stm32f1xx_hal_adc.c 80.7 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110
/**
  ******************************************************************************
  * @file    stm32f1xx_hal_adc.c
  * @author  MCD Application Team
  * @brief   This file provides firmware functions to manage the following 
  *          functionalities of the Analog to Digital Convertor (ADC)
  *          peripheral:
  *           + Initialization and de-initialization functions
  *             ++ Initialization and Configuration of ADC
  *           + Operation functions
  *             ++ Start, stop, get result of conversions of regular
  *                group, using 3 possible modes: polling, interruption or DMA.
  *           + Control functions
  *             ++ Channels configuration on regular group
  *             ++ Channels configuration on injected group
  *             ++ Analog Watchdog configuration
  *           + State functions
  *             ++ ADC state machine management
  *             ++ Interrupts and flags management
  *          Other functions (extended functions) are available in file 
  *          "stm32f1xx_hal_adc_ex.c".
  *
  @verbatim
  ==============================================================================
                     ##### ADC peripheral features #####
  ==============================================================================
  [..]
  (+) 12-bit resolution

  (+) Interrupt generation at the end of regular conversion, end of injected
      conversion, and in case of analog watchdog or overrun events.
  
  (+) Single and continuous conversion modes.
  
  (+) Scan mode for conversion of several channels sequentially.
  
  (+) Data alignment with in-built data coherency.
  
  (+) Programmable sampling time (channel wise)
  
  (+) ADC conversion of regular group and injected group.

  (+) External trigger (timer or EXTI) 
      for both regular and injected groups.

  (+) DMA request generation for transfer of conversions data of regular group.

  (+) Multimode Dual mode (available on devices with 2 ADCs or more).
  
  (+) Configurable DMA data storage in Multimode Dual mode (available on devices
      with 2 DCs or more).
  
  (+) Configurable delay between conversions in Dual interleaved mode (available 
      on devices with 2 DCs or more).
  
  (+) ADC calibration

  (+) ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at 
      slower speed.
  
  (+) ADC input range: from Vref- (connected to Vssa) to Vref+ (connected to 
      Vdda or to an external voltage reference).


                     ##### How to use this driver #####
  ==============================================================================
    [..]

     *** Configuration of top level parameters related to ADC ***
     ============================================================
     [..]

    (#) Enable the ADC interface
      (++) As prerequisite, ADC clock must be configured at RCC top level.
           Caution: On STM32F1, ADC clock frequency max is 14MHz (refer
                    to device datasheet).
                    Therefore, ADC clock prescaler must be configured in 
                    function of ADC clock source frequency to remain below
                    this maximum frequency.
        (++) One clock setting is mandatory:
             ADC clock (core clock, also possibly conversion clock).
             (+++) Example:
                   Into HAL_ADC_MspInit() (recommended code location) or with
                   other device clock parameters configuration:
               (+++) RCC_PeriphCLKInitTypeDef  PeriphClkInit;
               (+++) __ADC1_CLK_ENABLE();
               (+++) PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC;
               (+++) PeriphClkInit.AdcClockSelection = RCC_ADCPCLK2_DIV2;
               (+++) HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit);

    (#) ADC pins configuration
         (++) Enable the clock for the ADC GPIOs
              using macro __HAL_RCC_GPIOx_CLK_ENABLE()
         (++) Configure these ADC pins in analog mode
              using function HAL_GPIO_Init()

    (#) Optionally, in case of usage of ADC with interruptions:
         (++) Configure the NVIC for ADC
              using function HAL_NVIC_EnableIRQ(ADCx_IRQn)
         (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() 
              into the function of corresponding ADC interruption vector 
              ADCx_IRQHandler().

    (#) Optionally, in case of usage of DMA:
         (++) Configure the DMA (DMA channel, mode normal or circular, ...)
              using function HAL_DMA_Init().
         (++) Configure the NVIC for DMA
              using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn)
         (++) Insert the ADC interruption handler function HAL_ADC_IRQHandler() 
              into the function of corresponding DMA interruption vector 
              DMAx_Channelx_IRQHandler().

     *** Configuration of ADC, groups regular/injected, channels parameters ***
     ==========================================================================
     [..]

    (#) Configure the ADC parameters (resolution, data alignment, ...)
        and regular group parameters (conversion trigger, sequencer, ...)
        using function HAL_ADC_Init().

    (#) Configure the channels for regular group parameters (channel number, 
        channel rank into sequencer, ..., into regular group)
        using function HAL_ADC_ConfigChannel().

    (#) Optionally, configure the injected group parameters (conversion trigger, 
        sequencer, ..., of injected group)
        and the channels for injected group parameters (channel number, 
        channel rank into sequencer, ..., into injected group)
        using function HAL_ADCEx_InjectedConfigChannel().

    (#) Optionally, configure the analog watchdog parameters (channels
        monitored, thresholds, ...)
        using function HAL_ADC_AnalogWDGConfig().

    (#) Optionally, for devices with several ADC instances: configure the 
        multimode parameters
        using function HAL_ADCEx_MultiModeConfigChannel().

     *** Execution of ADC conversions ***
     ====================================
     [..]

    (#) Optionally, perform an automatic ADC calibration to improve the
        conversion accuracy
        using function HAL_ADCEx_Calibration_Start().

    (#) ADC driver can be used among three modes: polling, interruption,
        transfer by DMA.

        (++) ADC conversion by polling:
          (+++) Activate the ADC peripheral and start conversions
                using function HAL_ADC_Start()
          (+++) Wait for ADC conversion completion 
                using function HAL_ADC_PollForConversion()
                (or for injected group: HAL_ADCEx_InjectedPollForConversion() )
          (+++) Retrieve conversion results 
                using function HAL_ADC_GetValue()
                (or for injected group: HAL_ADCEx_InjectedGetValue() )
          (+++) Stop conversion and disable the ADC peripheral 
                using function HAL_ADC_Stop()

        (++) ADC conversion by interruption: 
          (+++) Activate the ADC peripheral and start conversions
                using function HAL_ADC_Start_IT()
          (+++) Wait for ADC conversion completion by call of function
                HAL_ADC_ConvCpltCallback()
                (this function must be implemented in user program)
                (or for injected group: HAL_ADCEx_InjectedConvCpltCallback() )
          (+++) Retrieve conversion results 
                using function HAL_ADC_GetValue()
                (or for injected group: HAL_ADCEx_InjectedGetValue() )
          (+++) Stop conversion and disable the ADC peripheral 
                using function HAL_ADC_Stop_IT()

        (++) ADC conversion with transfer by DMA:
          (+++) Activate the ADC peripheral and start conversions
                using function HAL_ADC_Start_DMA()
          (+++) Wait for ADC conversion completion by call of function
                HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback()
                (these functions must be implemented in user program)
          (+++) Conversion results are automatically transferred by DMA into
                destination variable address.
          (+++) Stop conversion and disable the ADC peripheral 
                using function HAL_ADC_Stop_DMA()

        (++) For devices with several ADCs: ADC multimode conversion 
             with transfer by DMA:
          (+++) Activate the ADC peripheral (slave) and start conversions
                using function HAL_ADC_Start()
          (+++) Activate the ADC peripheral (master) and start conversions
                using function HAL_ADCEx_MultiModeStart_DMA()
          (+++) Wait for ADC conversion completion by call of function
                HAL_ADC_ConvCpltCallback() or HAL_ADC_ConvHalfCpltCallback()
                (these functions must be implemented in user program)
          (+++) Conversion results are automatically transferred by DMA into
                destination variable address.
          (+++) Stop conversion and disable the ADC peripheral (master)
                using function HAL_ADCEx_MultiModeStop_DMA()
          (+++) Stop conversion and disable the ADC peripheral (slave)
                using function HAL_ADC_Stop_IT()

     [..]

    (@) Callback functions must be implemented in user program:
      (+@) HAL_ADC_ErrorCallback()
      (+@) HAL_ADC_LevelOutOfWindowCallback() (callback of analog watchdog)
      (+@) HAL_ADC_ConvCpltCallback()
      (+@) HAL_ADC_ConvHalfCpltCallback
      (+@) HAL_ADCEx_InjectedConvCpltCallback()

     *** Deinitialization of ADC ***
     ============================================================
     [..]

    (#) Disable the ADC interface
      (++) ADC clock can be hard reset and disabled at RCC top level.
        (++) Hard reset of ADC peripherals
             using macro __ADCx_FORCE_RESET(), __ADCx_RELEASE_RESET().
        (++) ADC clock disable
             using the equivalent macro/functions as configuration step.
             (+++) Example:
                   Into HAL_ADC_MspDeInit() (recommended code location) or with
                   other device clock parameters configuration:
               (+++) PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_ADC
               (+++) PeriphClkInit.AdcClockSelection = RCC_ADCPLLCLK2_OFF
               (+++) HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit)

    (#) ADC pins configuration
         (++) Disable the clock for the ADC GPIOs
              using macro __HAL_RCC_GPIOx_CLK_DISABLE()

    (#) Optionally, in case of usage of ADC with interruptions:
         (++) Disable the NVIC for ADC
              using function HAL_NVIC_EnableIRQ(ADCx_IRQn)

    (#) Optionally, in case of usage of DMA:
         (++) Deinitialize the DMA
              using function HAL_DMA_Init().
         (++) Disable the NVIC for DMA
              using function HAL_NVIC_EnableIRQ(DMAx_Channelx_IRQn)

    [..]
  
