arm_fir_fast_q31.c 10.5 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
/* ----------------------------------------------------------------------    
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
*    
* $Date:        19. March 2015 
* $Revision: 	V.1.4.5  
*    
* Project: 	    CMSIS DSP Library    
* Title:	    arm_fir_fast_q31.c    
*    
* Description:	Processing function for the Q31 Fast FIR filter.    
*    
* Target Processor: Cortex-M4/Cortex-M3
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.    
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**    
 * @ingroup groupFilters    
 */

/**    
 * @addtogroup FIR    
 * @{    
 */

/**    
 * @param[in] *S points to an instance of the Q31 structure.    
 * @param[in] *pSrc points to the block of input data.    
 * @param[out] *pDst points to the block output data.    
 * @param[in] blockSize number of samples to process per call.    
 * @return none.    
 *    
 * <b>Scaling and Overflow Behavior:</b>    
 *    
 * \par    
 * This function is optimized for speed at the expense of fixed-point precision and overflow protection.    
 * The result of each 1.31 x 1.31 multiplication is truncated to 2.30 format.    
 * These intermediate results are added to a 2.30 accumulator.    
 * Finally, the accumulator is saturated and converted to a 1.31 result.    
 * The fast version has the same overflow behavior as the standard version and provides less precision since it discards the low 32 bits of each multiplication result.    
 * In order to avoid overflows completely the input signal must be scaled down by log2(numTaps) bits.    
 *    
 * \par    
 * Refer to the function <code>arm_fir_q31()</code> for a slower implementation of this function which uses a 64-bit accumulator to provide higher precision.  Both the slow and the fast versions use the same instance structure.    
 * Use the function <code>arm_fir_init_q31()</code> to initialize the filter structure.    
 */

IAR_ONLY_LOW_OPTIMIZATION_ENTER
void arm_fir_fast_q31(
  const arm_fir_instance_q31 * S,
  q31_t * pSrc,
  q31_t * pDst,
  uint32_t blockSize)
{
  q31_t *pState = S->pState;                     /* State pointer */
  q31_t *pCoeffs = S->pCoeffs;                   /* Coefficient pointer */
  q31_t *pStateCurnt;                            /* Points to the current sample of the state */
  q31_t x0, x1, x2, x3;                          /* Temporary variables to hold state */
  q31_t c0;                                      /* Temporary variable to hold coefficient value */
  q31_t *px;                                     /* Temporary pointer for state */
  q31_t *pb;                                     /* Temporary pointer for coefficient buffer */
  q31_t acc0, acc1, acc2, acc3;                  /* Accumulators */
  uint32_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter */
  uint32_t i, tapCnt, blkCnt;                    /* Loop counters */

  /* S->pState points to buffer which contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = &(S->pState[(numTaps - 1u)]);

  /* Apply loop unrolling and compute 4 output values simultaneously.    
   * The variables acc0 ... acc3 hold output values that are being computed:    
   *    
   *    acc0 =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]    
   *    acc1 =  b[numTaps-1] * x[n-numTaps] +   b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]    
   *    acc2 =  b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] +   b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]    
   *    acc3 =  b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps]   +...+ b[0] * x[3]    
   */
  blkCnt = blockSize >> 2;

  /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.    
   ** a second loop below computes the remaining 1 to 3 samples. */
  while(blkCnt > 0u)
  {
    /* Copy four new input samples into the state buffer */
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;
    *pStateCurnt++ = *pSrc++;

    /* Set all accumulators to zero */
    acc0 = 0;
    acc1 = 0;
    acc2 = 0;
    acc3 = 0;

    /* Initialize state pointer */
    px = pState;

    /* Initialize coefficient pointer */
    pb = pCoeffs;

    /* Read the first three samples from the state buffer:    
     *  x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
    x0 = *(px++);
    x1 = *(px++);
    x2 = *(px++);

    /* Loop unrolling.  Process 4 taps at a time. */
    tapCnt = numTaps >> 2;
    i = tapCnt;

    while(i > 0u)
    {
      /* Read the b[numTaps] coefficient */
      c0 = *pb;

      /* Read x[n-numTaps-3] sample */
      x3 = *px;

      /* acc0 +=  b[numTaps] * x[n-numTaps] */
      multAcc_32x32_keep32_R(acc0, x0, c0);

      /* acc1 +=  b[numTaps] * x[n-numTaps-1] */
      multAcc_32x32_keep32_R(acc1, x1, c0);

      /* acc2 +=  b[numTaps] * x[n-numTaps-2] */
      multAcc_32x32_keep32_R(acc2, x2, c0);

