arm_fir_interpolate_q31.c 14.7 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
/*-----------------------------------------------------------------------------    
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
*    
* $Date:        19. March 2015
* $Revision: 	V.1.4.5
*    
* Project: 	    CMSIS DSP Library    
* Title:		arm_fir_interpolate_q31.c    
*    
* Description:	Q31 FIR interpolation.    
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.  
* ---------------------------------------------------------------------------*/

#include "arm_math.h"

/**    
 * @ingroup groupFilters    
 */

/**    
 * @addtogroup FIR_Interpolate    
 * @{    
 */

/**    
 * @brief Processing function for the Q31 FIR interpolator.    
 * @param[in] *S        points to an instance of the Q31 FIR interpolator structure.    
 * @param[in] *pSrc     points to the block of input data.    
 * @param[out] *pDst    points to the block of output data.    
 * @param[in] blockSize number of input samples to process per call.    
 * @return none.    
 *    
 * <b>Scaling and Overflow Behavior:</b>    
 * \par    
 * The function is implemented using an internal 64-bit accumulator.    
 * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.    
 * Thus, if the accumulator result overflows it wraps around rather than clip.    
 * In order to avoid overflows completely the input signal must be scaled down by <code>1/(numTaps/L)</code>.    
 * since <code>numTaps/L</code> additions occur per output sample.    
 * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.    
 */

#ifndef ARM_MATH_CM0_FAMILY

  /* Run the below code for Cortex-M4 and Cortex-M3 */

void arm_fir_interpolate_q31(
  const arm_fir_interpolate_instance_q31 * S,
  q31_t * pSrc,
  q31_t * pDst,
  uint32_t blockSize)
{
  q31_t *pState = S->pState;                     /* State pointer */
  q31_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
  q31_t *pStateCurnt;                            /* Points to the current sample of the state */
  q31_t *ptr1, *ptr2;                            /* Temporary pointers for state and coefficient buffers */
  q63_t sum0;                                    /* Accumulators */
  q31_t x0, c0;                                  /* Temporary variables to hold state and coefficient values */
  uint32_t i, blkCnt, j;                         /* Loop counters */
  uint16_t phaseLen = S->phaseLength, tapCnt;    /* Length of each polyphase filter component */

  uint32_t blkCntN2;
  q63_t acc0, acc1;
  q31_t x1;

  /* S->pState buffer contains previous frame (phaseLen - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = S->pState + ((q31_t) phaseLen - 1);

  /* Initialise  blkCnt */
  blkCnt = blockSize / 2;
  blkCntN2 = blockSize - (2 * blkCnt);

  /* Samples loop unrolled by 2 */
  while(blkCnt > 0u)
  {
    /* Copy new input sample into the state buffer */
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;

    /* Address modifier index of coefficient buffer */
    j = 1u;

    /* Loop over the Interpolation factor. */
    i = (S->L);

    while(i > 0u)
    {
      /* Set accumulator to zero */
      acc0 = 0;
      acc1 = 0;

      /* Initialize state pointer */
      ptr1 = pState;

      /* Initialize coefficient pointer */
      ptr2 = pCoeffs + (S->L - j);

      /* Loop over the polyPhase length. Unroll by a factor of 4.        
       ** Repeat until we've computed numTaps-(4*S->L) coefficients. */
      tapCnt = phaseLen >> 2u;

      x0 = *(ptr1++);

      while(tapCnt > 0u)
      {

        /* Read the input sample */
        x1 = *(ptr1++);

        /* Read the coefficient */
        c0 = *(ptr2);

        /* Perform the multiply-accumulate */
        acc0 += (q63_t) x0 *c0;
        acc1 += (q63_t) x1 *c0;


        /* Read the coefficient */
        c0 = *(ptr2 + S->L);

        /* Read the input sample */
        x0 = *(ptr1++);

        /* Perform the multiply-accumulate */
        acc0 += (q63_t) x1 *c0;
        acc1 += (q63_t) x0 *c0;


        /* Read the coefficient */
        c0 = *(ptr2 + S->L * 2);