    @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2016 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************  
  */

/* Includes ------------------------------------------------------------------*/
#include "stm32f1xx_hal.h"

/** @addtogroup STM32F1xx_HAL_Driver
  * @{
  */

/** @defgroup ADC ADC
  * @brief ADC HAL module driver
  * @{
  */

#ifdef HAL_ADC_MODULE_ENABLED

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup ADC_Private_Constants ADC Private Constants
  * @{
  */

  /* Timeout values for ADC enable and disable settling time.                 */
  /* Values defined to be higher than worst cases: low clocks freq,           */
  /* maximum prescaler.                                                       */
  /* Ex of profile low frequency : Clock source at 0.1 MHz, ADC clock         */
  /* prescaler 4, sampling time 12.5 ADC clock cycles, resolution 12 bits.    */
  /* Unit: ms                                                                 */
  #define ADC_ENABLE_TIMEOUT              2U
  #define ADC_DISABLE_TIMEOUT             2U

  /* Delay for ADC stabilization time.                                        */
  /* Maximum delay is 1us (refer to device datasheet, parameter tSTAB).       */
  /* Unit: us                                                                 */
  #define ADC_STAB_DELAY_US               1U

  /* Delay for temperature sensor stabilization time.                         */
  /* Maximum delay is 10us (refer to device datasheet, parameter tSTART).     */
  /* Unit: us                                                                 */
  #define ADC_TEMPSENSOR_DELAY_US         10U

/**
  * @}
  */

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup ADC_Private_Functions ADC Private Functions
  * @{
  */
/**
  * @}
  */

/* Exported functions --------------------------------------------------------*/

/** @defgroup ADC_Exported_Functions ADC Exported Functions
  * @{
  */

/** @defgroup ADC_Exported_Functions_Group1 Initialization/de-initialization functions 
  * @brief    Initialization and Configuration functions
  *
@verbatim    
 ===============================================================================
              ##### Initialization and de-initialization functions #####
 ===============================================================================
    [..]  This section provides functions allowing to:
      (+) Initialize and configure the ADC. 
      (+) De-initialize the ADC.

@endverbatim
  * @{
  */

/**
  * @brief  Initializes the ADC peripheral and regular group according to  
  *         parameters specified in structure "ADC_InitTypeDef".
  * @note   As prerequisite, ADC clock must be configured at RCC top level
  *         (clock source APB2).
  *         See commented example code below that can be copied and uncommented 
  *         into HAL_ADC_MspInit().
  * @note   Possibility to update parameters on the fly:
  *         This function initializes the ADC MSP (HAL_ADC_MspInit()) only when
  *         coming from ADC state reset. Following calls to this function can
  *         be used to reconfigure some parameters of ADC_InitTypeDef  
  *         structure on the fly, without modifying MSP configuration. If ADC  
  *         MSP has to be modified again, HAL_ADC_DeInit() must be called
  *         before HAL_ADC_Init().
  *         The setting of these parameters is conditioned to ADC state.
  *         For parameters constraints, see comments of structure 
  *         "ADC_InitTypeDef".
  * @note   This function configures the ADC within 2 scopes: scope of entire 
  *         ADC and scope of regular group. For parameters details, see comments 
  *         of structure "ADC_InitTypeDef".
  * @param  hadc: ADC handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_Init(ADC_HandleTypeDef* hadc)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  uint32_t tmp_cr1 = 0U;
  uint32_t tmp_cr2 = 0U;
  uint32_t tmp_sqr1 = 0U;
  
  /* Check ADC handle */
  if(hadc == NULL)
  {
    return HAL_ERROR;
  }
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  assert_param(IS_ADC_DATA_ALIGN(hadc->Init.DataAlign));
  assert_param(IS_ADC_SCAN_MODE(hadc->Init.ScanConvMode));
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
  assert_param(IS_ADC_EXTTRIG(hadc->Init.ExternalTrigConv));
  
  if(hadc->Init.ScanConvMode != ADC_SCAN_DISABLE)
  {
    assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion));
    assert_param(IS_FUNCTIONAL_STATE(hadc->Init.DiscontinuousConvMode));
    if(hadc->Init.DiscontinuousConvMode != DISABLE)
    {
      assert_param(IS_ADC_REGULAR_DISCONT_NUMBER(hadc->Init.NbrOfDiscConversion));
    }
  }
  
  /* As prerequisite, into HAL_ADC_MspInit(), ADC clock must be configured    */
  /* at RCC top level.                                                        */
  /* Refer to header of this file for more details on clock enabling          */
  /* procedure.                                                               */

  /* Actions performed only if ADC is coming from state reset:                */
  /* - Initialization of ADC MSP                                              */
  if (hadc->State == HAL_ADC_STATE_RESET)
  {
    /* Initialize ADC error code */
    ADC_CLEAR_ERRORCODE(hadc);
    
    /* Allocate lock resource and initialize it */
    hadc->Lock = HAL_UNLOCKED;
    
    /* Init the low level hardware */
    HAL_ADC_MspInit(hadc);
  }
  
  /* Stop potential conversion on going, on regular and injected groups */
  /* Disable ADC peripheral */
  /* Note: In case of ADC already enabled, precaution to not launch an        */
  /*       unwanted conversion while modifying register CR2 by writing 1 to   */
  /*       bit ADON.                                                          */
  tmp_hal_status = ADC_ConversionStop_Disable(hadc);
  
  
  /* Configuration of ADC parameters if previous preliminary actions are      */ 
  /* correctly completed.                                                     */
  if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL) &&
      (tmp_hal_status == HAL_OK)                                  )
  {
    /* Set ADC state */
    ADC_STATE_CLR_SET(hadc->State,
                      HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
                      HAL_ADC_STATE_BUSY_INTERNAL);
    
    /* Set ADC parameters */
    
    /* Configuration of ADC:                                                  */
    /*  - data alignment                                                      */
    /*  - external trigger to start conversion                                */
    /*  - external trigger polarity (always set to 1, because needed for all  */
    /*    triggers: external trigger of SW start)                             */
    /*  - continuous conversion mode                                          */
    /* Note: External trigger polarity (ADC_CR2_EXTTRIG) is set into          */
    /*       HAL_ADC_Start_xxx functions because if set in this function,     */
    /*       a conversion on injected group would start a conversion also on  */
    /*       regular group after ADC enabling.                                */
    tmp_cr2 |= (hadc->Init.DataAlign                               |
                ADC_CFGR_EXTSEL(hadc, hadc->Init.ExternalTrigConv) |
                ADC_CR2_CONTINUOUS(hadc->Init.ContinuousConvMode)   );
    
    /* Configuration of ADC:                                                  */
    /*  - scan mode                                                           */
    /*  - discontinuous mode disable/enable                                   */
    /*  - discontinuous mode number of conversions                            */
    tmp_cr1 |= (ADC_CR1_SCAN_SET(hadc->Init.ScanConvMode));
    
    /* Enable discontinuous mode only if continuous mode is disabled */
    /* Note: If parameter "Init.ScanConvMode" is set to disable, parameter    */
    /*       discontinuous is set anyway, but will have no effect on ADC HW.  */
    if (hadc->Init.DiscontinuousConvMode == ENABLE)
    {
      if (hadc->Init.ContinuousConvMode == DISABLE)
      {
        /* Enable the selected ADC regular discontinuous mode */
        /* Set the number of channels to be converted in discontinuous mode */
        SET_BIT(tmp_cr1, ADC_CR1_DISCEN                                            |
                         ADC_CR1_DISCONTINUOUS_NUM(hadc->Init.NbrOfDiscConversion)  );
      }
      else
      {
        /* ADC regular group settings continuous and sequencer discontinuous*/
        /* cannot be enabled simultaneously.                                */
        
        /* Update ADC state machine to error */
        SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
        
        /* Set ADC error code to ADC IP internal error */
        SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
      }
    }
    
    /* Update ADC configuration register CR1 with previous settings */
      MODIFY_REG(hadc->Instance->CR1,
                 ADC_CR1_SCAN    |
                 ADC_CR1_DISCEN  |
                 ADC_CR1_DISCNUM    ,
                 tmp_cr1             );
    
    /* Update ADC configuration register CR2 with previous settings */
      MODIFY_REG(hadc->Instance->CR2,
                 ADC_CR2_ALIGN   |
                 ADC_CR2_EXTSEL  |
                 ADC_CR2_EXTTRIG |
                 ADC_CR2_CONT       ,
                 tmp_cr2             );

    /* Configuration of regular group sequencer:                              */
    /* - if scan mode is disabled, regular channels sequence length is set to */
    /*   0x00: 1 channel converted (channel on regular rank 1)                */
    /*   Parameter "NbrOfConversion" is discarded.                            */
    /*   Note: Scan mode is present by hardware on this device and, if        */
    /*   disabled, discards automatically nb of conversions. Anyway, nb of    */
    /*   conversions is forced to 0x00 for alignment over all STM32 devices.  */
    /* - if scan mode is enabled, regular channels sequence length is set to  */
    /*   parameter "NbrOfConversion"                                          */
    if (ADC_CR1_SCAN_SET(hadc->Init.ScanConvMode) == ADC_SCAN_ENABLE)
    {
      tmp_sqr1 = ADC_SQR1_L_SHIFT(hadc->Init.NbrOfConversion);
    }
      
