arm_cfft_radix2_q31.c 9.59 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
/* ----------------------------------------------------------------------   
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.   
*   
* $Date:        19. March 2015 
* $Revision: 	V.1.4.5  
*   
* Project: 	    CMSIS DSP Library   
* Title:	    arm_cfft_radix2_q31.c   
*   
* Description:	Radix-2 Decimation in Frequency CFFT & CIFFT Fixed point processing function   
*   
*   
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.    
* -------------------------------------------------------------------- */

#include "arm_math.h"

void arm_radix2_butterfly_q31(
  q31_t * pSrc,
  uint32_t fftLen,
  q31_t * pCoef,
  uint16_t twidCoefModifier);

void arm_radix2_butterfly_inverse_q31(
  q31_t * pSrc,
  uint32_t fftLen,
  q31_t * pCoef,
  uint16_t twidCoefModifier);

void arm_bitreversal_q31(
  q31_t * pSrc,
  uint32_t fftLen,
  uint16_t bitRevFactor,
  uint16_t * pBitRevTab);

/**   
* @ingroup groupTransforms   
*/

/**   
* @addtogroup ComplexFFT   
* @{   
*/

/**   
* @details   
* @brief Processing function for the fixed-point CFFT/CIFFT.  
* @deprecated Do not use this function.  It has been superseded by \ref arm_cfft_q31 and will be removed
* @param[in]      *S    points to an instance of the fixed-point CFFT/CIFFT structure.  
* @param[in, out] *pSrc points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place.  
* @return none.  
*/

void arm_cfft_radix2_q31(
const arm_cfft_radix2_instance_q31 * S,
q31_t * pSrc)
{

   if(S->ifftFlag == 1u)
   {
      arm_radix2_butterfly_inverse_q31(pSrc, S->fftLen,
      S->pTwiddle, S->twidCoefModifier);
   }
   else
   {
      arm_radix2_butterfly_q31(pSrc, S->fftLen,
      S->pTwiddle, S->twidCoefModifier);
   }

   arm_bitreversal_q31(pSrc, S->fftLen, S->bitRevFactor, S->pBitRevTable);
}

/**   
* @} end of ComplexFFT group   
*/

void arm_radix2_butterfly_q31(
q31_t * pSrc,
uint32_t fftLen,
q31_t * pCoef,
uint16_t twidCoefModifier)
{

   unsigned i, j, k, l, m;
   unsigned n1, n2, ia;
   q31_t xt, yt, cosVal, sinVal;
   q31_t p0, p1;

   //N = fftLen; 
   n2 = fftLen;

   n1 = n2;
   n2 = n2 >> 1;
   ia = 0;

   // loop for groups 
   for (i = 0; i < n2; i++)
   {
      cosVal = pCoef[ia * 2];
      sinVal = pCoef[(ia * 2) + 1];
      ia = ia + twidCoefModifier;

      l = i + n2;
      xt = (pSrc[2 * i] >> 1u) - (pSrc[2 * l] >> 1u);
      pSrc[2 * i] = ((pSrc[2 * i] >> 1u) + (pSrc[2 * l] >> 1u)) >> 1u;
      
      yt = (pSrc[2 * i + 1] >> 1u) - (pSrc[2 * l + 1] >> 1u);
      pSrc[2 * i + 1] =
        ((pSrc[2 * l + 1] >> 1u) + (pSrc[2 * i + 1] >> 1u)) >> 1u;

      mult_32x32_keep32_R(p0, xt, cosVal);
      mult_32x32_keep32_R(p1, yt, cosVal);
      multAcc_32x32_keep32_R(p0, yt, sinVal); 
      multSub_32x32_keep32_R(p1, xt, sinVal);
      
      pSrc[2u * l] = p0;
      pSrc[2u * l + 1u] = p1;

   }                             // groups loop end 

   twidCoefModifier <<= 1u;

   // loop for stage 
   for (k = fftLen / 2; k > 2; k = k >> 1)
   {
      n1 = n2;
      n2 = n2 >> 1;
      ia = 0;

      // loop for groups 
      for (j = 0; j < n2; j++)
      {
         cosVal = pCoef[ia * 2];
         sinVal = pCoef[(ia * 2) + 1];
         ia = ia + twidCoefModifier;

         // loop for butterfly 
         i = j;
         m = fftLen / n1;
         do
         {
            l = i + n2;
            xt = pSrc[2 * i] - pSrc[2 * l];
            pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1u;
            
            yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
            pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1u;

            mult_32x32_keep32_R(p0, xt, cosVal);
            mult_32x32_keep32_R(p1, yt, cosVal);
            multAcc_32x32_keep32_R(p0, yt, sinVal);
            multSub_32x32_keep32_R(p1, xt, sinVal);
            
            pSrc[2u * l] = p0;
            pSrc[2u * l + 1u] = p1;
            i += n1;
            m--;
         } while( m > 0);                   // butterfly loop end 

