arm_rfft_q15.c 13.9 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439
/* ----------------------------------------------------------------------    
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
*    
* $Date:        19. March 2015 
* $Revision: 	V.1.4.5  
*    
* Project: 	    CMSIS DSP Library    
* Title:	    arm_rfft_q15.c    
*    
* Description:	RFFT & RIFFT Q15 process function    
*    
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.     
* -------------------------------------------------------------------- */

#include "arm_math.h"

/*--------------------------------------------------------------------    
*		Internal functions prototypes    
--------------------------------------------------------------------*/

void arm_split_rfft_q15(
    q15_t * pSrc,
    uint32_t fftLen,
    q15_t * pATable,
    q15_t * pBTable,
    q15_t * pDst,
    uint32_t modifier);

void arm_split_rifft_q15(
    q15_t * pSrc,
    uint32_t fftLen,
    q15_t * pATable,
    q15_t * pBTable,
    q15_t * pDst,
    uint32_t modifier);

/**    
* @addtogroup RealFFT    
* @{    
*/

/**    
* @brief Processing function for the Q15 RFFT/RIFFT.   
* @param[in]  *S    points to an instance of the Q15 RFFT/RIFFT structure.   
* @param[in]  *pSrc points to the input buffer.   
* @param[out] *pDst points to the output buffer.   
* @return none.   
*    
* \par Input an output formats:   
* \par    
* Internally input is downscaled by 2 for every stage to avoid saturations inside CFFT/CIFFT process.    
* Hence the output format is different for different RFFT sizes.    
* The input and output formats for different RFFT sizes and number of bits to upscale are mentioned in the tables below for RFFT and RIFFT:   
* \par    
* \image html RFFTQ15.gif "Input and Output Formats for Q15 RFFT"    
* \par    
* \image html RIFFTQ15.gif "Input and Output Formats for Q15 RIFFT"    
*/

void arm_rfft_q15(
    const arm_rfft_instance_q15 * S,
    q15_t * pSrc,
    q15_t * pDst)
{
    const arm_cfft_instance_q15 *S_CFFT = S->pCfft;
    uint32_t i;
    uint32_t L2 = S->fftLenReal >> 1;

    /* Calculation of RIFFT of input */
    if(S->ifftFlagR == 1u)
    {
        /*  Real IFFT core process */
        arm_split_rifft_q15(pSrc, L2, S->pTwiddleAReal,
                            S->pTwiddleBReal, pDst, S->twidCoefRModifier);
        
        /* Complex IFFT process */
        arm_cfft_q15(S_CFFT, pDst, S->ifftFlagR, S->bitReverseFlagR);
        
        for(i=0;i<S->fftLenReal;i++)
        {
            pDst[i] = pDst[i] << 1;
        }
    }
    else
    {
        /* Calculation of RFFT of input */
        
        /* Complex FFT process */
        arm_cfft_q15(S_CFFT, pSrc, S->ifftFlagR, S->bitReverseFlagR);

        /*  Real FFT core process */
        arm_split_rfft_q15(pSrc, L2, S->pTwiddleAReal,
                            S->pTwiddleBReal, pDst, S->twidCoefRModifier);
    }
}

/**    
* @} end of RealFFT group    
*/

/**    
* @brief  Core Real FFT process    
* @param  *pSrc 				points to the input buffer.   
* @param  fftLen  				length of FFT.   
* @param  *pATable 			points to the A twiddle Coef buffer.    
* @param  *pBTable 			points to the B twiddle Coef buffer.   
* @param  *pDst 				points to the output buffer.   
* @param  modifier 	        twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.   
* @return none.    
* The function implements a Real FFT    
*/

void arm_split_rfft_q15(
    q15_t * pSrc,
    uint32_t fftLen,
    q15_t * pATable,
    q15_t * pBTable,
    q15_t * pDst,
    uint32_t modifier)
{
    uint32_t i;                                    /* Loop Counter */
    q31_t outR, outI;                              /* Temporary variables for output */
    q15_t *pCoefA, *pCoefB;                        /* Temporary pointers for twiddle factors */
    q15_t *pSrc1, *pSrc2;
#ifndef ARM_MATH_CM0_FAMILY
    q15_t *pD1, *pD2;
#endif

    //  pSrc[2u * fftLen] = pSrc[0]; 
    //  pSrc[(2u * fftLen) + 1u] = pSrc[1]; 

    pCoefA = &pATable[modifier * 2u];
    pCoefB = &pBTable[modifier * 2u];

    pSrc1 = &pSrc[2];
    pSrc2 = &pSrc[(2u * fftLen) - 2u];