    MODIFY_REG(hadc->Instance->SQR1,
               ADC_SQR1_L          ,
               tmp_sqr1             );
    
    /* Check back that ADC registers have effectively been configured to      */
    /* ensure of no potential problem of ADC core IP clocking.                */
    /* Check through register CR2 (excluding bits set in other functions:     */
    /* execution control bits (ADON, JSWSTART, SWSTART), regular group bits   */
    /* (DMA), injected group bits (JEXTTRIG and JEXTSEL), channel internal    */
    /* measurement path bit (TSVREFE).                                        */
    if (READ_BIT(hadc->Instance->CR2, ~(ADC_CR2_ADON | ADC_CR2_DMA |
                                        ADC_CR2_SWSTART | ADC_CR2_JSWSTART |
                                        ADC_CR2_JEXTTRIG | ADC_CR2_JEXTSEL |
                                        ADC_CR2_TSVREFE                     ))
         == tmp_cr2)
    {
      /* Set ADC error code to none */
      ADC_CLEAR_ERRORCODE(hadc);
      
      /* Set the ADC state */
      ADC_STATE_CLR_SET(hadc->State,
                        HAL_ADC_STATE_BUSY_INTERNAL,
                        HAL_ADC_STATE_READY);
    }
    else
    {
      /* Update ADC state machine to error */
      ADC_STATE_CLR_SET(hadc->State,
                        HAL_ADC_STATE_BUSY_INTERNAL,
                        HAL_ADC_STATE_ERROR_INTERNAL);
      
      /* Set ADC error code to ADC IP internal error */
      SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
      
      tmp_hal_status = HAL_ERROR;
    }
  
  }
  else
  {
    /* Update ADC state machine to error */
    SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
        
    tmp_hal_status = HAL_ERROR;
  }
  
  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Deinitialize the ADC peripheral registers to their default reset
  *         values, with deinitialization of the ADC MSP.
  *         If needed, the example code can be copied and uncommented into
  *         function HAL_ADC_MspDeInit().
  * @param  hadc: ADC handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_DeInit(ADC_HandleTypeDef* hadc)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  
  /* Check ADC handle */
  if(hadc == NULL)
  {
     return HAL_ERROR;
  }
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  
  /* Set ADC state */
  SET_BIT(hadc->State, HAL_ADC_STATE_BUSY_INTERNAL);
  
  /* Stop potential conversion on going, on regular and injected groups */
  /* Disable ADC peripheral */
  tmp_hal_status = ADC_ConversionStop_Disable(hadc);
  
  
  /* Configuration of ADC parameters if previous preliminary actions are      */ 
  /* correctly completed.                                                     */
  if (tmp_hal_status == HAL_OK)
  {
    /* ========== Reset ADC registers ========== */




    /* Reset register SR */
    __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_AWD | ADC_FLAG_JEOC | ADC_FLAG_EOC |
                                ADC_FLAG_JSTRT | ADC_FLAG_STRT));
                         
    /* Reset register CR1 */
    CLEAR_BIT(hadc->Instance->CR1, (ADC_CR1_AWDEN   | ADC_CR1_JAWDEN | ADC_CR1_DISCNUM | 
                                    ADC_CR1_JDISCEN | ADC_CR1_DISCEN | ADC_CR1_JAUTO   | 
                                    ADC_CR1_AWDSGL  | ADC_CR1_SCAN   | ADC_CR1_JEOCIE  |   
                                    ADC_CR1_AWDIE   | ADC_CR1_EOCIE  | ADC_CR1_AWDCH    ));
    
    /* Reset register CR2 */
    CLEAR_BIT(hadc->Instance->CR2, (ADC_CR2_TSVREFE | ADC_CR2_SWSTART | ADC_CR2_JSWSTART | 
                                    ADC_CR2_EXTTRIG | ADC_CR2_EXTSEL  | ADC_CR2_JEXTTRIG |  
                                    ADC_CR2_JEXTSEL | ADC_CR2_ALIGN   | ADC_CR2_DMA      |        
                                    ADC_CR2_RSTCAL  | ADC_CR2_CAL     | ADC_CR2_CONT     |          
                                    ADC_CR2_ADON                                          ));
    
    /* Reset register SMPR1 */
    CLEAR_BIT(hadc->Instance->SMPR1, (ADC_SMPR1_SMP17 | ADC_SMPR1_SMP16 | ADC_SMPR1_SMP15 | 
                                      ADC_SMPR1_SMP14 | ADC_SMPR1_SMP13 | ADC_SMPR1_SMP12 | 
                                      ADC_SMPR1_SMP11 | ADC_SMPR1_SMP10                    ));
    
    /* Reset register SMPR2 */
    CLEAR_BIT(hadc->Instance->SMPR2, (ADC_SMPR2_SMP9 | ADC_SMPR2_SMP8 | ADC_SMPR2_SMP7 | 
                                      ADC_SMPR2_SMP6 | ADC_SMPR2_SMP5 | ADC_SMPR2_SMP4 | 
                                      ADC_SMPR2_SMP3 | ADC_SMPR2_SMP2 | ADC_SMPR2_SMP1 | 
                                      ADC_SMPR2_SMP0                                    ));

    /* Reset register JOFR1 */
    CLEAR_BIT(hadc->Instance->JOFR1, ADC_JOFR1_JOFFSET1);
    /* Reset register JOFR2 */
    CLEAR_BIT(hadc->Instance->JOFR2, ADC_JOFR2_JOFFSET2);
    /* Reset register JOFR3 */
    CLEAR_BIT(hadc->Instance->JOFR3, ADC_JOFR3_JOFFSET3);
    /* Reset register JOFR4 */
    CLEAR_BIT(hadc->Instance->JOFR4, ADC_JOFR4_JOFFSET4);
    
    /* Reset register HTR */
    CLEAR_BIT(hadc->Instance->HTR, ADC_HTR_HT);
    /* Reset register LTR */
    CLEAR_BIT(hadc->Instance->LTR, ADC_LTR_LT);
    
    /* Reset register SQR1 */
    CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_L    |
                                    ADC_SQR1_SQ16 | ADC_SQR1_SQ15 | 
                                    ADC_SQR1_SQ14 | ADC_SQR1_SQ13  );
    
    /* Reset register SQR1 */
    CLEAR_BIT(hadc->Instance->SQR1, ADC_SQR1_L    |
                                    ADC_SQR1_SQ16 | ADC_SQR1_SQ15 | 
                                    ADC_SQR1_SQ14 | ADC_SQR1_SQ13  );
    
    /* Reset register SQR2 */
    CLEAR_BIT(hadc->Instance->SQR2, ADC_SQR2_SQ12 | ADC_SQR2_SQ11 | ADC_SQR2_SQ10 | 
                                    ADC_SQR2_SQ9  | ADC_SQR2_SQ8  | ADC_SQR2_SQ7   );
    
    /* Reset register SQR3 */
    CLEAR_BIT(hadc->Instance->SQR3, ADC_SQR3_SQ6 | ADC_SQR3_SQ5 | ADC_SQR3_SQ4 | 
                                    ADC_SQR3_SQ3 | ADC_SQR3_SQ2 | ADC_SQR3_SQ1  );
    
    /* Reset register JSQR */
    CLEAR_BIT(hadc->Instance->JSQR, ADC_JSQR_JL |
                                    ADC_JSQR_JSQ4 | ADC_JSQR_JSQ3 | 
                                    ADC_JSQR_JSQ2 | ADC_JSQR_JSQ1  );
    
    /* Reset register JSQR */
    CLEAR_BIT(hadc->Instance->JSQR, ADC_JSQR_JL |
                                    ADC_JSQR_JSQ4 | ADC_JSQR_JSQ3 | 
                                    ADC_JSQR_JSQ2 | ADC_JSQR_JSQ1  );
    
    /* Reset register DR */
    /* bits in access mode read only, no direct reset applicable*/
    
    /* Reset registers JDR1, JDR2, JDR3, JDR4 */
    /* bits in access mode read only, no direct reset applicable*/
    
    /* ========== Hard reset ADC peripheral ========== */
    /* Performs a global reset of the entire ADC peripheral: ADC state is     */
    /* forced to a similar state after device power-on.                       */
    /* If needed, copy-paste and uncomment the following reset code into      */
    /* function "void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)":              */
    /*                                                                        */
    /*  __HAL_RCC_ADC1_FORCE_RESET()                                          */
    /*  __HAL_RCC_ADC1_RELEASE_RESET()                                        */
    
    /* DeInit the low level hardware */
    HAL_ADC_MspDeInit(hadc);
    
    /* Set ADC error code to none */
    ADC_CLEAR_ERRORCODE(hadc);
    
    /* Set ADC state */
    hadc->State = HAL_ADC_STATE_RESET; 
  
  }
  
  /* Process unlocked */
  __HAL_UNLOCK(hadc);
  
  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Initializes the ADC MSP.
  * @param  hadc: ADC handle
  * @retval None
  */
__weak void HAL_ADC_MspInit(ADC_HandleTypeDef* hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);
  /* NOTE : This function should not be modified. When the callback is needed,
            function HAL_ADC_MspInit must be implemented in the user file.
   */ 
}

