arm_fir_q15.c 21.9 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
/* ----------------------------------------------------------------------    
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
*    
* $Date:        19. March 2015
* $Revision: 	V.1.4.5
*    
* Project: 	    CMSIS DSP Library    
* Title:        arm_fir_q15.c    
*    
* Description:  Q15 FIR filter processing function.    
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.   
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**       
 * @ingroup groupFilters       
 */

/**       
 * @addtogroup FIR       
 * @{       
 */

/**       
 * @brief Processing function for the Q15 FIR filter.       
 * @param[in] *S points to an instance of the Q15 FIR structure.       
 * @param[in] *pSrc points to the block of input data.       
 * @param[out] *pDst points to the block of output data.       
 * @param[in]  blockSize number of samples to process per call.       
 * @return none.       
 *   
 *   
 * \par Restrictions   
 *  If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE   
 *	In this case input, output, state buffers should be aligned by 32-bit   
 *   
 * <b>Scaling and Overflow Behavior:</b>       
 * \par       
 * The function is implemented using a 64-bit internal accumulator.       
 * Both coefficients and state variables are represented in 1.15 format and multiplications yield a 2.30 result.       
 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.       
 * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.       
 * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.       
 * Lastly, the accumulator is saturated to yield a result in 1.15 format.       
 *       
 * \par       
 * Refer to the function <code>arm_fir_fast_q15()</code> for a faster but less precise implementation of this function.       
 */

#ifndef ARM_MATH_CM0_FAMILY

/* Run the below code for Cortex-M4 and Cortex-M3 */

#ifndef UNALIGNED_SUPPORT_DISABLE


void arm_fir_q15(
  const arm_fir_instance_q15 * S,
  q15_t * pSrc,
  q15_t * pDst,
  uint32_t blockSize)
{
  q15_t *pState = S->pState;                     /* State pointer */
  q15_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
  q15_t *pStateCurnt;                            /* Points to the current sample of the state */
  q15_t *px1;                                    /* Temporary q15 pointer for state buffer */
  q15_t *pb;                                     /* Temporary pointer for coefficient buffer */
  q31_t x0, x1, x2, x3, c0;                      /* Temporary variables to hold SIMD state and coefficient values */
  q63_t acc0, acc1, acc2, acc3;                  /* Accumulators */
  uint32_t numTaps = S->numTaps;                 /* Number of taps in the filter */
  uint32_t tapCnt, blkCnt;                       /* Loop counters */


  /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = &(S->pState[(numTaps - 1u)]);

  /* Apply loop unrolling and compute 4 output values simultaneously.       
   * The variables acc0 ... acc3 hold output values that are being computed:       
   *       
   *    acc0 =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]       
   *    acc1 =  b[numTaps-1] * x[n-numTaps] +   b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]       
   *    acc2 =  b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] +   b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]       
   *    acc3 =  b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps]   +...+ b[0] * x[3]       
   */

  blkCnt = blockSize >> 2;

  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.       
   ** a second loop below computes the remaining 1 to 3 samples. */
  while(blkCnt > 0u)
  {
    /* Copy four new input samples into the state buffer.       
     ** Use 32-bit SIMD to move the 16-bit data.  Only requires two copies. */
    *__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++;
    *__SIMD32(pStateCurnt)++ = *__SIMD32(pSrc)++;

    /* Set all accumulators to zero */
    acc0 = 0;
    acc1 = 0;
    acc2 = 0;
    acc3 = 0;

    /* Initialize state pointer of type q15 */
    px1 = pState;

    /* Initialize coeff pointer of type q31 */
    pb = pCoeffs;

    /* Read the first two samples from the state buffer:  x[n-N], x[n-N-1] */
    x0 = _SIMD32_OFFSET(px1);

    /* Read the third and forth samples from the state buffer: x[n-N-1], x[n-N-2] */
    x1 = _SIMD32_OFFSET(px1 + 1u);

    px1 += 2u;

    /* Loop over the number of taps.  Unroll by a factor of 4.       
     ** Repeat until we've computed numTaps-4 coefficients. */
    tapCnt = numTaps >> 2;

    while(tapCnt > 0u)
    {
      /* Read the first two coefficients using SIMD:  b[N] and b[N-1] coefficients */
      c0 = *__SIMD32(pb)++;

      /* acc0 +=  b[N] * x[n-N] + b[N-1] * x[n-N-1] */
      acc0 = __SMLALD(x0, c0, acc0);

      /* acc1 +=  b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */
      acc1 = __SMLALD(x1, c0, acc1);

      /* Read state x[n-N-2], x[n-N-3] */
      x2 = _SIMD32_OFFSET(px1);

      /* Read state x[n-N-3], x[n-N-4] */
      x3 = _SIMD32_OFFSET(px1 + 1u);

