed only when user abort complete callback is executed (not when exiting function).
  * @retval HAL status
*/
HAL_StatusTypeDef HAL_IRDA_AbortReceive_IT(IRDA_HandleTypeDef *hirda)
{
  /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
  CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);

  /* Disable the IRDA DMA Rx request if enabled */
  if(HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
  {
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);

    /* Abort the IRDA DMA Rx channel : use blocking DMA Abort API (no callback) */
    if(hirda->hdmarx != NULL)
    {
      /* Set the IRDA DMA Abort callback : 
         will lead to call HAL_IRDA_AbortCpltCallback() at end of DMA abort procedure */
      hirda->hdmarx->XferAbortCallback = IRDA_DMARxOnlyAbortCallback;

      /* Abort DMA RX */
      if(HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK)
      {
        /* Call Directly hirda->hdmarx->XferAbortCallback function in case of error */
        hirda->hdmarx->XferAbortCallback(hirda->hdmarx);
      }
    }
    else
    {
      /* Reset Rx transfer counter */
      hirda->RxXferCount = 0x00U;

      /* Restore hirda->RxState to Ready */
      hirda->RxState = HAL_IRDA_STATE_READY;

      /* As no DMA to be aborted, call directly user Abort complete callback */
      HAL_IRDA_AbortReceiveCpltCallback(hirda);
    }
  }
  else
  {
    /* Reset Rx transfer counter */
    hirda->RxXferCount = 0x00U;

    /* Restore hirda->RxState to Ready */
    hirda->RxState = HAL_IRDA_STATE_READY;

    /* As no DMA to be aborted, call directly user Abort complete callback */
    HAL_IRDA_AbortReceiveCpltCallback(hirda);
  }

  return HAL_OK;
}

/**
  * @brief  This function handles IRDA interrupt request.
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval None
  */
void HAL_IRDA_IRQHandler(IRDA_HandleTypeDef *hirda)
{
   uint32_t isrflags   = READ_REG(hirda->Instance->SR);
   uint32_t cr1its     = READ_REG(hirda->Instance->CR1);
   uint32_t cr3its     = READ_REG(hirda->Instance->CR3);
   uint32_t errorflags = 0x00U;
   uint32_t dmarequest = 0x00U;

  /* If no error occurs */
  errorflags = (isrflags & (uint32_t)(USART_SR_PE | USART_SR_FE | USART_SR_ORE | USART_SR_NE));
  if(errorflags == RESET)
  {
    /* IRDA in mode Receiver -----------------------------------------------*/
    if(((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
    {
      IRDA_Receive_IT(hirda);
      return;
    }
  }

  /* If some errors occur */
  if((errorflags != RESET) && (((cr3its & USART_CR3_EIE) != RESET) || ((cr1its & (USART_CR1_RXNEIE | USART_CR1_PEIE)) != RESET)))
  {
    /* IRDA parity error interrupt occurred -------------------------------*/
    if(((isrflags & USART_SR_PE) != RESET) && ((cr1its & USART_CR1_PEIE) != RESET))
    {
      hirda->ErrorCode |= HAL_IRDA_ERROR_PE;
    }

    /* IRDA noise error interrupt occurred --------------------------------*/
    if(((isrflags & USART_SR_NE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
    {
      hirda->ErrorCode |= HAL_IRDA_ERROR_NE;
    }

    /* IRDA frame error interrupt occurred --------------------------------*/
    if(((isrflags & USART_SR_FE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
    {
      hirda->ErrorCode |= HAL_IRDA_ERROR_FE;
    }

    /* IRDA Over-Run interrupt occurred -----------------------------------*/
    if(((isrflags & USART_SR_ORE) != RESET) && ((cr3its & USART_CR3_EIE) != RESET))
    { 
      hirda->ErrorCode |= HAL_IRDA_ERROR_ORE;
    }
    /* Call IRDA Error Call back function if need be -----------------------*/ 
    if(hirda->ErrorCode != HAL_IRDA_ERROR_NONE)
    {
      /* IRDA in mode Receiver ---------------------------------------------*/
      if(((isrflags & USART_SR_RXNE) != RESET) && ((cr1its & USART_CR1_RXNEIE) != RESET))
      {
        IRDA_Receive_IT(hirda);
      }

