arm_lms_q31.c 11.4 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
/* ----------------------------------------------------------------------    
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
*    
* $Date:        19. March 2015
* $Revision: 	V.1.4.5
*    
* Project: 	    CMSIS DSP Library    
* Title:	    arm_lms_q31.c    
*    
* Description:	Processing function for the Q31 LMS filter.    
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.   
* -------------------------------------------------------------------- */

#include "arm_math.h"
/**    
 * @ingroup groupFilters    
 */

/**    
 * @addtogroup LMS    
 * @{    
 */

 /**    
 * @brief Processing function for Q31 LMS filter.    
 * @param[in]  *S points to an instance of the Q15 LMS filter structure.    
 * @param[in]  *pSrc points to the block of input data.    
 * @param[in]  *pRef points to the block of reference data.    
 * @param[out] *pOut points to the block of output data.    
 * @param[out] *pErr points to the block of error data.    
 * @param[in]  blockSize number of samples to process.    
 * @return     none.    
 *    
 * \par Scaling and Overflow Behavior:     
 * The function is implemented using an internal 64-bit accumulator.     
 * The accumulator has a 2.62 format and maintains full precision of the intermediate    
 * multiplication results but provides only a single guard bit.     
 * Thus, if the accumulator result overflows it wraps around rather than clips.     
 * In order to avoid overflows completely the input signal must be scaled down by    
 * log2(numTaps) bits.     
 * The reference signal should not be scaled down.     
 * After all multiply-accumulates are performed, the 2.62 accumulator is shifted    
 * and saturated to 1.31 format to yield the final result.     
 * The output signal and error signal are in 1.31 format.     
 *    
 * \par    
 * 	In this filter, filter coefficients are updated for each sample and the updation of filter cofficients are saturted.    
 */

void arm_lms_q31(
  const arm_lms_instance_q31 * S,
  q31_t * pSrc,
  q31_t * pRef,
  q31_t * pOut,
  q31_t * pErr,
  uint32_t blockSize)
{
  q31_t *pState = S->pState;                     /* State pointer */
  uint32_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter */
  q31_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
  q31_t *pStateCurnt;                            /* Points to the current sample of the state */
  q31_t mu = S->mu;                              /* Adaptive factor */
  q31_t *px;                                     /* Temporary pointer for state */
  q31_t *pb;                                     /* Temporary pointer for coefficient buffer */
  uint32_t tapCnt, blkCnt;                       /* Loop counters */
  q63_t acc;                                     /* Accumulator */
  q31_t e = 0;                                   /* error of data sample */
  q31_t alpha;                                   /* Intermediate constant for taps update */
  q31_t coef;                                    /* Temporary variable for coef */
  q31_t acc_l, acc_h;                            /*  temporary input */
  uint32_t uShift = ((uint32_t) S->postShift + 1u);
  uint32_t lShift = 32u - uShift;                /*  Shift to be applied to the output */

  /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = &(S->pState[(numTaps - 1u)]);

  /* Initializing blkCnt with blockSize */
  blkCnt = blockSize;


#ifndef ARM_MATH_CM0_FAMILY

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  while(blkCnt > 0u)
  {
    /* Copy the new input sample into the state buffer */
    *pStateCurnt++ = *pSrc++;

    /* Initialize state pointer */
    px = pState;

    /* Initialize coefficient pointer */
    pb = pCoeffs;

    /* Set the accumulator to zero */
    acc = 0;

    /* Loop unrolling.  Process 4 taps at a time. */
    tapCnt = numTaps >> 2;

    while(tapCnt > 0u)
    {
      /* Perform the multiply-accumulate */
      /* acc +=  b[N] * x[n-N] */
      acc += ((q63_t) (*px++)) * (*pb++);

      /* acc +=  b[N-1] * x[n-N-1] */
      acc += ((q63_t) (*px++)) * (*pb++);

      /* acc +=  b[N-2] * x[n-N-2] */
      acc += ((q63_t) (*px++)) * (*pb++);

      /* acc +=  b[N-3] * x[n-N-3] */
      acc += ((q63_t) (*px++)) * (*pb++);

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
    tapCnt = numTaps % 0x4u;

    while(tapCnt > 0u)
    {
      /* Perform the multiply-accumulate */
      acc += ((q63_t) (*px++)) * (*pb++);

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Converting the result to 1.31 format */
    /* Calc lower part of acc */
    acc_l = acc & 0xffffffff;