      }                           // groups loop end 

      twidCoefModifier <<= 1u;
   }                             // stages loop end 

   n1 = n2;
   n2 = n2 >> 1;
   ia = 0;

   cosVal = pCoef[ia * 2];
   sinVal = pCoef[(ia * 2) + 1];
   ia = ia + twidCoefModifier;

   // loop for butterfly 
   for (i = 0; i < fftLen; i += n1)
   {
      l = i + n2;
      xt = pSrc[2 * i] - pSrc[2 * l];
      pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);

      yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
      pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);

      pSrc[2u * l] = xt;

      pSrc[2u * l + 1u] = yt;

      i += n1;
      l = i + n2;

      xt = pSrc[2 * i] - pSrc[2 * l];
      pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);

      yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
      pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);

      pSrc[2u * l] = xt;

      pSrc[2u * l + 1u] = yt;

   }                             // butterfly loop end 

}


void arm_radix2_butterfly_inverse_q31(
q31_t * pSrc,
uint32_t fftLen,
q31_t * pCoef,
uint16_t twidCoefModifier)
{

   unsigned i, j, k, l;
   unsigned n1, n2, ia;
   q31_t xt, yt, cosVal, sinVal;
   q31_t p0, p1;

   //N = fftLen; 
   n2 = fftLen;

   n1 = n2;
   n2 = n2 >> 1;
   ia = 0;

   // loop for groups 
   for (i = 0; i < n2; i++)
   {
      cosVal = pCoef[ia * 2];
      sinVal = pCoef[(ia * 2) + 1];
      ia = ia + twidCoefModifier;

      l = i + n2;
      xt = (pSrc[2 * i] >> 1u) - (pSrc[2 * l] >> 1u);
      pSrc[2 * i] = ((pSrc[2 * i] >> 1u) + (pSrc[2 * l] >> 1u)) >> 1u;
      
      yt = (pSrc[2 * i + 1] >> 1u) - (pSrc[2 * l + 1] >> 1u);
      pSrc[2 * i + 1] =
        ((pSrc[2 * l + 1] >> 1u) + (pSrc[2 * i + 1] >> 1u)) >> 1u;

      mult_32x32_keep32_R(p0, xt, cosVal);
      mult_32x32_keep32_R(p1, yt, cosVal);
      multSub_32x32_keep32_R(p0, yt, sinVal);
      multAcc_32x32_keep32_R(p1, xt, sinVal);
      
      pSrc[2u * l] = p0;
      pSrc[2u * l + 1u] = p1;
   }                             // groups loop end 

   twidCoefModifier = twidCoefModifier << 1u;

   // loop for stage 
   for (k = fftLen / 2; k > 2; k = k >> 1)
   {
      n1 = n2;
      n2 = n2 >> 1;
      ia = 0;

      // loop for groups 
      for (j = 0; j < n2; j++)
      {
         cosVal = pCoef[ia * 2];
         sinVal = pCoef[(ia * 2) + 1];
         ia = ia + twidCoefModifier;

         // loop for butterfly 
         for (i = j; i < fftLen; i += n1)
         {
            l = i + n2;
            xt = pSrc[2 * i] - pSrc[2 * l];
            pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]) >> 1u;
      
            yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
            pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]) >> 1u;

            mult_32x32_keep32_R(p0, xt, cosVal);
            mult_32x32_keep32_R(p1, yt, cosVal);
            multSub_32x32_keep32_R(p0, yt, sinVal);
            multAcc_32x32_keep32_R(p1, xt, sinVal);
            
            pSrc[2u * l] = p0;
            pSrc[2u * l + 1u] = p1;
         }                         // butterfly loop end 

      }                           // groups loop end 

      twidCoefModifier = twidCoefModifier << 1u;
   }                             // stages loop end 

   n1 = n2;
   n2 = n2 >> 1;
   ia = 0;

   cosVal = pCoef[ia * 2];
   sinVal = pCoef[(ia * 2) + 1];
   ia = ia + twidCoefModifier;

   // loop for butterfly 
   for (i = 0; i < fftLen; i += n1)
   {
      l = i + n2;
      xt = pSrc[2 * i] - pSrc[2 * l];
      pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);

      yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
      pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);

      pSrc[2u * l] = xt;

      pSrc[2u * l + 1u] = yt;

      i += n1;
      l = i + n2;

      xt = pSrc[2 * i] - pSrc[2 * l];
      pSrc[2 * i] = (pSrc[2 * i] + pSrc[2 * l]);

      yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
      pSrc[2 * i + 1] = (pSrc[2 * l + 1] + pSrc[2 * i + 1]);

      pSrc[2u * l] = xt;

      pSrc[2u * l + 1u] = yt;

   }                             // butterfly loop end 

}