      /* acc2 +=  b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */
      acc2 = __SMLALD(x2, c0, acc2);

      /* acc3 +=  b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */
      acc3 = __SMLALD(x3, c0, acc3);

      /* Read coefficients b[N-2], b[N-3] */
      c0 = *__SIMD32(pb)++;

      /* acc0 +=  b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */
      acc0 = __SMLALD(x2, c0, acc0);

      /* acc1 +=  b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */
      acc1 = __SMLALD(x3, c0, acc1);

      /* Read state x[n-N-4], x[n-N-5] */
      x0 = _SIMD32_OFFSET(px1 + 2u);

      /* Read state x[n-N-5], x[n-N-6] */
      x1 = _SIMD32_OFFSET(px1 + 3u);

      /* acc2 +=  b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */
      acc2 = __SMLALD(x0, c0, acc2);

      /* acc3 +=  b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */
      acc3 = __SMLALD(x1, c0, acc3);

      px1 += 4u;

      tapCnt--;

    }


    /* If the filter length is not a multiple of 4, compute the remaining filter taps.       
     ** This is always be 2 taps since the filter length is even. */
    if((numTaps & 0x3u) != 0u)
    {
      /* Read 2 coefficients */
      c0 = *__SIMD32(pb)++;

      /* Fetch 4 state variables */
      x2 = _SIMD32_OFFSET(px1);

      x3 = _SIMD32_OFFSET(px1 + 1u);

      /* Perform the multiply-accumulates */
      acc0 = __SMLALD(x0, c0, acc0);

      px1 += 2u;

      acc1 = __SMLALD(x1, c0, acc1);
      acc2 = __SMLALD(x2, c0, acc2);
      acc3 = __SMLALD(x3, c0, acc3);
    }

    /* The results in the 4 accumulators are in 2.30 format.  Convert to 1.15 with saturation.       
     ** Then store the 4 outputs in the destination buffer. */

#ifndef ARM_MATH_BIG_ENDIAN

    *__SIMD32(pDst)++ =
      __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);
    *__SIMD32(pDst)++ =
      __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);

#else

    *__SIMD32(pDst)++ =
      __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);
    *__SIMD32(pDst)++ =
      __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);

#endif /*      #ifndef ARM_MATH_BIG_ENDIAN       */



    /* Advance the state pointer by 4 to process the next group of 4 samples */
    pState = pState + 4;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.       
   ** No loop unrolling is used. */
  blkCnt = blockSize % 0x4u;
  while(blkCnt > 0u)
  {
    /* Copy two samples into state buffer */
    *pStateCurnt++ = *pSrc++;

    /* Set the accumulator to zero */
    acc0 = 0;

    /* Initialize state pointer of type q15 */
    px1 = pState;

    /* Initialize coeff pointer of type q31 */
    pb = pCoeffs;

    tapCnt = numTaps >> 1;

    do
    {

      c0 = *__SIMD32(pb)++;
      x0 = *__SIMD32(px1)++;

      acc0 = __SMLALD(x0, c0, acc0);
      tapCnt--;
    }
    while(tapCnt > 0u);

    /* The result is in 2.30 format.  Convert to 1.15 with saturation.       
     ** Then store the output in the destination buffer. */
    *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));

    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Processing is complete.       
   ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.       
   ** This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

  /* Calculation of count for copying integer writes */
  tapCnt = (numTaps - 1u) >> 2;

  while(tapCnt > 0u)
  {

    /* Copy state values to start of state buffer */
    *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;
    *__SIMD32(pStateCurnt)++ = *__SIMD32(pState)++;

    tapCnt--;

  }

  /* Calculation of count for remaining q15_t data */
  tapCnt = (numTaps - 1u) % 0x4u;

  /* copy remaining data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }
}

#else /* UNALIGNED_SUPPORT_DISABLE */

void arm_fir_q15(
  const arm_fir_instance_q15 * S,
  q15_t * pSrc,
  q15_t * pDst,
  uint32_t blockSize)
{
  q15_t *pState = S->pState;                     /* State pointer */
  q15_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
  q15_t *pStateCurnt;                            /* Points to the current sample of the state */
  q63_t acc0, acc1, acc2, acc3;                  /* Accumulators */
  q15_t *pb;                                     /* Temporary pointer for coefficient buffer */
  q15_t *px;                                     /* Temporary q31 pointer for SIMD state buffer accesses */
  q31_t x0, x1, x2, c0;                          /* Temporary variables to hold SIMD state and coefficient values */
  uint32_t numTaps = S->numTaps;                 /* Number of taps in the filter */
  uint32_t tapCnt, blkCnt;                       /* Loop counters */


  /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = &(S->pState[(numTaps - 1u)]);

