arm_fir_sparse_f32.c 15.4 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
/* ----------------------------------------------------------------------    
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
*    
* $Date:        19. March 2015
* $Revision: 	V.1.4.5
*    
* Project: 	    CMSIS DSP Library    
* Title:	    arm_fir_sparse_f32.c    
*    
* Description:	Floating-point sparse FIR filter processing function.   
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.    
* ------------------------------------------------------------------- */
#include "arm_math.h"

/**    
 * @ingroup groupFilters    
 */

/**    
 * @defgroup FIR_Sparse Finite Impulse Response (FIR) Sparse Filters    
 *    
 * This group of functions implements sparse FIR filters.     
 * Sparse FIR filters are equivalent to standard FIR filters except that most of the coefficients are equal to zero.   
 * Sparse filters are used for simulating reflections in communications and audio applications.   
 *   
 * There are separate functions for Q7, Q15, Q31, and floating-point data types.    
 * The functions operate on blocks  of input and output data and each call to the function processes    
 * <code>blockSize</code> samples through the filter.  <code>pSrc</code> and    
 * <code>pDst</code> points to input and output arrays respectively containing <code>blockSize</code> values.    
 *    
 * \par Algorithm:    
 * The sparse filter instant structure contains an array of tap indices <code>pTapDelay</code> which specifies the locations of the non-zero coefficients.   
 * This is in addition to the coefficient array <code>b</code>.   
 * The implementation essentially skips the multiplications by zero and leads to an efficient realization.   
 * <pre>   
 *     y[n] = b[0] * x[n-pTapDelay[0]] + b[1] * x[n-pTapDelay[1]] + b[2] * x[n-pTapDelay[2]] + ...+ b[numTaps-1] * x[n-pTapDelay[numTaps-1]]    
 * </pre>    
 * \par    
 * \image html FIRSparse.gif "Sparse FIR filter.  b[n] represents the filter coefficients"   
 * \par    
 * <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>;    
 * <code>pTapDelay</code> points to an array of nonzero indices and is also of size <code>numTaps</code>;   
 * <code>pState</code> points to a state array of size <code>maxDelay + blockSize</code>, where   
 * <code>maxDelay</code> is the largest offset value that is ever used in the <code>pTapDelay</code> array.   
 * Some of the processing functions also require temporary working buffers.   
 *   
 * \par Instance Structure    
 * The coefficients and state variables for a filter are stored together in an instance data structure.    
 * A separate instance structure must be defined for each filter.    
 * Coefficient and offset arrays may be shared among several instances while state variable arrays cannot be shared.    
 * There are separate instance structure declarations for each of the 4 supported data types.    
 *    
 * \par Initialization Functions    
 * There is also an associated initialization function for each data type.    
 * The initialization function performs the following operations:    
 * - Sets the values of the internal structure fields.    
 * - Zeros out the values in the state buffer.    
 * To do this manually without calling the init function, assign the follow subfields of the instance structure:
 * numTaps, pCoeffs, pTapDelay, maxDelay, stateIndex, pState. Also set all of the values in pState to zero. 
 *    
 * \par    
 * Use of the initialization function is optional.    
 * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.    
 * To place an instance structure into a const data section, the instance structure must be manually initialized.    
 * Set the values in the state buffer to zeros before static initialization.    
 * The code below statically initializes each of the 4 different data type filter instance structures    
 * <pre>    
 *arm_fir_sparse_instance_f32 S = {numTaps, 0, pState, pCoeffs, maxDelay, pTapDelay};    
 *arm_fir_sparse_instance_q31 S = {numTaps, 0, pState, pCoeffs, maxDelay, pTapDelay};    
 *arm_fir_sparse_instance_q15 S = {numTaps, 0, pState, pCoeffs, maxDelay, pTapDelay};    
 *arm_fir_sparse_instance_q7 S =  {numTaps, 0, pState, pCoeffs, maxDelay, pTapDelay};    
 * </pre>    
 * \par    
 *    
 * \par Fixed-Point Behavior    
 * Care must be taken when using the fixed-point versions of the sparse FIR filter functions.    
 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.    
 * Refer to the function specific documentation below for usage guidelines.    
 */