/**
  * @brief  DeInitializes the ADC MSP.
  * @param  hadc: ADC handle
  * @retval None
  */
__weak void HAL_ADC_MspDeInit(ADC_HandleTypeDef* hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);
  /* NOTE : This function should not be modified. When the callback is needed,
            function HAL_ADC_MspDeInit must be implemented in the user file.
   */ 
}

/**
  * @}
  */

/** @defgroup ADC_Exported_Functions_Group2 IO operation functions
 *  @brief    Input and Output operation functions
 *
@verbatim   
 ===============================================================================
                      ##### IO operation functions #####
 ===============================================================================
    [..]  This section provides functions allowing to:
      (+) Start conversion of regular group.
      (+) Stop conversion of regular group.
      (+) Poll for conversion complete on regular group.
      (+) Poll for conversion event.
      (+) Get result of regular channel conversion.
      (+) Start conversion of regular group and enable interruptions.
      (+) Stop conversion of regular group and disable interruptions.
      (+) Handle ADC interrupt request
      (+) Start conversion of regular group and enable DMA transfer.
      (+) Stop conversion of regular group and disable ADC DMA transfer.
@endverbatim
  * @{
  */

/**
  * @brief  Enables ADC, starts conversion of regular group.
  *         Interruptions enabled in this function: None.
  * @param  hadc: ADC handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_Start(ADC_HandleTypeDef* hadc)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  
  /* Process locked */
  __HAL_LOCK(hadc);
   
  /* Enable the ADC peripheral */
  tmp_hal_status = ADC_Enable(hadc);
  
  /* Start conversion if ADC is effectively enabled */
  if (tmp_hal_status == HAL_OK)
  {
    /* Set ADC state                                                          */
    /* - Clear state bitfield related to regular group conversion results     */
    /* - Set state bitfield related to regular operation                      */
    ADC_STATE_CLR_SET(hadc->State,
                      HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC,
                      HAL_ADC_STATE_REG_BUSY);
    
    /* Set group injected state (from auto-injection) and multimode state     */
    /* for all cases of multimode: independent mode, multimode ADC master     */
    /* or multimode ADC slave (for devices with several ADCs):                */
    if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc))
    {
      /* Set ADC state (ADC independent or master) */
      CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
      
      /* If conversions on group regular are also triggering group injected,  */
      /* update ADC state.                                                    */
      if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
      {
        ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);  
      }
    }
    else
    {
      /* Set ADC state (ADC slave) */
      SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
      
      /* If conversions on group regular are also triggering group injected,  */
      /* update ADC state.                                                    */
      if (ADC_MULTIMODE_AUTO_INJECTED(hadc))
      {
        ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
      }
    }
    
    /* State machine update: Check if an injected conversion is ongoing */
    if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
    {
      /* Reset ADC error code fields related to conversions on group regular */
      CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));         
    }
    else
    {
      /* Reset ADC all error code fields */
      ADC_CLEAR_ERRORCODE(hadc);
    }
    
    /* Process unlocked */
    /* Unlock before starting ADC conversions: in case of potential           */
    /* interruption, to let the process to ADC IRQ Handler.                   */
    __HAL_UNLOCK(hadc);
  
    /* Clear regular group conversion flag */
    /* (To ensure of no unknown state from potential previous ADC operations) */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC);
    
    /* Enable conversion of regular group.                                    */
    /* If software start has been selected, conversion starts immediately.    */
    /* If external trigger has been selected, conversion will start at next   */
    /* trigger event.                                                         */
    /* Case of multimode enabled:                                             */ 
    /*  - if ADC is slave, ADC is enabled only (conversion is not started).   */
    /*  - if ADC is master, ADC is enabled and conversion is started.         */
    /* If ADC is master, ADC is enabled and conversion is started.            */
    /* Note: Alternate trigger for single conversion could be to force an     */
    /*       additional set of bit ADON "hadc->Instance->CR2 |= ADC_CR2_ADON;"*/
    if (ADC_IS_SOFTWARE_START_REGULAR(hadc)      &&
        ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc)  )
    {
      /* Start ADC conversion on regular group with SW start */
      SET_BIT(hadc->Instance->CR2, (ADC_CR2_SWSTART | ADC_CR2_EXTTRIG));
    }
    else
    {
      /* Start ADC conversion on regular group with external trigger */
      SET_BIT(hadc->Instance->CR2, ADC_CR2_EXTTRIG);
    }
  }
  else
  {
    /* Process unlocked */
    __HAL_UNLOCK(hadc);
  }
    
  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Stop ADC conversion of regular group (and injected channels in 
  *         case of auto_injection mode), disable ADC peripheral.
  * @note:  ADC peripheral disable is forcing stop of potential 
  *         conversion on injected group. If injected group is under use, it
  *         should be preliminarily stopped using HAL_ADCEx_InjectedStop function.
  * @param  hadc: ADC handle
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_ADC_Stop(ADC_HandleTypeDef* hadc)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
     
  /* Process locked */
  __HAL_LOCK(hadc);
  
  /* Stop potential conversion on going, on regular and injected groups */
  /* Disable ADC peripheral */
  tmp_hal_status = ADC_ConversionStop_Disable(hadc);
  
  /* Check if ADC is effectively disabled */
  if (tmp_hal_status == HAL_OK)
  {
    /* Set ADC state */
    ADC_STATE_CLR_SET(hadc->State,
                      HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
                      HAL_ADC_STATE_READY);
  }
  
  /* Process unlocked */
  __HAL_UNLOCK(hadc);
  
  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Wait for regular group conversion to be completed.
  * @note   This function cannot be used in a particular setup: ADC configured 
  *         in DMA mode.
  *         In this case, DMA resets the flag EOC and polling cannot be
  *         performed on each conversion.
  * @note   On STM32F1 devices, limitation in case of sequencer enabled
  *         (several ranks selected): polling cannot be done on each 
  *         conversion inside the sequence. In this case, polling is replaced by
  *         wait for maximum conversion time.
  * @param  hadc: ADC handle
  * @param  Timeout: Timeout value in millisecond.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_PollForConversion(ADC_HandleTypeDef* hadc, uint32_t Timeout)
{
  uint32_t tickstart = 0U;
  
  /* Variables for polling in case of scan mode enabled and polling for each  */
  /* conversion.                                                              */
  __IO uint32_t Conversion_Timeout_CPU_cycles = 0U;
  uint32_t Conversion_Timeout_CPU_cycles_max = 0U;
 
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  
  /* Get tick count */
  tickstart = HAL_GetTick();
  
  /* Verification that ADC configuration is compliant with polling for        */
  /* each conversion:                                                         */
  /* Particular case is ADC configured in DMA mode                            */
  if (HAL_IS_BIT_SET(hadc->Instance->CR2, ADC_CR2_DMA))
  {
    /* Update ADC state machine to error */
    SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
    
    /* Process unlocked */
    __HAL_UNLOCK(hadc);
    
    return HAL_ERROR;
  }
  
  /* Polling for end of conversion: differentiation if single/sequence        */
  /* conversion.                                                              */
  /*  - If single conversion for regular group (Scan mode disabled or enabled */
  /*    with NbrOfConversion =1), flag EOC is used to determine the           */
  /*    conversion completion.                                                */
  /*  - If sequence conversion for regular group (scan mode enabled and       */
  /*    NbrOfConversion >=2), flag EOC is set only at the end of the          */
  /*    sequence.                                                             */
  /*    To poll for each conversion, the maximum conversion time is computed  */
  /*    from ADC conversion time (selected sampling time + conversion time of */
  /*    12.5 ADC clock cycles) and APB2/ADC clock prescalers (depending on    */
  /*    settings, conversion time range can be from 28 to 32256 CPU cycles).  */
  /*    As flag EOC is not set after each conversion, no timeout status can   */
  /*    be set.                                                               */
  if (HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_SCAN) &&
      HAL_IS_BIT_CLR(hadc->Instance->SQR1, ADC_SQR1_L)    )
  {
    /* Wait until End of Conversion flag is raised */
    while(HAL_IS_BIT_CLR(hadc->Instance->SR, ADC_FLAG_EOC))
    {
      /* Check if timeout is disabled (set to infinite wait) */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0U) || ((HAL_GetTick() - tickstart ) > Timeout))
        {
          /* Update ADC state machine to timeout */
          SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
          
          /* Process unlocked */
          __HAL_UNLOCK(hadc);
          
          return HAL_TIMEOUT;
        }
      }
    }
  }
  else
  {
    /* Replace polling by wait for maximum conversion time */
    /*  - Computation of CPU clock cycles corresponding to ADC clock cycles   */
    /*    and ADC maximum conversion cycles on all channels.                  */
    /*  - Wait for the expected ADC clock cycles delay                        */
    Conversion_Timeout_CPU_cycles_max = ((SystemCoreClock
                                          / HAL_RCCEx_GetPeriphCLKFreq(RCC_PERIPHCLK_ADC))
                                         * ADC_CONVCYCLES_MAX_RANGE(hadc)                 );
    
    while(Conversion_Timeout_CPU_cycles < Conversion_Timeout_CPU_cycles_max)
    {
      /* Check if timeout is disabled (set to infinite wait) */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0U) || ((HAL_GetTick() - tickstart) > Timeout))
        {
          /* Update ADC state machine to timeout */
          SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
          