        /* Read the input sample */
        x1 = *(ptr1++);

        /* Perform the multiply-accumulate */
        acc0 += (q63_t) x0 *c0;
        acc1 += (q63_t) x1 *c0;

        /* Read the coefficient */
        c0 = *(ptr2 + S->L * 3);

        /* Read the input sample */
        x0 = *(ptr1++);

        /* Perform the multiply-accumulate */
        acc0 += (q63_t) x1 *c0;
        acc1 += (q63_t) x0 *c0;


        /* Upsampling is done by stuffing L-1 zeros between each sample.        
         * So instead of multiplying zeros with coefficients,        
         * Increment the coefficient pointer by interpolation factor times. */
        ptr2 += 4 * S->L;

        /* Decrement the loop counter */
        tapCnt--;
      }

      /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */
      tapCnt = phaseLen % 0x4u;

      while(tapCnt > 0u)
      {

        /* Read the input sample */
        x1 = *(ptr1++);

        /* Read the coefficient */
        c0 = *(ptr2);

        /* Perform the multiply-accumulate */
        acc0 += (q63_t) x0 *c0;
        acc1 += (q63_t) x1 *c0;

        /* Increment the coefficient pointer by interpolation factor times. */
        ptr2 += S->L;

        /* update states for next sample processing */
        x0 = x1;

        /* Decrement the loop counter */
        tapCnt--;
      }

      /* The result is in the accumulator, store in the destination buffer. */
      *pDst = (q31_t) (acc0 >> 31);
      *(pDst + S->L) = (q31_t) (acc1 >> 31);


      pDst++;

      /* Increment the address modifier index of coefficient buffer */
      j++;

      /* Decrement the loop counter */
      i--;
    }

    /* Advance the state pointer by 1        
     * to process the next group of interpolation factor number samples */
    pState = pState + 2;

    pDst += S->L;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* If the blockSize is not a multiple of 2, compute any remaining output samples here.        
   ** No loop unrolling is used. */
  blkCnt = blkCntN2;

  /* Loop over the blockSize. */
  while(blkCnt > 0u)
  {
    /* Copy new input sample into the state buffer */
    *pStateCurnt++ = *pSrc++;

    /* Address modifier index of coefficient buffer */
    j = 1u;

    /* Loop over the Interpolation factor. */
    i = S->L;
    while(i > 0u)
    {
      /* Set accumulator to zero */
      sum0 = 0;

      /* Initialize state pointer */
      ptr1 = pState;

      /* Initialize coefficient pointer */
      ptr2 = pCoeffs + (S->L - j);

      /* Loop over the polyPhase length. Unroll by a factor of 4.        
       ** Repeat until we've computed numTaps-(4*S->L) coefficients. */
      tapCnt = phaseLen >> 2;
      while(tapCnt > 0u)
      {

        /* Read the coefficient */
        c0 = *(ptr2);

        /* Upsampling is done by stuffing L-1 zeros between each sample.        
         * So instead of multiplying zeros with coefficients,        
         * Increment the coefficient pointer by interpolation factor times. */
        ptr2 += S->L;

        /* Read the input sample */
        x0 = *(ptr1++);

        /* Perform the multiply-accumulate */
        sum0 += (q63_t) x0 *c0;

        /* Read the coefficient */
        c0 = *(ptr2);

        /* Increment the coefficient pointer by interpolation factor times. */
        ptr2 += S->L;

        /* Read the input sample */
        x0 = *(ptr1++);

        /* Perform the multiply-accumulate */
        sum0 += (q63_t) x0 *c0;

        /* Read the coefficient */
        c0 = *(ptr2);

        /* Increment the coefficient pointer by interpolation factor times. */
        ptr2 += S->L;

        /* Read the input sample */
        x0 = *(ptr1++);

        /* Perform the multiply-accumulate */
        sum0 += (q63_t) x0 *c0;

        /* Read the coefficient */
        c0 = *(ptr2);

        /* Increment the coefficient pointer by interpolation factor times. */
        ptr2 += S->L;