#ifndef ARM_MATH_CM0_FAMILY

    /* Run the below code for Cortex-M4 and Cortex-M3 */
    i = 1u;
    pD1 = pDst + 2;
    pD2 = pDst + (4u * fftLen) - 2;

    for(i = fftLen - 1; i > 0; i--)
    {
        /*    
        outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]    
        + pSrc[2 * n - 2 * i] * pBTable[2 * i] +    
        pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);    
        */

        /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +    
        pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -    
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i]); */


#ifndef ARM_MATH_BIG_ENDIAN

        /* pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1] */
        outR = __SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA));

#else

        /* -(pSrc[2 * i + 1] * pATable[2 * i + 1] - pSrc[2 * i] * pATable[2 * i]) */
        outR = -(__SMUSD(*__SIMD32(pSrc1), *__SIMD32(pCoefA)));

#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */

        /* pSrc[2 * n - 2 * i] * pBTable[2 * i] +    
        pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
        outR = __SMLAD(*__SIMD32(pSrc2), *__SIMD32(pCoefB), outR) >> 16u;

        /* pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -    
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */

#ifndef ARM_MATH_BIG_ENDIAN

        outI = __SMUSDX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));

#else

        outI = __SMUSDX(*__SIMD32(pCoefB), *__SIMD32(pSrc2)--);

#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */

        /* (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] */
        outI = __SMLADX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), outI);

        /* write output */
        *pD1++ = (q15_t) outR;
        *pD1++ = outI >> 16u;

        /* write complex conjugate output */
        pD2[0] = (q15_t) outR;
        pD2[1] = -(outI >> 16u);
        pD2 -= 2;

        /* update coefficient pointer */
        pCoefB = pCoefB + (2u * modifier);
        pCoefA = pCoefA + (2u * modifier);
    }

    pDst[2u * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
    pDst[(2u * fftLen) + 1u] = 0;

    pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
    pDst[1] = 0;

#else

    /* Run the below code for Cortex-M0 */
    i = 1u;

    while(i < fftLen)
    {
        /*    
        outR = (pSrc[2 * i] * pATable[2 * i] - pSrc[2 * i + 1] * pATable[2 * i + 1]    
        + pSrc[2 * n - 2 * i] * pBTable[2 * i] +    
        pSrc[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);    
        */

        outR = *pSrc1 * *pCoefA;
        outR = outR - (*(pSrc1 + 1) * *(pCoefA + 1));
        outR = outR + (*pSrc2 * *pCoefB);
        outR = (outR + (*(pSrc2 + 1) * *(pCoefB + 1))) >> 16;


        /* outI = (pIn[2 * i + 1] * pATable[2 * i] + pIn[2 * i] * pATable[2 * i + 1] +    
        pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -    
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);   
        */

        outI = *pSrc2 * *(pCoefB + 1);
        outI = outI - (*(pSrc2 + 1) * *pCoefB);
        outI = outI + (*(pSrc1 + 1) * *pCoefA);
        outI = outI + (*pSrc1 * *(pCoefA + 1));

        /* update input pointers */
        pSrc1 += 2u;
        pSrc2 -= 2u;

        /* write output */
        pDst[2u * i] = (q15_t) outR;
        pDst[(2u * i) + 1u] = outI >> 16u;

        /* write complex conjugate output */
        pDst[(4u * fftLen) - (2u * i)] = (q15_t) outR;
        pDst[((4u * fftLen) - (2u * i)) + 1u] = -(outI >> 16u);

        /* update coefficient pointer */
        pCoefB = pCoefB + (2u * modifier);
        pCoefA = pCoefA + (2u * modifier);

        i++;
    }

    pDst[2u * fftLen] = (pSrc[0] - pSrc[1]) >> 1;
    pDst[(2u * fftLen) + 1u] = 0;

    pDst[0] = (pSrc[0] + pSrc[1]) >> 1;
    pDst[1] = 0;

