arm_fir_f32.c 30.1 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997
/* ----------------------------------------------------------------------  
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.  
*  
* $Date:        19. March 2015
* $Revision: 	V.1.4.5
*  
* Project: 	    CMSIS DSP Library  
* Title:	    arm_fir_f32.c  
*  
* Description:	Floating-point FIR filter processing function.  
*  
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE. 
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**  
* @ingroup groupFilters  
*/

/**  
* @defgroup FIR Finite Impulse Response (FIR) Filters  
*  
* This set of functions implements Finite Impulse Response (FIR) filters  
* for Q7, Q15, Q31, and floating-point data types.  Fast versions of Q15 and Q31 are also provided.  
* The functions operate on blocks of input and output data and each call to the function processes  
* <code>blockSize</code> samples through the filter.  <code>pSrc</code> and  
* <code>pDst</code> points to input and output arrays containing <code>blockSize</code> values.  
*  
* \par Algorithm:  
* The FIR filter algorithm is based upon a sequence of multiply-accumulate (MAC) operations.  
* Each filter coefficient <code>b[n]</code> is multiplied by a state variable which equals a previous input sample <code>x[n]</code>.  
* <pre>  
*    y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1]  
* </pre>  
* \par  
* \image html FIR.gif "Finite Impulse Response filter"  
* \par  
* <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.  
* Coefficients are stored in time reversed order.  
* \par  
* <pre>  
*    {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}  
* </pre>  
* \par  
* <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>.  
* Samples in the state buffer are stored in the following order.  
* \par  
* <pre>  
*    {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]}  
* </pre>  
* \par  
* Note that the length of the state buffer exceeds the length of the coefficient array by <code>blockSize-1</code>.  
* The increased state buffer length allows circular addressing, which is traditionally used in the FIR filters,  
* to be avoided and yields a significant speed improvement.  
* The state variables are updated after each block of data is processed; the coefficients are untouched.  
* \par Instance Structure  
* The coefficients and state variables for a filter are stored together in an instance data structure.  
* A separate instance structure must be defined for each filter.  
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.  
* There are separate instance structure declarations for each of the 4 supported data types.  
*  
* \par Initialization Functions  
* There is also an associated initialization function for each data type.  
* The initialization function performs the following operations:  
* - Sets the values of the internal structure fields.  
* - Zeros out the values in the state buffer.  
* To do this manually without calling the init function, assign the follow subfields of the instance structure:
* numTaps, pCoeffs, pState. Also set all of the values in pState to zero. 
*  
* \par  
* Use of the initialization function is optional.  
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.  
* To place an instance structure into a const data section, the instance structure must be manually initialized.  
* Set the values in the state buffer to zeros before static initialization.  
* The code below statically initializes each of the 4 different data type filter instance structures  
* <pre>  
*arm_fir_instance_f32 S = {numTaps, pState, pCoeffs};  
*arm_fir_instance_q31 S = {numTaps, pState, pCoeffs};  
*arm_fir_instance_q15 S = {numTaps, pState, pCoeffs};  
*arm_fir_instance_q7 S =  {numTaps, pState, pCoeffs};  
* </pre>  
*  
* where <code>numTaps</code> is the number of filter coefficients in the filter; <code>pState</code> is the address of the state buffer;  
* <code>pCoeffs</code> is the address of the coefficient buffer.  
*  
* \par Fixed-Point Behavior  
* Care must be taken when using the fixed-point versions of the FIR filter functions.  
* In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.  
* Refer to the function specific documentation below for usage guidelines.  
*/

/**  
* @addtogroup FIR  
* @{  
*/

/**  
*  
* @param[in]  *S points to an instance of the floating-point FIR filter structure.  
* @param[in]  *pSrc points to the block of input data.  
* @param[out] *pDst points to the block of output data.  
* @param[in]  blockSize number of samples to process per call.  
* @return     none.  
*  
*/