          /* Process unlocked */
          __HAL_UNLOCK(hadc);
          
          return HAL_TIMEOUT;
        }
      }
      Conversion_Timeout_CPU_cycles ++;
    }
  }
  
  /* Clear regular group conversion flag */
  __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC);
  
  /* Update ADC state machine */
  SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
  
  /* Determine whether any further conversion upcoming on group regular       */
  /* by external trigger, continuous mode or scan sequence on going.          */
  /* Note: On STM32F1 devices, in case of sequencer enabled                   */
  /*       (several ranks selected), end of conversion flag is raised         */
  /*       at the end of the sequence.                                        */
  if(ADC_IS_SOFTWARE_START_REGULAR(hadc)        && 
     (hadc->Init.ContinuousConvMode == DISABLE)   )
  {   
    /* Set ADC state */
    CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);   

    if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
    { 
      SET_BIT(hadc->State, HAL_ADC_STATE_READY);
    }
  }
  
  /* Return ADC state */
  return HAL_OK;
}

/**
  * @brief  Poll for conversion event.
  * @param  hadc: ADC handle
  * @param  EventType: the ADC event type.
  *          This parameter can be one of the following values:
  *            @arg ADC_AWD_EVENT: ADC Analog watchdog event.
  * @param  Timeout: Timeout value in millisecond.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_PollForEvent(ADC_HandleTypeDef* hadc, uint32_t EventType, uint32_t Timeout)
{
  uint32_t tickstart = 0U; 

  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  assert_param(IS_ADC_EVENT_TYPE(EventType));
  
  /* Get tick count */
  tickstart = HAL_GetTick();
  
  /* Check selected event flag */
  while(__HAL_ADC_GET_FLAG(hadc, EventType) == RESET)
  {
    /* Check if timeout is disabled (set to infinite wait) */
    if(Timeout != HAL_MAX_DELAY)
    {
      if((Timeout == 0U) || ((HAL_GetTick() - tickstart ) > Timeout))
      {
        /* Update ADC state machine to timeout */
        SET_BIT(hadc->State, HAL_ADC_STATE_TIMEOUT);
        
        /* Process unlocked */
        __HAL_UNLOCK(hadc);
        
        return HAL_TIMEOUT;
      }
    }
  }
  
  /* Analog watchdog (level out of window) event */
  /* Set ADC state */
  SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
    
  /* Clear ADC analog watchdog flag */
  __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
  
  /* Return ADC state */
  return HAL_OK;
}

/**
  * @brief  Enables ADC, starts conversion of regular group with interruption.
  *         Interruptions enabled in this function:
  *          - EOC (end of conversion of regular group)
  *         Each of these interruptions has its dedicated callback function.
  * @param  hadc: ADC handle
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_Start_IT(ADC_HandleTypeDef* hadc)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  
  /* Process locked */
  __HAL_LOCK(hadc);
    
  /* Enable the ADC peripheral */
  tmp_hal_status = ADC_Enable(hadc);
  
  /* Start conversion if ADC is effectively enabled */
  if (tmp_hal_status == HAL_OK)
  {
    /* Set ADC state                                                          */
    /* - Clear state bitfield related to regular group conversion results     */
    /* - Set state bitfield related to regular operation                      */
    ADC_STATE_CLR_SET(hadc->State,
                      HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
                      HAL_ADC_STATE_REG_BUSY);
    
    /* Set group injected state (from auto-injection) and multimode state     */
    /* for all cases of multimode: independent mode, multimode ADC master     */
    /* or multimode ADC slave (for devices with several ADCs):                */
    if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc))
    {
      /* Set ADC state (ADC independent or master) */
      CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
      
      /* If conversions on group regular are also triggering group injected,  */
      /* update ADC state.                                                    */
      if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
      {
        ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);  
      }
    }
    else
    {
      /* Set ADC state (ADC slave) */
      SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
      
      /* If conversions on group regular are also triggering group injected,  */
      /* update ADC state.                                                    */
      if (ADC_MULTIMODE_AUTO_INJECTED(hadc))
      {
        ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
      }
    }
    
    /* State machine update: Check if an injected conversion is ongoing */
    if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
    {
      /* Reset ADC error code fields related to conversions on group regular */
      CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));         
    }
    else
    {
      /* Reset ADC all error code fields */
      ADC_CLEAR_ERRORCODE(hadc);
    }
    
    /* Process unlocked */
    /* Unlock before starting ADC conversions: in case of potential           */
    /* interruption, to let the process to ADC IRQ Handler.                   */
    __HAL_UNLOCK(hadc);
    
    /* Clear regular group conversion flag and overrun flag */
    /* (To ensure of no unknown state from potential previous ADC operations) */
    __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC);
    
    /* Enable end of conversion interrupt for regular group */
    __HAL_ADC_ENABLE_IT(hadc, ADC_IT_EOC);
    
    /* Enable conversion of regular group.                                    */
    /* If software start has been selected, conversion starts immediately.    */
    /* If external trigger has been selected, conversion will start at next   */
    /* trigger event.                                                         */
    /* Case of multimode enabled:                                             */ 
    /*  - if ADC is slave, ADC is enabled only (conversion is not started).   */
    /*  - if ADC is master, ADC is enabled and conversion is started.         */
    if (ADC_IS_SOFTWARE_START_REGULAR(hadc)      &&
        ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc)  )
    {
      /* Start ADC conversion on regular group with SW start */
      SET_BIT(hadc->Instance->CR2, (ADC_CR2_SWSTART | ADC_CR2_EXTTRIG));
    }
    else
    {
      /* Start ADC conversion on regular group with external trigger */
      SET_BIT(hadc->Instance->CR2, ADC_CR2_EXTTRIG);
    }
  }
  else
  {
    /* Process unlocked */
    __HAL_UNLOCK(hadc);
  }
  
  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Stop ADC conversion of regular group (and injected group in 
  *         case of auto_injection mode), disable interrution of 
  *         end-of-conversion, disable ADC peripheral.
  * @param  hadc: ADC handle
  * @retval None
  */
HAL_StatusTypeDef HAL_ADC_Stop_IT(ADC_HandleTypeDef* hadc)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
     
  /* Process locked */
  __HAL_LOCK(hadc);
  
  /* Stop potential conversion on going, on regular and injected groups */
  /* Disable ADC peripheral */
  tmp_hal_status = ADC_ConversionStop_Disable(hadc);
  
  /* Check if ADC is effectively disabled */
  if (tmp_hal_status == HAL_OK)
  {
    /* Disable ADC end of conversion interrupt for regular group */
    __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
    
    /* Set ADC state */
    ADC_STATE_CLR_SET(hadc->State,
                      HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
                      HAL_ADC_STATE_READY);
  }
  
  /* Process unlocked */
  __HAL_UNLOCK(hadc);
  
  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Enables ADC, starts conversion of regular group and transfers result
  *         through DMA.
  *         Interruptions enabled in this function:
  *          - DMA transfer complete
  *          - DMA half transfer
  *         Each of these interruptions has its dedicated callback function.
  * @note   For devices with several ADCs: This function is for single-ADC mode 
  *         only. For multimode, use the dedicated MultimodeStart function.
  * @note   On STM32F1 devices, only ADC1 and ADC3 (ADC availability depending
  *         on devices) have DMA capability.
  *         ADC2 converted data can be transferred in dual ADC mode using DMA
  *         of ADC1 (ADC master in multimode).
  *         In case of using ADC1 with DMA on a device featuring 2 ADC
  *         instances: ADC1 conversion register DR contains ADC1 conversion 
  *         result (ADC1 register DR bits 0 to 11) and, additionally, ADC2 last
  *         conversion result (ADC1 register DR bits 16 to 27). Therefore, to
  *         have DMA transferring the conversion results of ADC1 only, DMA must
  *         be configured to transfer size: half word.
  * @param  hadc: ADC handle
  * @param  pData: The destination Buffer address.
  * @param  Length: The length of data to be transferred from ADC peripheral to memory.
  * @retval None
  */
HAL_StatusTypeDef HAL_ADC_Start_DMA(ADC_HandleTypeDef* hadc, uint32_t* pData, uint32_t Length)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  
  /* Check the parameters */
  assert_param(IS_ADC_DMA_CAPABILITY_INSTANCE(hadc->Instance));
    
  /* Verification if multimode is disabled (for devices with several ADC)     */
  /* If multimode is enabled, dedicated function multimode conversion         */
  /* start DMA must be used.                                                  */
  if(ADC_MULTIMODE_IS_ENABLE(hadc) == RESET)
  {
    /* Process locked */
    __HAL_LOCK(hadc);
    
    /* Enable the ADC peripheral */
    tmp_hal_status = ADC_Enable(hadc);
    
    /* Start conversion if ADC is effectively enabled */
    if (tmp_hal_status == HAL_OK)
    {
      /* Set ADC state                                                        */
      /* - Clear state bitfield related to regular group conversion results   */
      /* - Set state bitfield related to regular operation                    */
      ADC_STATE_CLR_SET(hadc->State,
                        HAL_ADC_STATE_READY | HAL_ADC_STATE_REG_EOC | HAL_ADC_STATE_REG_OVR | HAL_ADC_STATE_REG_EOSMP,
                        HAL_ADC_STATE_REG_BUSY);
    