/**    
 * @addtogroup FIR_Sparse    
 * @{    
 */

/**   
 * @brief Processing function for the floating-point sparse FIR filter.   
 * @param[in]  *S          points to an instance of the floating-point sparse FIR structure.   
 * @param[in]  *pSrc       points to the block of input data.   
 * @param[out] *pDst       points to the block of output data   
 * @param[in]  *pScratchIn points to a temporary buffer of size blockSize.   
 * @param[in]  blockSize   number of input samples to process per call.   
 * @return none.   
 */

void arm_fir_sparse_f32(
  arm_fir_sparse_instance_f32 * S,
  float32_t * pSrc,
  float32_t * pDst,
  float32_t * pScratchIn,
  uint32_t blockSize)
{

  float32_t *pState = S->pState;                 /* State pointer */
  float32_t *pCoeffs = S->pCoeffs;               /* Coefficient pointer */
  float32_t *px;                                 /* Scratch buffer pointer */
  float32_t *py = pState;                        /* Temporary pointers for state buffer */
  float32_t *pb = pScratchIn;                    /* Temporary pointers for scratch buffer */
  float32_t *pOut;                               /* Destination pointer */
  int32_t *pTapDelay = S->pTapDelay;             /* Pointer to the array containing offset of the non-zero tap values. */
  uint32_t delaySize = S->maxDelay + blockSize;  /* state length */
  uint16_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter  */
  int32_t readIndex;                             /* Read index of the state buffer */
  uint32_t tapCnt, blkCnt;                       /* loop counters */
  float32_t coeff = *pCoeffs++;                  /* Read the first coefficient value */



  /* BlockSize of Input samples are copied into the state buffer */
  /* StateIndex points to the starting position to write in the state buffer */
  arm_circularWrite_f32((int32_t *) py, delaySize, &S->stateIndex, 1,
                        (int32_t *) pSrc, 1, blockSize);


  /* Read Index, from where the state buffer should be read, is calculated. */
  readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;

  /* Wraparound of readIndex */
  if(readIndex < 0)
  {
    readIndex += (int32_t) delaySize;
  }

  /* Working pointer for state buffer is updated */
  py = pState;

  /* blockSize samples are read from the state buffer */
  arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
                       (int32_t *) pb, (int32_t *) pb, blockSize, 1,
                       blockSize);

  /* Working pointer for the scratch buffer */
  px = pb;

  /* Working pointer for destination buffer */
  pOut = pDst;


#ifndef ARM_MATH_CM0_FAMILY

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  /* Loop over the blockSize. Unroll by a factor of 4.    
   * Compute 4 Multiplications at a time. */
  blkCnt = blockSize >> 2u;

  while(blkCnt > 0u)
  {
    /* Perform Multiplications and store in destination buffer */
    *pOut++ = *px++ * coeff;
    *pOut++ = *px++ * coeff;
    *pOut++ = *px++ * coeff;
    *pOut++ = *px++ * coeff;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* If the blockSize is not a multiple of 4,    
   * compute the remaining samples */
  blkCnt = blockSize % 0x4u;

  while(blkCnt > 0u)
  {
    /* Perform Multiplications and store in destination buffer */
    *pOut++ = *px++ * coeff;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Load the coefficient value and    
   * increment the coefficient buffer for the next set of state values */
  coeff = *pCoeffs++;

  /* Read Index, from where the state buffer should be read, is calculated. */
  readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;

  /* Wraparound of readIndex */
  if(readIndex < 0)
  {
    readIndex += (int32_t) delaySize;
  }

  /* Loop over the number of taps. */
  tapCnt = (uint32_t) numTaps - 2u;

  while(tapCnt > 0u)
  {

    /* Working pointer for state buffer is updated */
    py = pState;

    /* blockSize samples are read from the state buffer */
    arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
                         (int32_t *) pb, (int32_t *) pb, blockSize, 1,
                         blockSize);

    /* Working pointer for the scratch buffer */
    px = pb;

    /* Working pointer for destination buffer */
    pOut = pDst;

    /* Loop over the blockSize. Unroll by a factor of 4.    
     * Compute 4 MACS at a time. */
    blkCnt = blockSize >> 2u;

    while(blkCnt > 0u)
    {
      /* Perform Multiply-Accumulate */
      *pOut++ += *px++ * coeff;
      *pOut++ += *px++ * coeff;
      *pOut++ += *px++ * coeff;
      *pOut++ += *px++ * coeff;

      /* Decrement the loop counter */
      blkCnt--;
    }

    /* If the blockSize is not a multiple of 4,    
     * compute the remaining samples */
    blkCnt = blockSize % 0x4u;

    while(blkCnt > 0u)
    {
      /* Perform Multiply-Accumulate */
      *pOut++ += *px++ * coeff;