  /* Apply loop unrolling and compute 4 output values simultaneously.      
   * The variables acc0 ... acc3 hold output values that are being computed:      
   *      
   *    acc0 =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]      
   *    acc1 =  b[numTaps-1] * x[n-numTaps] +   b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]      
   *    acc2 =  b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] +   b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]      
   *    acc3 =  b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps]   +...+ b[0] * x[3]      
   */

  blkCnt = blockSize >> 2;

  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.      
   ** a second loop below computes the remaining 1 to 3 samples. */
  while(blkCnt > 0u)
  {
    /* Copy four new input samples into the state buffer.      
     ** Use 32-bit SIMD to move the 16-bit data.  Only requires two copies. */
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;


    /* Set all accumulators to zero */
    acc0 = 0;
    acc1 = 0;
    acc2 = 0;
    acc3 = 0;

    /* Typecast q15_t pointer to q31_t pointer for state reading in q31_t */
    px = pState;

    /* Typecast q15_t pointer to q31_t pointer for coefficient reading in q31_t */
    pb = pCoeffs;

    /* Read the first two samples from the state buffer:  x[n-N], x[n-N-1] */
    x0 = *__SIMD32(px)++;

    /* Read the third and forth samples from the state buffer: x[n-N-2], x[n-N-3] */
    x2 = *__SIMD32(px)++;

    /* Loop over the number of taps.  Unroll by a factor of 4.      
     ** Repeat until we've computed numTaps-(numTaps%4) coefficients. */
    tapCnt = numTaps >> 2;

    while(tapCnt > 0)
    {
      /* Read the first two coefficients using SIMD:  b[N] and b[N-1] coefficients */
      c0 = *__SIMD32(pb)++;

      /* acc0 +=  b[N] * x[n-N] + b[N-1] * x[n-N-1] */
      acc0 = __SMLALD(x0, c0, acc0);

      /* acc2 +=  b[N] * x[n-N-2] + b[N-1] * x[n-N-3] */
      acc2 = __SMLALD(x2, c0, acc2);

      /* pack  x[n-N-1] and x[n-N-2] */
#ifndef ARM_MATH_BIG_ENDIAN
      x1 = __PKHBT(x2, x0, 0);
#else
      x1 = __PKHBT(x0, x2, 0);
#endif

      /* Read state x[n-N-4], x[n-N-5] */
      x0 = _SIMD32_OFFSET(px);

      /* acc1 +=  b[N] * x[n-N-1] + b[N-1] * x[n-N-2] */
      acc1 = __SMLALDX(x1, c0, acc1);

      /* pack  x[n-N-3] and x[n-N-4] */
#ifndef ARM_MATH_BIG_ENDIAN
      x1 = __PKHBT(x0, x2, 0);
#else
      x1 = __PKHBT(x2, x0, 0);
#endif

      /* acc3 +=  b[N] * x[n-N-3] + b[N-1] * x[n-N-4] */
      acc3 = __SMLALDX(x1, c0, acc3);

      /* Read coefficients b[N-2], b[N-3] */
      c0 = *__SIMD32(pb)++;

      /* acc0 +=  b[N-2] * x[n-N-2] + b[N-3] * x[n-N-3] */
      acc0 = __SMLALD(x2, c0, acc0);

      /* Read state x[n-N-6], x[n-N-7] with offset */
      x2 = _SIMD32_OFFSET(px + 2u);

      /* acc2 +=  b[N-2] * x[n-N-4] + b[N-3] * x[n-N-5] */
      acc2 = __SMLALD(x0, c0, acc2);

      /* acc1 +=  b[N-2] * x[n-N-3] + b[N-3] * x[n-N-4] */
      acc1 = __SMLALDX(x1, c0, acc1);

      /* pack  x[n-N-5] and x[n-N-6] */
#ifndef ARM_MATH_BIG_ENDIAN
      x1 = __PKHBT(x2, x0, 0);
#else
      x1 = __PKHBT(x0, x2, 0);
#endif

      /* acc3 +=  b[N-2] * x[n-N-5] + b[N-3] * x[n-N-6] */
      acc3 = __SMLALDX(x1, c0, acc3);

      /* Update state pointer for next state reading */
      px += 4u;

      /* Decrement tap count */
      tapCnt--;

    }

    /* If the filter length is not a multiple of 4, compute the remaining filter taps.       
     ** This is always be 2 taps since the filter length is even. */
    if((numTaps & 0x3u) != 0u)
    {

      /* Read last two coefficients */
      c0 = *__SIMD32(pb)++;

      /* Perform the multiply-accumulates */
      acc0 = __SMLALD(x0, c0, acc0);
      acc2 = __SMLALD(x2, c0, acc2);

      /* pack state variables */
#ifndef ARM_MATH_BIG_ENDIAN
      x1 = __PKHBT(x2, x0, 0);
#else
      x1 = __PKHBT(x0, x2, 0);
#endif

      /* Read last state variables */
      x0 = *__SIMD32(px);