    /* Set group injected state (from auto-injection) and multimode state     */
    /* for all cases of multimode: independent mode, multimode ADC master     */
    /* or multimode ADC slave (for devices with several ADCs):                */
    if (ADC_NONMULTIMODE_OR_MULTIMODEMASTER(hadc))
    {
      /* Set ADC state (ADC independent or master) */
      CLEAR_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
      
      /* If conversions on group regular are also triggering group injected,  */
      /* update ADC state.                                                    */
      if (READ_BIT(hadc->Instance->CR1, ADC_CR1_JAUTO) != RESET)
      {
        ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);  
      }
    }
    else
    {
      /* Set ADC state (ADC slave) */
      SET_BIT(hadc->State, HAL_ADC_STATE_MULTIMODE_SLAVE);
      
      /* If conversions on group regular are also triggering group injected,  */
      /* update ADC state.                                                    */
      if (ADC_MULTIMODE_AUTO_INJECTED(hadc))
      {
        ADC_STATE_CLR_SET(hadc->State, HAL_ADC_STATE_INJ_EOC, HAL_ADC_STATE_INJ_BUSY);
      }
    }
      
      /* State machine update: Check if an injected conversion is ongoing */
      if (HAL_IS_BIT_SET(hadc->State, HAL_ADC_STATE_INJ_BUSY))
      {
        /* Reset ADC error code fields related to conversions on group regular */
        CLEAR_BIT(hadc->ErrorCode, (HAL_ADC_ERROR_OVR | HAL_ADC_ERROR_DMA));         
      }
      else
      {
        /* Reset ADC all error code fields */
        ADC_CLEAR_ERRORCODE(hadc);
      }
      
      /* Process unlocked */
      /* Unlock before starting ADC conversions: in case of potential         */
      /* interruption, to let the process to ADC IRQ Handler.                 */
      __HAL_UNLOCK(hadc);
      
      /* Set the DMA transfer complete callback */
      hadc->DMA_Handle->XferCpltCallback = ADC_DMAConvCplt;

      /* Set the DMA half transfer complete callback */
      hadc->DMA_Handle->XferHalfCpltCallback = ADC_DMAHalfConvCplt;
      
      /* Set the DMA error callback */
      hadc->DMA_Handle->XferErrorCallback = ADC_DMAError;

      
      /* Manage ADC and DMA start: ADC overrun interruption, DMA start, ADC   */
      /* start (in case of SW start):                                         */
      
      /* Clear regular group conversion flag and overrun flag */
      /* (To ensure of no unknown state from potential previous ADC           */
      /* operations)                                                          */
      __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_EOC);
      
      /* Enable ADC DMA mode */
      SET_BIT(hadc->Instance->CR2, ADC_CR2_DMA);
      
      /* Start the DMA channel */
      HAL_DMA_Start_IT(hadc->DMA_Handle, (uint32_t)&hadc->Instance->DR, (uint32_t)pData, Length);
      
      /* Enable conversion of regular group.                                  */
      /* If software start has been selected, conversion starts immediately.  */
      /* If external trigger has been selected, conversion will start at next */
      /* trigger event.                                                       */
      if (ADC_IS_SOFTWARE_START_REGULAR(hadc))
      {
        /* Start ADC conversion on regular group with SW start */
        SET_BIT(hadc->Instance->CR2, (ADC_CR2_SWSTART | ADC_CR2_EXTTRIG));
      }
      else
      {
        /* Start ADC conversion on regular group with external trigger */
        SET_BIT(hadc->Instance->CR2, ADC_CR2_EXTTRIG);
      }
    }
    else
    {
      /* Process unlocked */
      __HAL_UNLOCK(hadc);
    }
  }
  else
  {
    tmp_hal_status = HAL_ERROR;
  }
  
  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Stop ADC conversion of regular group (and injected group in 
  *         case of auto_injection mode), disable ADC DMA transfer, disable 
  *         ADC peripheral.
  * @note:  ADC peripheral disable is forcing stop of potential 
  *         conversion on injected group. If injected group is under use, it
  *         should be preliminarily stopped using HAL_ADCEx_InjectedStop function.
  * @note   For devices with several ADCs: This function is for single-ADC mode 
  *         only. For multimode, use the dedicated MultimodeStop function.
  * @note   On STM32F1 devices, only ADC1 and ADC3 (ADC availability depending
  *         on devices) have DMA capability.
  * @param  hadc: ADC handle
  * @retval HAL status.
  */
HAL_StatusTypeDef HAL_ADC_Stop_DMA(ADC_HandleTypeDef* hadc)
{
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  
  /* Check the parameters */
  assert_param(IS_ADC_DMA_CAPABILITY_INSTANCE(hadc->Instance));
     
  /* Process locked */
  __HAL_LOCK(hadc);
  
  /* Stop potential conversion on going, on regular and injected groups */
  /* Disable ADC peripheral */
  tmp_hal_status = ADC_ConversionStop_Disable(hadc);
  
  /* Check if ADC is effectively disabled */
  if (tmp_hal_status == HAL_OK)
  {
    /* Disable ADC DMA mode */
    CLEAR_BIT(hadc->Instance->CR2, ADC_CR2_DMA);
    
    /* Disable the DMA channel (in case of DMA in circular mode or stop while */
    /* DMA transfer is on going)                                              */
    tmp_hal_status = HAL_DMA_Abort(hadc->DMA_Handle);
    
    /* Check if DMA channel effectively disabled */
    if (tmp_hal_status == HAL_OK)
    {
      /* Set ADC state */
      ADC_STATE_CLR_SET(hadc->State,
                        HAL_ADC_STATE_REG_BUSY | HAL_ADC_STATE_INJ_BUSY,
                        HAL_ADC_STATE_READY);
    }
    else
    {
      /* Update ADC state machine to error */
      SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
    }
  }
    
  /* Process unlocked */
  __HAL_UNLOCK(hadc);
    
  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Get ADC regular group conversion result.
  * @note   Reading register DR automatically clears ADC flag EOC
  *         (ADC group regular end of unitary conversion).
  * @note   This function does not clear ADC flag EOS 
  *         (ADC group regular end of sequence conversion).
  *         Occurrence of flag EOS rising:
  *          - If sequencer is composed of 1 rank, flag EOS is equivalent
  *            to flag EOC.
  *          - If sequencer is composed of several ranks, during the scan
  *            sequence flag EOC only is raised, at the end of the scan sequence
  *            both flags EOC and EOS are raised.
  *         To clear this flag, either use function: 
  *         in programming model IT: @ref HAL_ADC_IRQHandler(), in programming
  *         model polling: @ref HAL_ADC_PollForConversion() 
  *         or @ref __HAL_ADC_CLEAR_FLAG(&hadc, ADC_FLAG_EOS).
  * @param  hadc: ADC handle
  * @retval ADC group regular conversion data
  */
uint32_t HAL_ADC_GetValue(ADC_HandleTypeDef* hadc)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));

  /* Note: EOC flag is not cleared here by software because automatically     */
  /*       cleared by hardware when reading register DR.                      */
  
  /* Return ADC converted value */ 
  return hadc->Instance->DR;
}

/**
  * @brief  Handles ADC interrupt request  
  * @param  hadc: ADC handle
  * @retval None
  */
void HAL_ADC_IRQHandler(ADC_HandleTypeDef* hadc)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  assert_param(IS_FUNCTIONAL_STATE(hadc->Init.ContinuousConvMode));
  assert_param(IS_ADC_REGULAR_NB_CONV(hadc->Init.NbrOfConversion));
  
  
  /* ========== Check End of Conversion flag for regular group ========== */
  if(__HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_EOC))
  {
    if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_EOC) )
    {
      /* Update state machine on conversion status if not in error state */
      if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
      {
        /* Set ADC state */
        SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC); 
      }
      
      /* Determine whether any further conversion upcoming on group regular   */
      /* by external trigger, continuous mode or scan sequence on going.      */
      /* Note: On STM32F1 devices, in case of sequencer enabled               */
      /*       (several ranks selected), end of conversion flag is raised     */
      /*       at the end of the sequence.                                    */
      if(ADC_IS_SOFTWARE_START_REGULAR(hadc)        && 
         (hadc->Init.ContinuousConvMode == DISABLE)   )
      {
        /* Disable ADC end of conversion interrupt on group regular */
        __HAL_ADC_DISABLE_IT(hadc, ADC_IT_EOC);
        
        /* Set ADC state */
        CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);   
        
        if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
        {
          SET_BIT(hadc->State, HAL_ADC_STATE_READY);
        }
      }

      /* Conversion complete callback */
      HAL_ADC_ConvCpltCallback(hadc);
      
      /* Clear regular group conversion flag */
      __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_STRT | ADC_FLAG_EOC);
    }
  }
  
  /* ========== Check End of Conversion flag for injected group ========== */
  if(__HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_JEOC))
  {
    if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_JEOC))
    {
      /* Update state machine on conversion status if not in error state */
      if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL))
      {
        /* Set ADC state */
        SET_BIT(hadc->State, HAL_ADC_STATE_INJ_EOC);
      }