      /* If Overrun error occurs, or if any error occurs in DMA mode reception,
         consider error as blocking */
      dmarequest = HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR);
      if(((hirda->ErrorCode & HAL_IRDA_ERROR_ORE) != RESET) || dmarequest)
      {
        /* Blocking error : transfer is aborted
           Set the IRDA state ready to be able to start again the process,
           Disable Rx Interrupts, and disable Rx DMA request, if ongoing */
        IRDA_EndRxTransfer(hirda);

        /* Disable the IRDA DMA Rx request if enabled */
        if(HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR))
        {
          CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);

          /* Abort the IRDA DMA Rx channel */
          if(hirda->hdmarx != NULL)
          {
            /* Set the IRDA DMA Abort callback : 
            will lead to call HAL_IRDA_ErrorCallback() at end of DMA abort procedure */
            hirda->hdmarx->XferAbortCallback = IRDA_DMAAbortOnError;

            if(HAL_DMA_Abort_IT(hirda->hdmarx) != HAL_OK)
            {
              /* Call Directly XferAbortCallback function in case of error */
              hirda->hdmarx->XferAbortCallback(hirda->hdmarx);
            }
          }
          else
          {
            /* Call user error callback */
            HAL_IRDA_ErrorCallback(hirda);
          }
        }
        else
        {
          /* Call user error callback */
          HAL_IRDA_ErrorCallback(hirda);
        }
      }
      else
      {
        /* Non Blocking error : transfer could go on. 
           Error is notified to user through user error callback */
        HAL_IRDA_ErrorCallback(hirda);
        hirda->ErrorCode = HAL_IRDA_ERROR_NONE;
      }
    }
    return;
  } /* End if some error occurs */

  /* IRDA in mode Transmitter ------------------------------------------------*/
  if(((isrflags & USART_SR_TXE) != RESET) && ((cr1its & USART_CR1_TXEIE) != RESET))
  {
    IRDA_Transmit_IT(hirda);
    return;
  }

  /* IRDA in mode Transmitter end --------------------------------------------*/
  if(((isrflags & USART_SR_TC) != RESET) && ((cr1its & USART_CR1_TCIE) != RESET))
  {
    IRDA_EndTransmit_IT(hirda);
    return;
  }
}

/**
  * @brief  Tx Transfer complete callbacks.
  * @param  hirda: pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval None
  */
__weak void HAL_IRDA_TxCpltCallback(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);
  /* NOTE: This function should not be modified, when the callback is needed,
           the HAL_IRDA_TxCpltCallback can be implemented in the user file
  */ 
}

/**
  * @brief  Tx Half Transfer completed callbacks.
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified USART module.
  * @retval None
  */
__weak void HAL_IRDA_TxHalfCpltCallback(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);
  /* NOTE: This function should not be modified, when the callback is needed,
           the HAL_IRDA_TxHalfCpltCallback can be implemented in the user file
  */
}

/**
  * @brief  Rx Transfer complete callbacks.
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval None
  */
__weak void HAL_IRDA_RxCpltCallback(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);
  /* NOTE: This function should not be modified, when the callback is needed,
           the HAL_IRDA_RxCpltCallback can be implemented in the user file
  */
}

/**
  * @brief  Rx Half Transfer complete callbacks.
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval None
  */
__weak void HAL_IRDA_RxHalfCpltCallback(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);
  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_IRDA_RxHalfCpltCallback can be implemented in the user file
  */
}