    /* Calc upper part of acc */
    acc_h = (acc >> 32) & 0xffffffff;

    acc = (uint32_t) acc_l >> lShift | acc_h << uShift;

    /* Store the result from accumulator into the destination buffer. */
    *pOut++ = (q31_t) acc;

    /* Compute and store error */
    e = *pRef++ - (q31_t) acc;

    *pErr++ = (q31_t) e;

    /* Compute alpha i.e. intermediate constant for taps update */
    alpha = (q31_t) (((q63_t) e * mu) >> 31);

    /* Initialize state pointer */
    /* Advance state pointer by 1 for the next sample */
    px = pState++;

    /* Initialize coefficient pointer */
    pb = pCoeffs;

    /* Loop unrolling.  Process 4 taps at a time. */
    tapCnt = numTaps >> 2;

    /* Update filter coefficients */
    while(tapCnt > 0u)
    {
      /* coef is in 2.30 format */
      coef = (q31_t) (((q63_t) alpha * (*px++)) >> (32));
      /* get coef in 1.31 format by left shifting */
      *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
      /* update coefficient buffer to next coefficient */
      pb++;

      coef = (q31_t) (((q63_t) alpha * (*px++)) >> (32));
      *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
      pb++;

      coef = (q31_t) (((q63_t) alpha * (*px++)) >> (32));
      *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
      pb++;

      coef = (q31_t) (((q63_t) alpha * (*px++)) >> (32));
      *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
      pb++;

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
    tapCnt = numTaps % 0x4u;

    while(tapCnt > 0u)
    {
      /* Perform the multiply-accumulate */
      coef = (q31_t) (((q63_t) alpha * (*px++)) >> (32));
      *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
      pb++;

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Processing is complete. Now copy the last numTaps - 1 samples to the    
     satrt of the state buffer. This prepares the state buffer for the    
     next function call. */

  /* Points to the start of the pState buffer */
  pStateCurnt = S->pState;

  /* Loop unrolling for (numTaps - 1u) samples copy */
  tapCnt = (numTaps - 1u) >> 2u;

  /* copy data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }

  /* Calculate remaining number of copies */
  tapCnt = (numTaps - 1u) % 0x4u;

  /* Copy the remaining q31_t data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }

#else

  /* Run the below code for Cortex-M0 */

  while(blkCnt > 0u)
  {
    /* Copy the new input sample into the state buffer */
    *pStateCurnt++ = *pSrc++;

    /* Initialize pState pointer */
    px = pState;

    /* Initialize pCoeffs pointer */
    pb = pCoeffs;

    /* Set the accumulator to zero */
    acc = 0;

    /* Loop over numTaps number of values */
    tapCnt = numTaps;

    while(tapCnt > 0u)
    {
      /* Perform the multiply-accumulate */
      acc += ((q63_t) (*px++)) * (*pb++);

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Converting the result to 1.31 format */
    /* Store the result from accumulator into the destination buffer. */
    /* Calc lower part of acc */
    acc_l = acc & 0xffffffff;

    /* Calc upper part of acc */
    acc_h = (acc >> 32) & 0xffffffff;

    acc = (uint32_t) acc_l >> lShift | acc_h << uShift;

    *pOut++ = (q31_t) acc;

    /* Compute and store error */
    e = *pRef++ - (q31_t) acc;

    *pErr++ = (q31_t) e;

    /* Weighting factor for the LMS version */
    alpha = (q31_t) (((q63_t) e * mu) >> 31);

    /* Initialize pState pointer */
    /* Advance state pointer by 1 for the next sample */
    px = pState++;

    /* Initialize pCoeffs pointer */
    pb = pCoeffs;

    /* Loop over numTaps number of values */
    tapCnt = numTaps;

    while(tapCnt > 0u)
    {
      /* Perform the multiply-accumulate */
      coef = (q31_t) (((q63_t) alpha * (*px++)) >> (32));
      *pb = clip_q63_to_q31((q63_t) * pb + (coef << 1u));
      pb++;

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Processing is complete. Now copy the last numTaps - 1 samples to the     
     start of the state buffer. This prepares the state buffer for the   
     next function call. */

  /* Points to the start of the pState buffer */
  pStateCurnt = S->pState;

  /*  Copy (numTaps - 1u) samples  */
  tapCnt = (numTaps - 1u);

  /* Copy the data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }

#endif /*   #ifndef ARM_MATH_CM0_FAMILY */

}

/**    
   * @} end of LMS group    
   */