      /* Determine whether any further conversion upcoming on group injected  */
      /* by external trigger, scan sequence on going or by automatic injected */
      /* conversion from group regular (same conditions as group regular      */
      /* interruption disabling above).                                       */
      /* Note: On STM32F1 devices, in case of sequencer enabled               */
      /*       (several ranks selected), end of conversion flag is raised     */
      /*       at the end of the sequence.                                    */
      if(ADC_IS_SOFTWARE_START_INJECTED(hadc)                     || 
         (HAL_IS_BIT_CLR(hadc->Instance->CR1, ADC_CR1_JAUTO) &&     
         (ADC_IS_SOFTWARE_START_REGULAR(hadc)        &&
          (hadc->Init.ContinuousConvMode == DISABLE)   )        )   )
      {
        /* Disable ADC end of conversion interrupt on group injected */
        __HAL_ADC_DISABLE_IT(hadc, ADC_IT_JEOC);
        
        /* Set ADC state */
        CLEAR_BIT(hadc->State, HAL_ADC_STATE_INJ_BUSY);   

        if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_REG_BUSY))
        { 
          SET_BIT(hadc->State, HAL_ADC_STATE_READY);
        }
      }

      /* Conversion complete callback */ 
      HAL_ADCEx_InjectedConvCpltCallback(hadc);
      
      /* Clear injected group conversion flag */
      __HAL_ADC_CLEAR_FLAG(hadc, (ADC_FLAG_JSTRT | ADC_FLAG_JEOC));
    }
  }
   
  /* ========== Check Analog watchdog flags ========== */
  if(__HAL_ADC_GET_IT_SOURCE(hadc, ADC_IT_AWD))
  {
    if(__HAL_ADC_GET_FLAG(hadc, ADC_FLAG_AWD))
    {
      /* Set ADC state */
      SET_BIT(hadc->State, HAL_ADC_STATE_AWD1);
      
      /* Level out of window callback */ 
      HAL_ADC_LevelOutOfWindowCallback(hadc);
      
      /* Clear the ADC analog watchdog flag */
      __HAL_ADC_CLEAR_FLAG(hadc, ADC_FLAG_AWD);
    }
  }
  
}

/**
  * @brief  Conversion complete callback in non blocking mode 
  * @param  hadc: ADC handle
  * @retval None
  */
__weak void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);
  /* NOTE : This function should not be modified. When the callback is needed,
            function HAL_ADC_ConvCpltCallback must be implemented in the user file.
   */
}

/**
  * @brief  Conversion DMA half-transfer callback in non blocking mode 
  * @param  hadc: ADC handle
  * @retval None
  */
__weak void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef* hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);
  /* NOTE : This function should not be modified. When the callback is needed,
            function HAL_ADC_ConvHalfCpltCallback must be implemented in the user file.
  */
}

/**
  * @brief  Analog watchdog callback in non blocking mode. 
  * @param  hadc: ADC handle
  * @retval None
  */
__weak void HAL_ADC_LevelOutOfWindowCallback(ADC_HandleTypeDef* hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);
  /* NOTE : This function should not be modified. When the callback is needed,
            function HAL_ADC_LevelOutOfWindowCallback must be implemented in the user file.
  */
}

/**
  * @brief  ADC error callback in non blocking mode
  *        (ADC conversion with interruption or transfer by DMA)
  * @param  hadc: ADC handle
  * @retval None
  */
__weak void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hadc);
  /* NOTE : This function should not be modified. When the callback is needed,
            function HAL_ADC_ErrorCallback must be implemented in the user file.
  */
}


/**
  * @}
  */

/** @defgroup ADC_Exported_Functions_Group3 Peripheral Control functions
 *  @brief    Peripheral Control functions
 *
@verbatim   
 ===============================================================================
             ##### Peripheral Control functions #####
 ===============================================================================  
    [..]  This section provides functions allowing to:
      (+) Configure channels on regular group
      (+) Configure the analog watchdog
      
@endverbatim
  * @{
  */

/**
  * @brief  Configures the the selected channel to be linked to the regular
  *         group.
  * @note   In case of usage of internal measurement channels:
  *         Vbat/VrefInt/TempSensor.
  *         These internal paths can be be disabled using function 
  *         HAL_ADC_DeInit().
  * @note   Possibility to update parameters on the fly:
  *         This function initializes channel into regular group, following  
  *         calls to this function can be used to reconfigure some parameters 
  *         of structure "ADC_ChannelConfTypeDef" on the fly, without reseting 
  *         the ADC.
  *         The setting of these parameters is conditioned to ADC state.
  *         For parameters constraints, see comments of structure 
  *         "ADC_ChannelConfTypeDef".
  * @param  hadc: ADC handle
  * @param  sConfig: Structure of ADC channel for regular group.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_ConfigChannel(ADC_HandleTypeDef* hadc, ADC_ChannelConfTypeDef* sConfig)
{ 
  HAL_StatusTypeDef tmp_hal_status = HAL_OK;
  __IO uint32_t wait_loop_index = 0U;
  
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  assert_param(IS_ADC_CHANNEL(sConfig->Channel));
  assert_param(IS_ADC_REGULAR_RANK(sConfig->Rank));
  assert_param(IS_ADC_SAMPLE_TIME(sConfig->SamplingTime));
  
  /* Process locked */
  __HAL_LOCK(hadc);
  
  
  /* Regular sequence configuration */
  /* For Rank 1 to 6 */
  if (sConfig->Rank < 7U)
  {
    MODIFY_REG(hadc->Instance->SQR3                        ,
               ADC_SQR3_RK(ADC_SQR3_SQ1, sConfig->Rank)    ,
               ADC_SQR3_RK(sConfig->Channel, sConfig->Rank) );
  }
  /* For Rank 7 to 12 */
  else if (sConfig->Rank < 13U)
  {
    MODIFY_REG(hadc->Instance->SQR2                        ,
               ADC_SQR2_RK(ADC_SQR2_SQ7, sConfig->Rank)    ,
               ADC_SQR2_RK(sConfig->Channel, sConfig->Rank) );
  }
  /* For Rank 13 to 16 */
  else
  {
    MODIFY_REG(hadc->Instance->SQR1                        ,
               ADC_SQR1_RK(ADC_SQR1_SQ13, sConfig->Rank)   ,
               ADC_SQR1_RK(sConfig->Channel, sConfig->Rank) );
  }
  
  
  /* Channel sampling time configuration */
  /* For channels 10 to 17 */
  if (sConfig->Channel >= ADC_CHANNEL_10)
  {
    MODIFY_REG(hadc->Instance->SMPR1                             ,
               ADC_SMPR1(ADC_SMPR1_SMP10, sConfig->Channel)      ,
               ADC_SMPR1(sConfig->SamplingTime, sConfig->Channel) );
  }
  else /* For channels 0 to 9 */
  {
    MODIFY_REG(hadc->Instance->SMPR2                             ,
               ADC_SMPR2(ADC_SMPR2_SMP0, sConfig->Channel)       ,
               ADC_SMPR2(sConfig->SamplingTime, sConfig->Channel) );
  }
  
  /* If ADC1 Channel_16 or Channel_17 is selected, enable Temperature sensor  */
  /* and VREFINT measurement path.                                            */
  if ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR) ||
      (sConfig->Channel == ADC_CHANNEL_VREFINT)      )
  {
    /* For STM32F1 devices with several ADC: Only ADC1 can access internal    */
    /* measurement channels (VrefInt/TempSensor). If these channels are       */
    /* intended to be set on other ADC instances, an error is reported.       */
    if (hadc->Instance == ADC1)
    {
      if (READ_BIT(hadc->Instance->CR2, ADC_CR2_TSVREFE) == RESET)
      {
        SET_BIT(hadc->Instance->CR2, ADC_CR2_TSVREFE);
        
        if ((sConfig->Channel == ADC_CHANNEL_TEMPSENSOR))
        {
          /* Delay for temperature sensor stabilization time */
          /* Compute number of CPU cycles to wait for */
          wait_loop_index = (ADC_TEMPSENSOR_DELAY_US * (SystemCoreClock / 1000000U));
          while(wait_loop_index != 0U)
          {
            wait_loop_index--;
          }
        }
      }
    }
    else
    {
      /* Update ADC state machine to error */
      SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_CONFIG);
      
      tmp_hal_status = HAL_ERROR;
    }
  }
  
  /* Process unlocked */
  __HAL_UNLOCK(hadc);
  
  /* Return function status */
  return tmp_hal_status;
}

/**
  * @brief  Configures the analog watchdog.
  * @note   Analog watchdog thresholds can be modified while ADC conversion
  *         is on going.
  *         In this case, some constraints must be taken into account:
  *         the programmed threshold values are effective from the next
  *         ADC EOC (end of unitary conversion).
  *         Considering that registers write delay may happen due to
  *         bus activity, this might cause an uncertainty on the
  *         effective timing of the new programmed threshold values.
  * @param  hadc: ADC handle
  * @param  AnalogWDGConfig: Structure of ADC analog watchdog configuration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_ADC_AnalogWDGConfig(ADC_HandleTypeDef* hadc, ADC_AnalogWDGConfTypeDef* AnalogWDGConfig)
{
  /* Check the parameters */
  assert_param(IS_ADC_ALL_INSTANCE(hadc->Instance));
  assert_param(IS_ADC_ANALOG_WATCHDOG_MODE(AnalogWDGConfig->WatchdogMode));
  assert_param(IS_FUNCTIONAL_STATE(AnalogWDGConfig->ITMode));
  assert_param(IS_ADC_RANGE(AnalogWDGConfig->HighThreshold));
  assert_param(IS_ADC_RANGE(AnalogWDGConfig->LowThreshold));
  
  if((AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REG)     ||
     (AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_INJEC)   ||
     (AnalogWDGConfig->WatchdogMode == ADC_ANALOGWATCHDOG_SINGLE_REGINJEC)  )
  {
    assert_param(IS_ADC_CHANNEL(AnalogWDGConfig->Channel));
  }
  