#if defined(ARM_MATH_CM7)

void arm_fir_f32(
const arm_fir_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
   float32_t *pState = S->pState;                 /* State pointer */
   float32_t *pCoeffs = S->pCoeffs;               /* Coefficient pointer */
   float32_t *pStateCurnt;                        /* Points to the current sample of the state */
   float32_t *px, *pb;                            /* Temporary pointers for state and coefficient buffers */
   float32_t acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7;     /* Accumulators */
   float32_t x0, x1, x2, x3, x4, x5, x6, x7, c0;  /* Temporary variables to hold state and coefficient values */
   uint32_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter */
   uint32_t i, tapCnt, blkCnt;                    /* Loop counters */

   /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
   /* pStateCurnt points to the location where the new input data should be written */
   pStateCurnt = &(S->pState[(numTaps - 1u)]);

   /* Apply loop unrolling and compute 8 output values simultaneously.  
    * The variables acc0 ... acc7 hold output values that are being computed:  
    *  
    *    acc0 =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]  
    *    acc1 =  b[numTaps-1] * x[n-numTaps] +   b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]  
    *    acc2 =  b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] +   b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]  
    *    acc3 =  b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps]   +...+ b[0] * x[3]  
    */
   blkCnt = blockSize >> 3;

   /* First part of the processing with loop unrolling.  Compute 8 outputs at a time.  
   ** a second loop below computes the remaining 1 to 7 samples. */
   while(blkCnt > 0u)
   {
      /* Copy four new input samples into the state buffer */
      *pStateCurnt++ = *pSrc++;
      *pStateCurnt++ = *pSrc++;
      *pStateCurnt++ = *pSrc++;
      *pStateCurnt++ = *pSrc++;

      /* Set all accumulators to zero */
      acc0 = 0.0f;
      acc1 = 0.0f;
      acc2 = 0.0f;
      acc3 = 0.0f;
      acc4 = 0.0f;
      acc5 = 0.0f;
      acc6 = 0.0f;
      acc7 = 0.0f;		

      /* Initialize state pointer */
      px = pState;

      /* Initialize coeff pointer */
      pb = (pCoeffs);		
   
      /* This is separated from the others to avoid 
       * a call to __aeabi_memmove which would be slower
       */
      *pStateCurnt++ = *pSrc++;
      *pStateCurnt++ = *pSrc++;
      *pStateCurnt++ = *pSrc++;
      *pStateCurnt++ = *pSrc++;

      /* Read the first seven samples from the state buffer:  x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
      x0 = *px++;
      x1 = *px++;
      x2 = *px++;
      x3 = *px++;
      x4 = *px++;
      x5 = *px++;
      x6 = *px++;

      /* Loop unrolling.  Process 8 taps at a time. */
      tapCnt = numTaps >> 3u;
      
      /* Loop over the number of taps.  Unroll by a factor of 8.  
       ** Repeat until we've computed numTaps-8 coefficients. */
      while(tapCnt > 0u)
      {
         /* Read the b[numTaps-1] coefficient */
         c0 = *(pb++);

         /* Read x[n-numTaps-3] sample */
         x7 = *(px++);

         /* acc0 +=  b[numTaps-1] * x[n-numTaps] */
         acc0 += x0 * c0;

         /* acc1 +=  b[numTaps-1] * x[n-numTaps-1] */
         acc1 += x1 * c0;

         /* acc2 +=  b[numTaps-1] * x[n-numTaps-2] */
         acc2 += x2 * c0;

         /* acc3 +=  b[numTaps-1] * x[n-numTaps-3] */
         acc3 += x3 * c0;

         /* acc4 +=  b[numTaps-1] * x[n-numTaps-4] */
         acc4 += x4 * c0;

         /* acc1 +=  b[numTaps-1] * x[n-numTaps-5] */
         acc5 += x5 * c0;

         /* acc2 +=  b[numTaps-1] * x[n-numTaps-6] */
         acc6 += x6 * c0;

         /* acc3 +=  b[numTaps-1] * x[n-numTaps-7] */
         acc7 += x7 * c0;
         
         /* Read the b[numTaps-2] coefficient */
         c0 = *(pb++);

         /* Read x[n-numTaps-4] sample */
         x0 = *(px++);