/**
  * @brief IRDA error callbacks.
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval None
  */
__weak void HAL_IRDA_ErrorCallback(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);
  /* NOTE : This function Should not be modified, when the callback is needed,
  the HAL_IRDA_ErrorCallback could be implemented in the user file
  */ 
}

/**
  * @brief  IRDA Abort Complete callback.
  * @param  hirda IRDA handle.
  * @retval None
  */
__weak void HAL_IRDA_AbortCpltCallback(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_IRDA_AbortCpltCallback can be implemented in the user file.
   */
}

/**
  * @brief  IRDA Abort Transmit Complete callback.
  * @param  hirda IRDA handle.
  * @retval None
  */
__weak void HAL_IRDA_AbortTransmitCpltCallback(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_IRDA_AbortTransmitCpltCallback can be implemented in the user file.
   */
}

/**
  * @brief  IRDA Abort ReceiveComplete callback.
  * @param  hirda IRDA handle.
  * @retval None
  */
__weak void HAL_IRDA_AbortReceiveCpltCallback(IRDA_HandleTypeDef *hirda)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hirda);

  /* NOTE : This function should not be modified, when the callback is needed,
            the HAL_IRDA_AbortReceiveCpltCallback can be implemented in the user file.
   */
}

/**
  * @}
  */

/** @defgroup IRDA_Exported_Functions_Group3 Peripheral State and Errors functions 
  *  @brief   IRDA State and Errors functions 
  *
@verbatim   
  ==============================================================================
                  ##### Peripheral State and Errors functions #####
  ==============================================================================  
  [..]
    This subsection provides a set of functions allowing to return the State of IrDA 
    communication process and also return Peripheral Errors occurred during communication process
     (+) HAL_IRDA_GetState() API can be helpful to check in run-time the state of the IrDA peripheral.
     (+) HAL_IRDA_GetError() check in run-time errors that could be occurred during communication. 
     
@endverbatim
  * @{
  */

/**
  * @brief  Returns the IRDA state.
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval HAL state
  */
HAL_IRDA_StateTypeDef HAL_IRDA_GetState(IRDA_HandleTypeDef *hirda)
{
  uint32_t temp1 = 0x00U, temp2 = 0x00U;
  temp1 = hirda->gState;
  temp2 = hirda->RxState;
  
  return (HAL_IRDA_StateTypeDef)(temp1 | temp2);
}

/**
  * @brief  Return the IRDA error code
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval IRDA Error Code
  */
uint32_t HAL_IRDA_GetError(IRDA_HandleTypeDef *hirda)
{
  return hirda->ErrorCode;
}

/**
  * @}
  */
  
/**
  * @brief  DMA IRDA transmit process complete callback. 
  * @param  hdma: Pointer to a DMA_HandleTypeDef structure that contains
  *               the configuration information for the specified DMA module.
  * @retval None
  */
static void IRDA_DMATransmitCplt(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  /* DMA Normal mode */
  if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U)
  {
    hirda->TxXferCount = 0U;
    
    /* Disable the DMA transfer for transmit request by setting the DMAT bit
    in the IRDA CR3 register */
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAT);
    
    /* Enable the IRDA Transmit Complete Interrupt */
    __HAL_IRDA_ENABLE_IT(hirda, IRDA_IT_TC);
  }
  /* DMA Circular mode */
  else
  {
    HAL_IRDA_TxCpltCallback(hirda);
  }
}

/**
  * @brief DMA IRDA receive process half complete callback 
  * @param  hdma: Pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
static void IRDA_DMATransmitHalfCplt(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  
  HAL_IRDA_TxHalfCpltCallback(hirda); 
}

/**
  * @brief  DMA IRDA receive process complete callback. 
  * @param  hdma: DMA handle
  * @retval None
  */
static void IRDA_DMAReceiveCplt(DMA_HandleTypeDef *hdma)   
{
  IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  /* DMA Normal mode */
  if((hdma->Instance->CCR & DMA_CCR_CIRC) == 0U)
  {
    hirda->RxXferCount = 0U;