      /* Decrement the loop counter */
      blkCnt--;
    }

    /* Load the coefficient value and    
     * increment the coefficient buffer for the next set of state values */
    coeff = *pCoeffs++;

    /* Read Index, from where the state buffer should be read, is calculated. */
    readIndex = ((int32_t) S->stateIndex -
                 (int32_t) blockSize) - *pTapDelay++;

    /* Wraparound of readIndex */
    if(readIndex < 0)
    {
      readIndex += (int32_t) delaySize;
    }

    /* Decrement the tap loop counter */
    tapCnt--;
  }
	
	/* Compute last tap without the final read of pTapDelay */

	/* Working pointer for state buffer is updated */
	py = pState;

	/* blockSize samples are read from the state buffer */
	arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
											 (int32_t *) pb, (int32_t *) pb, blockSize, 1,
											 blockSize);

	/* Working pointer for the scratch buffer */
	px = pb;

	/* Working pointer for destination buffer */
	pOut = pDst;

	/* Loop over the blockSize. Unroll by a factor of 4.    
	 * Compute 4 MACS at a time. */
	blkCnt = blockSize >> 2u;

	while(blkCnt > 0u)
	{
		/* Perform Multiply-Accumulate */
		*pOut++ += *px++ * coeff;
		*pOut++ += *px++ * coeff;
		*pOut++ += *px++ * coeff;
		*pOut++ += *px++ * coeff;

		/* Decrement the loop counter */
		blkCnt--;
	}

	/* If the blockSize is not a multiple of 4,    
	 * compute the remaining samples */
	blkCnt = blockSize % 0x4u;

	while(blkCnt > 0u)
	{
		/* Perform Multiply-Accumulate */
		*pOut++ += *px++ * coeff;

		/* Decrement the loop counter */
		blkCnt--;
	}

#else

/* Run the below code for Cortex-M0 */

  blkCnt = blockSize;

  while(blkCnt > 0u)
  {
    /* Perform Multiplications and store in destination buffer */
    *pOut++ = *px++ * coeff;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Load the coefficient value and           
   * increment the coefficient buffer for the next set of state values */
  coeff = *pCoeffs++;

  /* Read Index, from where the state buffer should be read, is calculated. */
  readIndex = ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;

  /* Wraparound of readIndex */
  if(readIndex < 0)
  {
    readIndex += (int32_t) delaySize;
  }

  /* Loop over the number of taps. */
  tapCnt = (uint32_t) numTaps - 2u;

  while(tapCnt > 0u)
  {

    /* Working pointer for state buffer is updated */
    py = pState;

    /* blockSize samples are read from the state buffer */
    arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
                         (int32_t *) pb, (int32_t *) pb, blockSize, 1,
                         blockSize);

    /* Working pointer for the scratch buffer */
    px = pb;

    /* Working pointer for destination buffer */
    pOut = pDst;

    blkCnt = blockSize;

    while(blkCnt > 0u)
    {
      /* Perform Multiply-Accumulate */
      *pOut++ += *px++ * coeff;

      /* Decrement the loop counter */
      blkCnt--;
    }

    /* Load the coefficient value and           
     * increment the coefficient buffer for the next set of state values */
    coeff = *pCoeffs++;

    /* Read Index, from where the state buffer should be read, is calculated. */
    readIndex =
      ((int32_t) S->stateIndex - (int32_t) blockSize) - *pTapDelay++;

    /* Wraparound of readIndex */
    if(readIndex < 0)
    {
      readIndex += (int32_t) delaySize;
    }

    /* Decrement the tap loop counter */
    tapCnt--;
  }
	
	/* Compute last tap without the final read of pTapDelay */	
	
	/* Working pointer for state buffer is updated */
	py = pState;

	/* blockSize samples are read from the state buffer */
	arm_circularRead_f32((int32_t *) py, delaySize, &readIndex, 1,
											 (int32_t *) pb, (int32_t *) pb, blockSize, 1,
											 blockSize);

	/* Working pointer for the scratch buffer */
	px = pb;

	/* Working pointer for destination buffer */
	pOut = pDst;

	blkCnt = blockSize;

	while(blkCnt > 0u)
	{
		/* Perform Multiply-Accumulate */
		*pOut++ += *px++ * coeff;

		/* Decrement the loop counter */
		blkCnt--;
	}

#endif /*   #ifndef ARM_MATH_CM0_FAMILY        */

}

/**    
 * @} end of FIR_Sparse group    
 */