         /* Perform the multiply-accumulate */
         acc0 += x1 * c0;
         acc1 += x2 * c0;   
         acc2 += x3 * c0;   
         acc3 += x4 * c0;   
         acc4 += x5 * c0;   
         acc5 += x6 * c0;   
         acc6 += x7 * c0;   
         acc7 += x0 * c0;   
         
         /* Read the b[numTaps-3] coefficient */
         c0 = *(pb++);

         /* Read x[n-numTaps-5] sample */
         x1 = *(px++);

         /* Perform the multiply-accumulates */      
         acc0 += x2 * c0;
         acc1 += x3 * c0;   
         acc2 += x4 * c0;   
         acc3 += x5 * c0;   
         acc4 += x6 * c0;   
         acc5 += x7 * c0;   
         acc6 += x0 * c0;   
         acc7 += x1 * c0;   

         /* Read the b[numTaps-4] coefficient */
         c0 = *(pb++);

         /* Read x[n-numTaps-6] sample */
         x2 = *(px++);

         /* Perform the multiply-accumulates */      
         acc0 += x3 * c0;
         acc1 += x4 * c0;   
         acc2 += x5 * c0;   
         acc3 += x6 * c0;   
         acc4 += x7 * c0;   
         acc5 += x0 * c0;   
         acc6 += x1 * c0;   
         acc7 += x2 * c0;   

         /* Read the b[numTaps-4] coefficient */
         c0 = *(pb++);

         /* Read x[n-numTaps-6] sample */
         x3 = *(px++);
         /* Perform the multiply-accumulates */      
         acc0 += x4 * c0;
         acc1 += x5 * c0;   
         acc2 += x6 * c0;   
         acc3 += x7 * c0;   
         acc4 += x0 * c0;   
         acc5 += x1 * c0;   
         acc6 += x2 * c0;   
         acc7 += x3 * c0;   

         /* Read the b[numTaps-4] coefficient */
         c0 = *(pb++);

         /* Read x[n-numTaps-6] sample */
         x4 = *(px++);

         /* Perform the multiply-accumulates */      
         acc0 += x5 * c0;
         acc1 += x6 * c0;   
         acc2 += x7 * c0;   
         acc3 += x0 * c0;   
         acc4 += x1 * c0;   
         acc5 += x2 * c0;   
         acc6 += x3 * c0;   
         acc7 += x4 * c0;   

         /* Read the b[numTaps-4] coefficient */
         c0 = *(pb++);

         /* Read x[n-numTaps-6] sample */
         x5 = *(px++);

         /* Perform the multiply-accumulates */      
         acc0 += x6 * c0;
         acc1 += x7 * c0;   
         acc2 += x0 * c0;   
         acc3 += x1 * c0;   
         acc4 += x2 * c0;   
         acc5 += x3 * c0;   
         acc6 += x4 * c0;   
         acc7 += x5 * c0;   

         /* Read the b[numTaps-4] coefficient */
         c0 = *(pb++);

         /* Read x[n-numTaps-6] sample */
         x6 = *(px++);

         /* Perform the multiply-accumulates */      
         acc0 += x7 * c0;
         acc1 += x0 * c0;   
         acc2 += x1 * c0;   
         acc3 += x2 * c0;   
         acc4 += x3 * c0;   
         acc5 += x4 * c0;   
         acc6 += x5 * c0;   
         acc7 += x6 * c0;   

         tapCnt--;
      }

      /* If the filter length is not a multiple of 8, compute the remaining filter taps */
      tapCnt = numTaps % 0x8u;

      while(tapCnt > 0u)
      {
         /* Read coefficients */
         c0 = *(pb++);

         /* Fetch 1 state variable */
         x7 = *(px++);

         /* Perform the multiply-accumulates */      
         acc0 += x0 * c0;
         acc1 += x1 * c0;   
         acc2 += x2 * c0;   
         acc3 += x3 * c0;   
         acc4 += x4 * c0;   
         acc5 += x5 * c0;   
         acc6 += x6 * c0;   
         acc7 += x7 * c0;   

         /* Reuse the present sample states for next sample */
         x0 = x1;
         x1 = x2;
         x2 = x3;
         x3 = x4;
         x4 = x5;
         x5 = x6;
         x6 = x7;