    /* Disable PE and ERR (Frame error, noise error, overrun error) interrupts */
    CLEAR_BIT(hirda->Instance->CR1, USART_CR1_PEIE);
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
    
    /* Disable the DMA transfer for the receiver request by setting the DMAR bit 
    in the IRDA CR3 register */
    CLEAR_BIT(hirda->Instance->CR3, USART_CR3_DMAR);

    /* At end of Rx process, restore hirda->RxState to Ready */
    hirda->RxState = HAL_IRDA_STATE_READY;
  }
  HAL_IRDA_RxCpltCallback(hirda);
}

/**
  * @brief DMA IRDA receive process half complete callback 
  * @param  hdma: Pointer to a DMA_HandleTypeDef structure that contains
  *                the configuration information for the specified DMA module.
  * @retval None
  */
static void IRDA_DMAReceiveHalfCplt(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  HAL_IRDA_RxHalfCpltCallback(hirda); 
}

/**
  * @brief  DMA IRDA communication error callback.
  * @param  hdma: DMA handle
  * @retval None
  */
static void IRDA_DMAError(DMA_HandleTypeDef *hdma)
{
  uint32_t dmarequest = 0x00U;
  IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  
  /* Stop IRDA DMA Tx request if ongoing */
  dmarequest = HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAT);
  if((hirda->gState == HAL_IRDA_STATE_BUSY_TX) && dmarequest)
  {
    hirda->TxXferCount = 0U;
    IRDA_EndTxTransfer(hirda);
  }

  /* Stop IRDA DMA Rx request if ongoing */
  dmarequest = HAL_IS_BIT_SET(hirda->Instance->CR3, USART_CR3_DMAR);
  if((hirda->RxState == HAL_IRDA_STATE_BUSY_RX) && dmarequest)
  {
    hirda->RxXferCount = 0U;
    IRDA_EndRxTransfer(hirda);
  }

  hirda->ErrorCode |= HAL_IRDA_ERROR_DMA; 
  
  HAL_IRDA_ErrorCallback(hirda);
}

/**
  * @brief  This function handles IRDA Communication Timeout.
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @param  Flag: specifies the IRDA flag to check.
  * @param  Status: The new Flag status (SET or RESET).
  * @param  Tickstart: Tick start value
  * @param  Timeout: Timeout duration
  * @retval HAL status
  */
static HAL_StatusTypeDef IRDA_WaitOnFlagUntilTimeout(IRDA_HandleTypeDef *hirda, uint32_t Flag, FlagStatus Status, uint32_t Tickstart, uint32_t Timeout)
{
  /* Wait until flag is set */
  while((__HAL_IRDA_GET_FLAG(hirda, Flag) ? SET : RESET) == Status)
  {
    /* Check for the Timeout */
    if(Timeout != HAL_MAX_DELAY)
    {
      if((Timeout == 0U)||((HAL_GetTick() - Tickstart ) > Timeout))
      {
        /* Disable TXE, RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts for the interrupt process */
        CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE | USART_CR1_TXEIE));
        CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);
        
        hirda->gState  = HAL_IRDA_STATE_READY;
        hirda->RxState = HAL_IRDA_STATE_READY;
        
        /* Process Unlocked */
        __HAL_UNLOCK(hirda);
        
        return HAL_TIMEOUT;
      }
    }
  }
  return HAL_OK;
}

/**
  * @brief  End ongoing Tx transfer on IRDA peripheral (following error detection or Transmit completion).
  * @param  hirda: IRDA handle.
  * @retval None
  */
static void IRDA_EndTxTransfer(IRDA_HandleTypeDef *hirda)
{
  /* Disable TXEIE and TCIE interrupts */
  CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_TXEIE | USART_CR1_TCIE));

  /* At end of Tx process, restore hirda->gState to Ready */
  hirda->gState = HAL_IRDA_STATE_READY;
}