      /* acc3 +=  b[numTaps] * x[n-numTaps-3] */
      multAcc_32x32_keep32_R(acc3, x3, c0);

      /* Read the b[numTaps-1] coefficient */
      c0 = *(pb + 1u);

      /* Read x[n-numTaps-4] sample */
      x0 = *(px + 1u);

      /* Perform the multiply-accumulates */      
      multAcc_32x32_keep32_R(acc0, x1, c0);
      multAcc_32x32_keep32_R(acc1, x2, c0);
      multAcc_32x32_keep32_R(acc2, x3, c0);
      multAcc_32x32_keep32_R(acc3, x0, c0);

      /* Read the b[numTaps-2] coefficient */
      c0 = *(pb + 2u);

      /* Read x[n-numTaps-5] sample */
      x1 = *(px + 2u);

      /* Perform the multiply-accumulates */      
      multAcc_32x32_keep32_R(acc0, x2, c0);
      multAcc_32x32_keep32_R(acc1, x3, c0);
      multAcc_32x32_keep32_R(acc2, x0, c0);
      multAcc_32x32_keep32_R(acc3, x1, c0);

      /* Read the b[numTaps-3] coefficients */
      c0 = *(pb + 3u);

      /* Read x[n-numTaps-6] sample */
      x2 = *(px + 3u);

      /* Perform the multiply-accumulates */      
      multAcc_32x32_keep32_R(acc0, x3, c0);
      multAcc_32x32_keep32_R(acc1, x0, c0);
      multAcc_32x32_keep32_R(acc2, x1, c0);
      multAcc_32x32_keep32_R(acc3, x2, c0);

      /* update coefficient pointer */
      pb += 4u;
      px += 4u;
      
      /* Decrement the loop counter */
      i--;
    }

    /* If the filter length is not a multiple of 4, compute the remaining filter taps */

    i = numTaps - (tapCnt * 4u);
    while(i > 0u)
    {
      /* Read coefficients */
      c0 = *(pb++);

      /* Fetch 1 state variable */
      x3 = *(px++);

      /* Perform the multiply-accumulates */      
      multAcc_32x32_keep32_R(acc0, x0, c0);
      multAcc_32x32_keep32_R(acc1, x1, c0);
      multAcc_32x32_keep32_R(acc2, x2, c0);
      multAcc_32x32_keep32_R(acc3, x3, c0);

      /* Reuse the present sample states for next sample */
      x0 = x1;
      x1 = x2;
      x2 = x3;

      /* Decrement the loop counter */
      i--;
    }

    /* Advance the state pointer by 4 to process the next group of 4 samples */
    pState = pState + 4;

    /* The results in the 4 accumulators are in 2.30 format.  Convert to 1.31    
     ** Then store the 4 outputs in the destination buffer. */
    *pDst++ = (q31_t) (acc0 << 1);
    *pDst++ = (q31_t) (acc1 << 1);
    *pDst++ = (q31_t) (acc2 << 1);
    *pDst++ = (q31_t) (acc3 << 1);

    /* Decrement the samples loop counter */
    blkCnt--;
  }


  /* If the blockSize is not a multiple of 4, compute any remaining output samples here.    
   ** No loop unrolling is used. */
  blkCnt = blockSize % 4u;

  while(blkCnt > 0u)
  {
    /* Copy one sample at a time into state buffer */
    *pStateCurnt++ = *pSrc++;

    /* Set the accumulator to zero */
    acc0 = 0;

    /* Initialize state pointer */
    px = pState;

    /* Initialize Coefficient pointer */
    pb = (pCoeffs);

    i = numTaps;

    /* Perform the multiply-accumulates */
    do
    {
      multAcc_32x32_keep32_R(acc0, (*px++), (*(pb++)));
      i--;
    } while(i > 0u);

    /* The result is in 2.30 format.  Convert to 1.31    
     ** Then store the output in the destination buffer. */
    *pDst++ = (q31_t) (acc0 << 1);

    /* Advance state pointer by 1 for the next sample */
    pState = pState + 1;

    /* Decrement the samples loop counter */
    blkCnt--;
  }

  /* Processing is complete.    
   ** Now copy the last numTaps - 1 samples to the start of the state buffer.    
   ** This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

  /* Calculate remaining number of copies */
  tapCnt = (numTaps - 1u);

  /* Copy the remaining q31_t data */
  while(tapCnt > 0u)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    tapCnt--;
  }


}
IAR_ONLY_LOW_OPTIMIZATION_EXIT
/**    
 * @} end of FIR group    
 */