         /* Decrement the loop counter */
         tapCnt--;
      }

      /* Advance the state pointer by 8 to process the next group of 8 samples */
      pState = pState + 8;

      /* The results in the 8 accumulators, store in the destination buffer. */
      *pDst++ = acc0;
      *pDst++ = acc1;
      *pDst++ = acc2;
      *pDst++ = acc3;
      *pDst++ = acc4;
      *pDst++ = acc5;
      *pDst++ = acc6;
      *pDst++ = acc7;

      blkCnt--;
   }

   /* If the blockSize is not a multiple of 8, compute any remaining output samples here.  
   ** No loop unrolling is used. */
   blkCnt = blockSize % 0x8u;

   while(blkCnt > 0u)
   {
      /* Copy one sample at a time into state buffer */
      *pStateCurnt++ = *pSrc++;

      /* Set the accumulator to zero */
      acc0 = 0.0f;

      /* Initialize state pointer */
      px = pState;

      /* Initialize Coefficient pointer */
      pb = (pCoeffs);

      i = numTaps;

      /* Perform the multiply-accumulates */
      do
      {
         acc0 += *px++ * *pb++;
         i--;

      } while(i > 0u);

      /* The result is store in the destination buffer. */
      *pDst++ = acc0;

      /* Advance state pointer by 1 for the next sample */
      pState = pState + 1;

      blkCnt--;
   }

   /* Processing is complete.  
   ** Now copy the last numTaps - 1 samples to the start of the state buffer.  
   ** This prepares the state buffer for the next function call. */

   /* Points to the start of the state buffer */
   pStateCurnt = S->pState;

   tapCnt = (numTaps - 1u) >> 2u;

   /* copy data */
   while(tapCnt > 0u)
   {
      *pStateCurnt++ = *pState++;
      *pStateCurnt++ = *pState++;
      *pStateCurnt++ = *pState++;
      *pStateCurnt++ = *pState++;

      /* Decrement the loop counter */
      tapCnt--;
   }

   /* Calculate remaining number of copies */
   tapCnt = (numTaps - 1u) % 0x4u;

   /* Copy the remaining q31_t data */
   while(tapCnt > 0u)
   {
      *pStateCurnt++ = *pState++;

      /* Decrement the loop counter */
      tapCnt--;
   }
}

#elif defined(ARM_MATH_CM0_FAMILY)

void arm_fir_f32(
const arm_fir_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
   float32_t *pState = S->pState;                 /* State pointer */
   float32_t *pCoeffs = S->pCoeffs;               /* Coefficient pointer */
   float32_t *pStateCurnt;                        /* Points to the current sample of the state */
   float32_t *px, *pb;                            /* Temporary pointers for state and coefficient buffers */
   uint32_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter */
   uint32_t i, tapCnt, blkCnt;                    /* Loop counters */

   /* Run the below code for Cortex-M0 */

   float32_t acc;

   /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
   /* pStateCurnt points to the location where the new input data should be written */
   pStateCurnt = &(S->pState[(numTaps - 1u)]);

   /* Initialize blkCnt with blockSize */
   blkCnt = blockSize;

   while(blkCnt > 0u)
   {
      /* Copy one sample at a time into state buffer */
      *pStateCurnt++ = *pSrc++;

      /* Set the accumulator to zero */
      acc = 0.0f;

      /* Initialize state pointer */
      px = pState;

      /* Initialize Coefficient pointer */
      pb = pCoeffs;

      i = numTaps;

      /* Perform the multiply-accumulates */
      do
      {
         /* acc =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0] */
         acc += *px++ * *pb++;
         i--;

      } while(i > 0u);

      /* The result is store in the destination buffer. */
      *pDst++ = acc;

      /* Advance state pointer by 1 for the next sample */
      pState = pState + 1;

      blkCnt--;
   }

   /* Processing is complete.         
   ** Now copy the last numTaps - 1 samples to the starting of the state buffer.       
   ** This prepares the state buffer for the next function call. */

   /* Points to the start of the state buffer */
   pStateCurnt = S->pState;

   /* Copy numTaps number of values */
   tapCnt = numTaps - 1u;

   /* Copy data */
   while(tapCnt > 0u)
   {
      *pStateCurnt++ = *pState++;