#endif /* #ifndef ARM_MATH_CM0_FAMILY */
}


/**    
* @brief  Core Real IFFT process    
* @param[in]   *pSrc 				points to the input buffer.    
* @param[in]   fftLen  		    length of FFT.   
* @param[in]   *pATable 			points to the twiddle Coef A buffer.   
* @param[in]   *pBTable 			points to the twiddle Coef B buffer.    
* @param[out]  *pDst 				points to the output buffer.   
* @param[in]   modifier 	        twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.   
* @return none.    
* The function implements a Real IFFT    
*/
void arm_split_rifft_q15(
    q15_t * pSrc,
    uint32_t fftLen,
    q15_t * pATable,
    q15_t * pBTable,
    q15_t * pDst,
    uint32_t modifier)
{
    uint32_t i;                                    /* Loop Counter */
    q31_t outR, outI;                              /* Temporary variables for output */
    q15_t *pCoefA, *pCoefB;                        /* Temporary pointers for twiddle factors */
    q15_t *pSrc1, *pSrc2;
    q15_t *pDst1 = &pDst[0];

    pCoefA = &pATable[0];
    pCoefB = &pBTable[0];

    pSrc1 = &pSrc[0];
    pSrc2 = &pSrc[2u * fftLen];

#ifndef ARM_MATH_CM0_FAMILY

    /* Run the below code for Cortex-M4 and Cortex-M3 */
    i = fftLen;

    while(i > 0u)
    {
        /*    
        outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +    
        pIn[2 * n - 2 * i] * pBTable[2 * i] -    
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);    

        outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -    
        pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -    
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);    
        */


#ifndef ARM_MATH_BIG_ENDIAN

        /* pIn[2 * n - 2 * i] * pBTable[2 * i] -    
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]) */
        outR = __SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB));

#else

        /* -(-pIn[2 * n - 2 * i] * pBTable[2 * i] +  
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1])) */
        outR = -(__SMUSD(*__SIMD32(pSrc2), *__SIMD32(pCoefB)));

#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */

        /* pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +    
        pIn[2 * n - 2 * i] * pBTable[2 * i] */
        outR = __SMLAD(*__SIMD32(pSrc1), *__SIMD32(pCoefA), outR) >> 16u;

        /*    
        -pIn[2 * n - 2 * i] * pBTable[2 * i + 1] +    
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i] */
        outI = __SMUADX(*__SIMD32(pSrc2)--, *__SIMD32(pCoefB));

        /* pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] */

#ifndef ARM_MATH_BIG_ENDIAN

        outI = __SMLSDX(*__SIMD32(pCoefA), *__SIMD32(pSrc1)++, -outI);

#else

        outI = __SMLSDX(*__SIMD32(pSrc1)++, *__SIMD32(pCoefA), -outI);

#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */
        /* write output */

#ifndef ARM_MATH_BIG_ENDIAN

        *__SIMD32(pDst1)++ = __PKHBT(outR, (outI >> 16u), 16);

#else

        *__SIMD32(pDst1)++ = __PKHBT((outI >> 16u), outR, 16);

#endif /*      #ifndef ARM_MATH_BIG_ENDIAN     */

        /* update coefficient pointer */
        pCoefB = pCoefB + (2u * modifier);
        pCoefA = pCoefA + (2u * modifier);

        i--;
    }
#else
    /* Run the below code for Cortex-M0 */
    i = fftLen;

    while(i > 0u)
    {
        /*    
        outR = (pIn[2 * i] * pATable[2 * i] + pIn[2 * i + 1] * pATable[2 * i + 1] +    
        pIn[2 * n - 2 * i] * pBTable[2 * i] -    
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i + 1]);    
        */

        outR = *pSrc2 * *pCoefB;
        outR = outR - (*(pSrc2 + 1) * *(pCoefB + 1));
        outR = outR + (*pSrc1 * *pCoefA);
        outR = (outR + (*(pSrc1 + 1) * *(pCoefA + 1))) >> 16;

        /*   
        outI = (pIn[2 * i + 1] * pATable[2 * i] - pIn[2 * i] * pATable[2 * i + 1] -   
        pIn[2 * n - 2 * i] * pBTable[2 * i + 1] -   
        pIn[2 * n - 2 * i + 1] * pBTable[2 * i]);   
        */

        outI = *(pSrc1 + 1) * *pCoefA;
        outI = outI - (*pSrc1 * *(pCoefA + 1));
        outI = outI - (*pSrc2 * *(pCoefB + 1));
        outI = outI - (*(pSrc2 + 1) * *(pCoefB));

        /* update input pointers */
        pSrc1 += 2u;
        pSrc2 -= 2u;

        /* write output */
        *pDst1++ = (q15_t) outR;
        *pDst1++ = (q15_t) (outI >> 16);

        /* update coefficient pointer */
        pCoefB = pCoefB + (2u * modifier);
        pCoefA = pCoefA + (2u * modifier);

        i--;
    }
#endif /* #ifndef ARM_MATH_CM0_FAMILY */
}