/**
  * @brief  End ongoing Rx transfer on IRDA peripheral (following error detection or Reception completion).
  * @param  hirda: IRDA handle.
  * @retval None
  */
static void IRDA_EndRxTransfer(IRDA_HandleTypeDef *hirda)
{
  /* Disable RXNE, PE and ERR (Frame error, noise error, overrun error) interrupts */
  CLEAR_BIT(hirda->Instance->CR1, (USART_CR1_RXNEIE | USART_CR1_PEIE));
  CLEAR_BIT(hirda->Instance->CR3, USART_CR3_EIE);

  /* At end of Rx process, restore hirda->RxState to Ready */
  hirda->RxState = HAL_IRDA_STATE_READY;
}

/**
  * @brief  DMA IRDA communication abort callback, when initiated by HAL services on Error
  *         (To be called at end of DMA Abort procedure following error occurrence).
  * @param  hdma DMA handle.
  * @retval None
  */
static void IRDA_DMAAbortOnError(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  hirda->RxXferCount = 0x00U;
  hirda->TxXferCount = 0x00U;

  HAL_IRDA_ErrorCallback(hirda);
}

/**
  * @brief  DMA IRDA Tx communication abort callback, when initiated by user
  *         (To be called at end of DMA Tx Abort procedure following user abort request).
  * @note   When this callback is executed, User Abort complete call back is called only if no
  *         Abort still ongoing for Rx DMA Handle.
  * @param  hdma DMA handle.
  * @retval None
  */
static void IRDA_DMATxAbortCallback(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  
  hirda->hdmatx->XferAbortCallback = NULL;

  /* Check if an Abort process is still ongoing */
  if(hirda->hdmarx != NULL)
  {
    if(hirda->hdmarx->XferAbortCallback != NULL)
    {
      return;
    }
  }

  /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
  hirda->TxXferCount = 0x00U;
  hirda->RxXferCount = 0x00U;

  /* Reset ErrorCode */
  hirda->ErrorCode = HAL_IRDA_ERROR_NONE;

  /* Restore hirda->gState and hirda->RxState to Ready */
  hirda->gState  = HAL_IRDA_STATE_READY;
  hirda->RxState = HAL_IRDA_STATE_READY;

  /* Call user Abort complete callback */
  HAL_IRDA_AbortCpltCallback(hirda);
}

/**
  * @brief  DMA IRDA Rx communication abort callback, when initiated by user
  *         (To be called at end of DMA Rx Abort procedure following user abort request).
  * @note   When this callback is executed, User Abort complete call back is called only if no
  *         Abort still ongoing for Tx DMA Handle.
  * @param  hdma DMA handle.
  * @retval None
  */
static void IRDA_DMARxAbortCallback(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  
  hirda->hdmarx->XferAbortCallback = NULL;

  /* Check if an Abort process is still ongoing */
  if(hirda->hdmatx != NULL)
  {
    if(hirda->hdmatx->XferAbortCallback != NULL)
    {
      return;
    }
  }
  
  /* No Abort process still ongoing : All DMA channels are aborted, call user Abort Complete callback */
  hirda->TxXferCount = 0x00U;
  hirda->RxXferCount = 0x00U;

  /* Reset ErrorCode */
  hirda->ErrorCode = HAL_IRDA_ERROR_NONE;

  /* Restore hirda->gState and hirda->RxState to Ready */
  hirda->gState  = HAL_IRDA_STATE_READY;
  hirda->RxState = HAL_IRDA_STATE_READY;

  /* Call user Abort complete callback */
  HAL_IRDA_AbortCpltCallback(hirda);
}

/**
  * @brief  DMA IRDA Tx communication abort callback, when initiated by user by a call to
  *         HAL_IRDA_AbortTransmit_IT API (Abort only Tx transfer)
  *         (This callback is executed at end of DMA Tx Abort procedure following user abort request,
  *         and leads to user Tx Abort Complete callback execution).
  * @param  hdma DMA handle.
  * @retval None
  */
static void IRDA_DMATxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;

  hirda->TxXferCount = 0x00U;