      /* Decrement the loop counter */
      tapCnt--;
   }

}

#else

/* Run the below code for Cortex-M4 and Cortex-M3 */

void arm_fir_f32(
const arm_fir_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{
   float32_t *pState = S->pState;                 /* State pointer */
   float32_t *pCoeffs = S->pCoeffs;               /* Coefficient pointer */
   float32_t *pStateCurnt;                        /* Points to the current sample of the state */
   float32_t *px, *pb;                            /* Temporary pointers for state and coefficient buffers */
   float32_t acc0, acc1, acc2, acc3, acc4, acc5, acc6, acc7;     /* Accumulators */
   float32_t x0, x1, x2, x3, x4, x5, x6, x7, c0;  /* Temporary variables to hold state and coefficient values */
   uint32_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter */
   uint32_t i, tapCnt, blkCnt;                    /* Loop counters */
   float32_t p0,p1,p2,p3,p4,p5,p6,p7;             /* Temporary product values */

   /* S->pState points to state array which contains previous frame (numTaps - 1) samples */
   /* pStateCurnt points to the location where the new input data should be written */
   pStateCurnt = &(S->pState[(numTaps - 1u)]);

   /* Apply loop unrolling and compute 8 output values simultaneously.  
    * The variables acc0 ... acc7 hold output values that are being computed:  
    *  
    *    acc0 =  b[numTaps-1] * x[n-numTaps-1] + b[numTaps-2] * x[n-numTaps-2] + b[numTaps-3] * x[n-numTaps-3] +...+ b[0] * x[0]  
    *    acc1 =  b[numTaps-1] * x[n-numTaps] +   b[numTaps-2] * x[n-numTaps-1] + b[numTaps-3] * x[n-numTaps-2] +...+ b[0] * x[1]  
    *    acc2 =  b[numTaps-1] * x[n-numTaps+1] + b[numTaps-2] * x[n-numTaps] +   b[numTaps-3] * x[n-numTaps-1] +...+ b[0] * x[2]  
    *    acc3 =  b[numTaps-1] * x[n-numTaps+2] + b[numTaps-2] * x[n-numTaps+1] + b[numTaps-3] * x[n-numTaps]   +...+ b[0] * x[3]  
    */
   blkCnt = blockSize >> 3;

   /* First part of the processing with loop unrolling.  Compute 8 outputs at a time.  
   ** a second loop below computes the remaining 1 to 7 samples. */
   while(blkCnt > 0u)
   {
      /* Copy four new input samples into the state buffer */
      *pStateCurnt++ = *pSrc++;
      *pStateCurnt++ = *pSrc++;
      *pStateCurnt++ = *pSrc++;
      *pStateCurnt++ = *pSrc++;

      /* Set all accumulators to zero */
      acc0 = 0.0f;
      acc1 = 0.0f;
      acc2 = 0.0f;
      acc3 = 0.0f;
      acc4 = 0.0f;
      acc5 = 0.0f;
      acc6 = 0.0f;
      acc7 = 0.0f;		

      /* Initialize state pointer */
      px = pState;

      /* Initialize coeff pointer */
      pb = (pCoeffs);		
   
      /* This is separated from the others to avoid 
       * a call to __aeabi_memmove which would be slower
       */
      *pStateCurnt++ = *pSrc++;
      *pStateCurnt++ = *pSrc++;
      *pStateCurnt++ = *pSrc++;
      *pStateCurnt++ = *pSrc++;

      /* Read the first seven samples from the state buffer:  x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2] */
      x0 = *px++;
      x1 = *px++;
      x2 = *px++;
      x3 = *px++;
      x4 = *px++;
      x5 = *px++;
      x6 = *px++;

      /* Loop unrolling.  Process 8 taps at a time. */
      tapCnt = numTaps >> 3u;
      
      /* Loop over the number of taps.  Unroll by a factor of 8.  
       ** Repeat until we've computed numTaps-8 coefficients. */
      while(tapCnt > 0u)
      {
         /* Read the b[numTaps-1] coefficient */
         c0 = *(pb++);

         /* Read x[n-numTaps-3] sample */
         x7 = *(px++);