      /* Perform the multiply-accumulates */
      acc1 = __SMLALDX(x1, c0, acc1);

      /* pack state variables */
#ifndef ARM_MATH_BIG_ENDIAN
      x1 = __PKHBT(x0, x2, 0);
#else
      x1 = __PKHBT(x2, x0, 0);
#endif

      /* Perform the multiply-accumulates */
      acc3 = __SMLALDX(x1, c0, acc3);
    }

    /* The results in the 4 accumulators are in 2.30 format.  Convert to 1.15 with saturation.       
     ** Then store the 4 outputs in the destination buffer. */

#ifndef ARM_MATH_BIG_ENDIAN

    *__SIMD32(pDst)++ =
      __PKHBT(__SSAT((acc0 >> 15), 16), __SSAT((acc1 >> 15), 16), 16);

    *__SIMD32(pDst)++ =
      __PKHBT(__SSAT((acc2 >> 15), 16), __SSAT((acc3 >> 15), 16), 16);

#else

    *__SIMD32(pDst)++ =
      __PKHBT(__SSAT((acc1 >> 15), 16), __SSAT((acc0 >> 15), 16), 16);

    *__SIMD32(pDst)++ =
      __PKHBT(__SSAT((acc3 >> 15), 16), __SSAT((acc2 >> 15), 16), 16);

#endif /*      #ifndef ARM_MATH_BIG_ENDIAN       */

    /* Advance the state pointer by 4 to process the next group of 4 samples */
    pState = pState + 4;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.      
   ** No loop unrolling is used. */
  blkCnt = blockSize % 0x4u;
  while(blkCnt > 0u)
  {
    /* Copy two samples into state buffer */
    *pStateCurnt++ = *pSrc++;

    /* Set the accumulator to zero */
    acc0 = 0;

    /* Use SIMD to hold states and coefficients */
    px = pState;
    pb = pCoeffs;

    tapCnt = numTaps >> 1u;

    do
    {
      acc0 += (q31_t) * px++ * *pb++;
	  acc0 += (q31_t) * px++ * *pb++;
      tapCnt--;
    }
    while(tapCnt > 0u);

    /* The result is in 2.30 format.  Convert to 1.15 with saturation.      
     ** Then store the output in the destination buffer. */
    *pDst++ = (q15_t) (__SSAT((acc0 >> 15), 16));

    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1u;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Processing is complete.      
   ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.      
   ** This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

  /* Calculation of count for copying integer writes */
  tapCnt = (numTaps - 1u) >> 2;

  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;

    tapCnt--;

  }

  /* Calculation of count for remaining q15_t data */
  tapCnt = (numTaps - 1u) % 0x4u;

  /* copy remaining data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }
}


#endif /* #ifndef UNALIGNED_SUPPORT_DISABLE */

#else /* ARM_MATH_CM0_FAMILY */


/* Run the below code for Cortex-M0 */

void arm_fir_q15(
  const arm_fir_instance_q15 * S,
  q15_t * pSrc,
  q15_t * pDst,
  uint32_t blockSize)
{
  q15_t *pState = S->pState;                     /* State pointer */
  q15_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
  q15_t *pStateCurnt;                            /* Points to the current sample of the state */



  q15_t *px;                                     /* Temporary pointer for state buffer */
  q15_t *pb;                                     /* Temporary pointer for coefficient buffer */
  q63_t acc;                                     /* Accumulator */
  uint32_t numTaps = S->numTaps;                 /* Number of nTaps in the filter */
  uint32_t tapCnt, blkCnt;                       /* Loop counters */

  /* S->pState buffer contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = &(S->pState[(numTaps - 1u)]);

  /* Initialize blkCnt with blockSize */
  blkCnt = blockSize;

  while(blkCnt > 0u)
  {
    /* Copy one sample at a time into state buffer */
    *pStateCurnt++ = *pSrc++;

    /* Set the accumulator to zero */
    acc = 0;

    /* Initialize state pointer */
    px = pState;

    /* Initialize Coefficient pointer */
    pb = pCoeffs;

    tapCnt = numTaps;

    /* Perform the multiply-accumulates */
    do
    {
      /* acc =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
      acc += (q31_t) * px++ * *pb++;
      tapCnt--;
    } while(tapCnt > 0u);

    /* The result is in 2.30 format.  Convert to 1.15         
     ** Then store the output in the destination buffer. */
    *pDst++ = (q15_t) __SSAT((acc >> 15u), 16);

    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1;

    /* Decrement the samples loop counter */
    blkCnt--;
  }

  /* Processing is complete.         
   ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.       
   ** This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

  /* Copy numTaps number of values */
  tapCnt = (numTaps - 1u);

  /* copy data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }

}

#endif /* #ifndef ARM_MATH_CM0_FAMILY */




/**       
 * @} end of FIR group       
 */