  /* Process locked */
  __HAL_LOCK(hadc);
  
  /* Analog watchdog configuration */

  /* Configure ADC Analog watchdog interrupt */
  if(AnalogWDGConfig->ITMode == ENABLE)
  {
    /* Enable the ADC Analog watchdog interrupt */
    __HAL_ADC_ENABLE_IT(hadc, ADC_IT_AWD);
  }
  else
  {
    /* Disable the ADC Analog watchdog interrupt */
    __HAL_ADC_DISABLE_IT(hadc, ADC_IT_AWD);
  }
  
  /* Configuration of analog watchdog:                                        */
  /*  - Set the analog watchdog enable mode: regular and/or injected groups,  */
  /*    one or all channels.                                                  */
  /*  - Set the Analog watchdog channel (is not used if watchdog              */
  /*    mode "all channels": ADC_CFGR_AWD1SGL=0).                             */
  MODIFY_REG(hadc->Instance->CR1            ,
             ADC_CR1_AWDSGL |
             ADC_CR1_JAWDEN |
             ADC_CR1_AWDEN  |
             ADC_CR1_AWDCH                  ,
             AnalogWDGConfig->WatchdogMode |
             AnalogWDGConfig->Channel        );
  
  /* Set the high threshold */
  WRITE_REG(hadc->Instance->HTR, AnalogWDGConfig->HighThreshold);
  
  /* Set the low threshold */
  WRITE_REG(hadc->Instance->LTR, AnalogWDGConfig->LowThreshold);

  /* Process unlocked */
  __HAL_UNLOCK(hadc);
  
  /* Return function status */
  return HAL_OK;
}


/**
  * @}
  */


/** @defgroup ADC_Exported_Functions_Group4 Peripheral State functions
 *  @brief    Peripheral State functions
 *
@verbatim
 ===============================================================================
            ##### Peripheral State and Errors functions #####
 ===============================================================================  
    [..]
    This subsection provides functions to get in run-time the status of the  
    peripheral.
      (+) Check the ADC state
      (+) Check the ADC error code

@endverbatim
  * @{
  */

/**
  * @brief  return the ADC state
  * @param  hadc: ADC handle
  * @retval HAL state
  */
uint32_t HAL_ADC_GetState(ADC_HandleTypeDef* hadc)
{
  /* Return ADC state */
  return hadc->State;
}

/**
  * @brief  Return the ADC error code
  * @param  hadc: ADC handle
  * @retval ADC Error Code
  */
uint32_t HAL_ADC_GetError(ADC_HandleTypeDef *hadc)
{
  return hadc->ErrorCode;
}

/**
  * @}
  */

/**
  * @}
  */

/** @defgroup ADC_Private_Functions ADC Private Functions
  * @{
  */

/**
  * @brief  Enable the selected ADC.
  * @note   Prerequisite condition to use this function: ADC must be disabled
  *         and voltage regulator must be enabled (done into HAL_ADC_Init()).
  * @param  hadc: ADC handle
  * @retval HAL status.
  */
HAL_StatusTypeDef ADC_Enable(ADC_HandleTypeDef* hadc)
{
  uint32_t tickstart = 0U;
  __IO uint32_t wait_loop_index = 0U;
  
  /* ADC enable and wait for ADC ready (in case of ADC is disabled or         */
  /* enabling phase not yet completed: flag ADC ready not yet set).           */
  /* Timeout implemented to not be stuck if ADC cannot be enabled (possible   */
  /* causes: ADC clock not running, ...).                                     */
  if (ADC_IS_ENABLE(hadc) == RESET)
  {
    /* Enable the Peripheral */
    __HAL_ADC_ENABLE(hadc);
    
    /* Delay for ADC stabilization time */
    /* Compute number of CPU cycles to wait for */
    wait_loop_index = (ADC_STAB_DELAY_US * (SystemCoreClock / 1000000U));
    while(wait_loop_index != 0U)
    {
      wait_loop_index--;
    }
    
    /* Get tick count */
    tickstart = HAL_GetTick();

    /* Wait for ADC effectively enabled */
    while(ADC_IS_ENABLE(hadc) == RESET)
    {
      if((HAL_GetTick() - tickstart) > ADC_ENABLE_TIMEOUT)
      {
        /* Update ADC state machine to error */
        SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
      
        /* Set ADC error code to ADC IP internal error */
        SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
        
        /* Process unlocked */
        __HAL_UNLOCK(hadc);
      
        return HAL_ERROR;
      }
    }
  }
   
  /* Return HAL status */
  return HAL_OK;
}

/**
  * @brief  Stop ADC conversion and disable the selected ADC
  * @note   Prerequisite condition to use this function: ADC conversions must be
  *         stopped to disable the ADC.
  * @param  hadc: ADC handle
  * @retval HAL status.
  */
HAL_StatusTypeDef ADC_ConversionStop_Disable(ADC_HandleTypeDef* hadc)
{
  uint32_t tickstart = 0U;
  
  /* Verification if ADC is not already disabled */
  if (ADC_IS_ENABLE(hadc) != RESET)
  {
    /* Disable the ADC peripheral */
    __HAL_ADC_DISABLE(hadc);
     
    /* Get tick count */
    tickstart = HAL_GetTick();
    
    /* Wait for ADC effectively disabled */
    while(ADC_IS_ENABLE(hadc) != RESET)
    {
      if((HAL_GetTick() - tickstart) > ADC_DISABLE_TIMEOUT)
      {
        /* Update ADC state machine to error */
        SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL);
        
        /* Set ADC error code to ADC IP internal error */
        SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_INTERNAL);
        
        return HAL_ERROR;
      }
    }
  }
  
  /* Return HAL status */
  return HAL_OK;
}

/**
  * @brief  DMA transfer complete callback. 
  * @param  hdma: pointer to DMA handle.
  * @retval None
  */
void ADC_DMAConvCplt(DMA_HandleTypeDef *hdma)
{
  /* Retrieve ADC handle corresponding to current DMA handle */
  ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
 
  /* Update state machine on conversion status if not in error state */
  if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_ERROR_INTERNAL | HAL_ADC_STATE_ERROR_DMA))
  {
    /* Update ADC state machine */
    SET_BIT(hadc->State, HAL_ADC_STATE_REG_EOC);
    
    /* Determine whether any further conversion upcoming on group regular     */
    /* by external trigger, continuous mode or scan sequence on going.        */
    /* Note: On STM32F1 devices, in case of sequencer enabled                 */
    /*       (several ranks selected), end of conversion flag is raised       */
    /*       at the end of the sequence.                                      */
    if(ADC_IS_SOFTWARE_START_REGULAR(hadc)        && 
       (hadc->Init.ContinuousConvMode == DISABLE)   )
    {
      /* Set ADC state */
      CLEAR_BIT(hadc->State, HAL_ADC_STATE_REG_BUSY);   
      
      if (HAL_IS_BIT_CLR(hadc->State, HAL_ADC_STATE_INJ_BUSY))
      {
        SET_BIT(hadc->State, HAL_ADC_STATE_READY);
      }
    }
    
    /* Conversion complete callback */
    HAL_ADC_ConvCpltCallback(hadc); 
  }
  else
  {
    /* Call DMA error callback */
    hadc->DMA_Handle->XferErrorCallback(hdma);
  }
}

/**
  * @brief  DMA half transfer complete callback. 
  * @param  hdma: pointer to DMA handle.
  * @retval None
  */
void ADC_DMAHalfConvCplt(DMA_HandleTypeDef *hdma)   
{
  /* Retrieve ADC handle corresponding to current DMA handle */
  ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  
  /* Half conversion callback */
  HAL_ADC_ConvHalfCpltCallback(hadc); 
}

/**
  * @brief  DMA error callback 
  * @param  hdma: pointer to DMA handle.
  * @retval None
  */
void ADC_DMAError(DMA_HandleTypeDef *hdma)   
{
  /* Retrieve ADC handle corresponding to current DMA handle */
  ADC_HandleTypeDef* hadc = ( ADC_HandleTypeDef* )((DMA_HandleTypeDef* )hdma)->Parent;
  
  /* Set ADC state */
  SET_BIT(hadc->State, HAL_ADC_STATE_ERROR_DMA);
  
  /* Set ADC error code to DMA error */
  SET_BIT(hadc->ErrorCode, HAL_ADC_ERROR_DMA);
  
  /* Error callback */
  HAL_ADC_ErrorCallback(hadc); 
}

/**
  * @}
  */

#endif /* HAL_ADC_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/