  /* Restore hirda->gState to Ready */
  hirda->gState = HAL_IRDA_STATE_READY;

  /* Call user Abort complete callback */
  HAL_IRDA_AbortTransmitCpltCallback(hirda);
}

/**
  * @brief  DMA IRDA Rx communication abort callback, when initiated by user by a call to
  *         HAL_IRDA_AbortReceive_IT API (Abort only Rx transfer)
  *         (This callback is executed at end of DMA Rx Abort procedure following user abort request,
  *         and leads to user Rx Abort Complete callback execution).
  * @param  hdma DMA handle.
  * @retval None
  */
static void IRDA_DMARxOnlyAbortCallback(DMA_HandleTypeDef *hdma)
{
  IRDA_HandleTypeDef* hirda = ( IRDA_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;

  hirda->RxXferCount = 0x00U;

  /* Restore hirda->RxState to Ready */
  hirda->RxState = HAL_IRDA_STATE_READY;

  /* Call user Abort complete callback */
  HAL_IRDA_AbortReceiveCpltCallback(hirda);
}

/**
  * @brief  Send an amount of data in non blocking mode. 
  * @param  hirda: pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval HAL status
  */
static HAL_StatusTypeDef IRDA_Transmit_IT(IRDA_HandleTypeDef *hirda)
{
  uint16_t* tmp;
  
  /* Check that a Tx process is ongoing */
  if(hirda->gState == HAL_IRDA_STATE_BUSY_TX)
  {
    if(hirda->Init.WordLength == IRDA_WORDLENGTH_9B)
    {
      tmp = (uint16_t*) hirda->pTxBuffPtr;
      hirda->Instance->DR = (uint16_t)(*tmp & (uint16_t)0x01FF);
      if(hirda->Init.Parity == IRDA_PARITY_NONE)
      {
        hirda->pTxBuffPtr += 2U;
      }
      else
      {
        hirda->pTxBuffPtr += 1U;
      }
    } 
    else
    {
      hirda->Instance->DR = (uint8_t)(*hirda->pTxBuffPtr++ & (uint8_t)0x00FF);
    }

    if(--hirda->TxXferCount == 0U)
    {
      /* Disable the IRDA Transmit Data Register Empty Interrupt */
      CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TXEIE);

      /* Enable the IRDA Transmit Complete Interrupt */
      SET_BIT(hirda->Instance->CR1, USART_CR1_TCIE);
    }
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Wraps up transmission in non blocking mode.
  * @param  hirda: pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval HAL status
  */
static HAL_StatusTypeDef IRDA_EndTransmit_IT(IRDA_HandleTypeDef *hirda)
{
  /* Disable the IRDA Transmit Complete Interrupt */    
  CLEAR_BIT(hirda->Instance->CR1, USART_CR1_TCIE);
  
  /* Tx process is ended, restore hirda->gState to Ready */
  hirda->gState = HAL_IRDA_STATE_READY;
  HAL_IRDA_TxCpltCallback(hirda);
  
  return HAL_OK;
}

/**
  * @brief  Receives an amount of data in non blocking mode. 
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval HAL status
  */
static HAL_StatusTypeDef IRDA_Receive_IT(IRDA_HandleTypeDef *hirda)
{
  uint16_t* tmp;
  uint16_t  uhdata;
  