        /* Read the input sample */
        x0 = *(ptr1++);

        /* Perform the multiply-accumulate */
        sum0 += (q63_t) x0 *c0;

        /* Decrement the loop counter */
        tapCnt--;
      }

      /* If the polyPhase length is not a multiple of 4, compute the remaining filter taps */
      tapCnt = phaseLen & 0x3u;

      while(tapCnt > 0u)
      {
        /* Read the coefficient */
        c0 = *(ptr2);

        /* Increment the coefficient pointer by interpolation factor times. */
        ptr2 += S->L;

        /* Read the input sample */
        x0 = *(ptr1++);

        /* Perform the multiply-accumulate */
        sum0 += (q63_t) x0 *c0;

        /* Decrement the loop counter */
        tapCnt--;
      }

      /* The result is in the accumulator, store in the destination buffer. */
      *pDst++ = (q31_t) (sum0 >> 31);

      /* Increment the address modifier index of coefficient buffer */
      j++;

      /* Decrement the loop counter */
      i--;
    }

    /* Advance the state pointer by 1        
     * to process the next group of interpolation factor number samples */
    pState = pState + 1;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Processing is complete.        
   ** Now copy the last phaseLen - 1 samples to the satrt of the state buffer.        
   ** This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

  tapCnt = (phaseLen - 1u) >> 2u;

  /* copy data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }

  tapCnt = (phaseLen - 1u) % 0x04u;

  /* copy data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }

}


#else

void arm_fir_interpolate_q31(
  const arm_fir_interpolate_instance_q31 * S,
  q31_t * pSrc,
  q31_t * pDst,
  uint32_t blockSize)
{
  q31_t *pState = S->pState;                     /* State pointer */
  q31_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
  q31_t *pStateCurnt;                            /* Points to the current sample of the state */
  q31_t *ptr1, *ptr2;                            /* Temporary pointers for state and coefficient buffers */

  /* Run the below code for Cortex-M0 */

  q63_t sum;                                     /* Accumulator */
  q31_t x0, c0;                                  /* Temporary variables to hold state and coefficient values */
  uint32_t i, blkCnt;                            /* Loop counters */
  uint16_t phaseLen = S->phaseLength, tapCnt;    /* Length of each polyphase filter component */


  /* S->pState buffer contains previous frame (phaseLen - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = S->pState + ((q31_t) phaseLen - 1);

  /* Total number of intput samples */
  blkCnt = blockSize;

  /* Loop over the blockSize. */
  while(blkCnt > 0u)
  {
    /* Copy new input sample into the state buffer */
    *pStateCurnt++ = *pSrc++;

    /* Loop over the Interpolation factor. */
    i = S->L;

    while(i > 0u)
    {
      /* Set accumulator to zero */
      sum = 0;

      /* Initialize state pointer */
      ptr1 = pState;

      /* Initialize coefficient pointer */
      ptr2 = pCoeffs + (i - 1u);

      tapCnt = phaseLen;

      while(tapCnt > 0u)
      {
        /* Read the coefficient */
        c0 = *(ptr2);

        /* Increment the coefficient pointer by interpolation factor times. */
        ptr2 += S->L;

        /* Read the input sample */
        x0 = *ptr1++;

        /* Perform the multiply-accumulate */
        sum += (q63_t) x0 *c0;

        /* Decrement the loop counter */
        tapCnt--;
      }

      /* The result is in the accumulator, store in the destination buffer. */
      *pDst++ = (q31_t) (sum >> 31);

      /* Decrement the loop counter */
      i--;
    }

    /* Advance the state pointer by 1           
     * to process the next group of interpolation factor number samples */
    pState = pState + 1;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Processing is complete.         
   ** Now copy the last phaseLen - 1 samples to the satrt of the state buffer.       
   ** This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

  tapCnt = phaseLen - 1u;

  /* copy data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }

}

#endif /*   #ifndef ARM_MATH_CM0_FAMILY */

 /**    
  * @} end of FIR_Interpolate group    
  */