  /* Check that a Rx process is ongoing */
  if(hirda->RxState == HAL_IRDA_STATE_BUSY_RX) 
  {
    uhdata = (uint16_t) READ_REG(hirda->Instance->DR);
    if(hirda->Init.WordLength == IRDA_WORDLENGTH_9B)
    {
      tmp = (uint16_t*) hirda->pRxBuffPtr;
      if(hirda->Init.Parity == IRDA_PARITY_NONE)
      {
        *tmp = (uint16_t)(uhdata & (uint16_t)0x01FF);
        hirda->pRxBuffPtr += 2U;
      }
      else
      {
        *tmp = (uint16_t)(uhdata & (uint16_t)0x00FF);
        hirda->pRxBuffPtr += 1U;
      }
    }
    else
    {
      if(hirda->Init.Parity == IRDA_PARITY_NONE)
      {
        *hirda->pRxBuffPtr++ = (uint8_t)(uhdata & (uint8_t)0x00FF);
      }
      else
      {
        *hirda->pRxBuffPtr++ = (uint8_t)(uhdata & (uint8_t)0x007F);
      }
    }

    if(--hirda->RxXferCount == 0U)
    {
      /* Disable the IRDA Data Register not empty Interrupt */
      __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_RXNE);

      /* Disable the IRDA Parity Error Interrupt */
      __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_PE);
      
      /* Disable the IRDA Error Interrupt: (Frame error, noise error, overrun error) */
      __HAL_IRDA_DISABLE_IT(hirda, IRDA_IT_ERR);
      
      /* Rx process is completed, restore hirda->RxState to Ready */
      hirda->RxState = HAL_IRDA_STATE_READY;
      HAL_IRDA_RxCpltCallback(hirda);

      return HAL_OK;
    }
    return HAL_OK;
  }
  else
  {
    return HAL_BUSY;
  }
}

/**
  * @brief  Configures the IRDA peripheral. 
  * @param  hirda: Pointer to a IRDA_HandleTypeDef structure that contains
  *                the configuration information for the specified IRDA module.
  * @retval None
  */
static void IRDA_SetConfig(IRDA_HandleTypeDef *hirda)
{
  /* Check the parameters */
  assert_param(IS_IRDA_INSTANCE(hirda->Instance));
  assert_param(IS_IRDA_BAUDRATE(hirda->Init.BaudRate));  
  assert_param(IS_IRDA_WORD_LENGTH(hirda->Init.WordLength));
  assert_param(IS_IRDA_PARITY(hirda->Init.Parity));
  assert_param(IS_IRDA_MODE(hirda->Init.Mode));
  assert_param(IS_IRDA_POWERMODE(hirda->Init.IrDAMode));
 
  /*-------------------------- USART CR2 Configuration ------------------------*/
  /* Clear STOP[13:12] bits */
  CLEAR_BIT(hirda->Instance->CR2, USART_CR2_STOP);
  
  /*-------------------------- USART CR1 Configuration -----------------------*/
  /* Clear M, PCE, PS, TE and RE bits */
  CLEAR_BIT(hirda->Instance->CR1, USART_CR1_M | USART_CR1_PCE | USART_CR1_PS | USART_CR1_TE | USART_CR1_RE);
  
  /* Configure the USART Word Length, Parity and mode: 
  Set the M bits according to hirda->Init.WordLength value 
  Set PCE and PS bits according to hirda->Init.Parity value
  Set TE and RE bits according to hirda->Init.Mode value */
  /* Write to USART CR1 */
  SET_BIT(hirda->Instance->CR1, (uint32_t)hirda->Init.WordLength | hirda->Init.Parity | hirda->Init.Mode);
  
  /*-------------------------- USART CR3 Configuration -----------------------*/
  /* Clear CTSE and RTSE bits */
  CLEAR_BIT(hirda->Instance->CR3, USART_CR3_RTSE | USART_CR3_CTSE);
  
  /*-------------------------- USART BRR Configuration -----------------------*/
  if(hirda->Instance == USART1)
  {
    SET_BIT(hirda->Instance->BRR, IRDA_BRR(HAL_RCC_GetPCLK2Freq(), hirda->Init.BaudRate));
  }
  else
  {
    SET_BIT(hirda->Instance->BRR, IRDA_BRR(HAL_RCC_GetPCLK1Freq(), hirda->Init.BaudRate));
  }
}

/**
  * @}
  */

#endif /* HAL_IRDA_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/