         /* acc0 +=  b[numTaps-1] * x[n-numTaps] */
         p0 = x0 * c0;

         /* acc1 +=  b[numTaps-1] * x[n-numTaps-1] */
         p1 = x1 * c0;

         /* acc2 +=  b[numTaps-1] * x[n-numTaps-2] */
         p2 = x2 * c0;

         /* acc3 +=  b[numTaps-1] * x[n-numTaps-3] */
         p3 = x3 * c0;

         /* acc4 +=  b[numTaps-1] * x[n-numTaps-4] */
         p4 = x4 * c0;

         /* acc1 +=  b[numTaps-1] * x[n-numTaps-5] */
         p5 = x5 * c0;

         /* acc2 +=  b[numTaps-1] * x[n-numTaps-6] */
         p6 = x6 * c0;

         /* acc3 +=  b[numTaps-1] * x[n-numTaps-7] */
         p7 = x7 * c0;
         
         /* Read the b[numTaps-2] coefficient */
         c0 = *(pb++);

         /* Read x[n-numTaps-4] sample */
         x0 = *(px++);
         
         acc0 += p0;
         acc1 += p1;
         acc2 += p2;
         acc3 += p3;
         acc4 += p4;
         acc5 += p5;
         acc6 += p6;
         acc7 += p7;


         /* Perform the multiply-accumulate */
         p0 = x1 * c0;
         p1 = x2 * c0;   
         p2 = x3 * c0;   
         p3 = x4 * c0;   
         p4 = x5 * c0;   
         p5 = x6 * c0;   
         p6 = x7 * c0;   
         p7 = x0 * c0;   
         
         /* Read the b[numTaps-3] coefficient */
         c0 = *(pb++);

         /* Read x[n-numTaps-5] sample */
         x1 = *(px++);
         
         acc0 += p0;
         acc1 += p1;
         acc2 += p2;
         acc3 += p3;
         acc4 += p4;
         acc5 += p5;
         acc6 += p6;
         acc7 += p7;

         /* Perform the multiply-accumulates */      
         p0 = x2 * c0;
         p1 = x3 * c0;   
         p2 = x4 * c0;   
         p3 = x5 * c0;   
         p4 = x6 * c0;   
         p5 = x7 * c0;   
         p6 = x0 * c0;   
         p7 = x1 * c0;   

         /* Read the b[numTaps-4] coefficient */
         c0 = *(pb++);

         /* Read x[n-numTaps-6] sample */
         x2 = *(px++);
         
         acc0 += p0;
         acc1 += p1;
         acc2 += p2;
         acc3 += p3;
         acc4 += p4;
         acc5 += p5;
         acc6 += p6;
         acc7 += p7;

         /* Perform the multiply-accumulates */      
         p0 = x3 * c0;
         p1 = x4 * c0;   
         p2 = x5 * c0;   
         p3 = x6 * c0;   
         p4 = x7 * c0;   
         p5 = x0 * c0;   
         p6 = x1 * c0;   
         p7 = x2 * c0;   

         /* Read the b[numTaps-4] coefficient */
         c0 = *(pb++);

         /* Read x[n-numTaps-6] sample */
         x3 = *(px++);
         
         acc0 += p0;
         acc1 += p1;
         acc2 += p2;
         acc3 += p3;
         acc4 += p4;
         acc5 += p5;
         acc6 += p6;
         acc7 += p7;

         /* Perform the multiply-accumulates */      
         p0 = x4 * c0;
         p1 = x5 * c0;   
         p2 = x6 * c0;   
         p3 = x7 * c0;   
         p4 = x0 * c0;   
         p5 = x1 * c0;   
         p6 = x2 * c0;   
         p7 = x3 * c0;   

         /* Read the b[numTaps-4] coefficient */
         c0 = *(pb++);

         /* Read x[n-numTaps-6] sample */
         x4 = *(px++);
         
         acc0 += p0;
         acc1 += p1;
         acc2 += p2;
         acc3 += p3;
         acc4 += p4;
         acc5 += p5;
         acc6 += p6;
         acc7 += p7;

         /* Perform the multiply-accumulates */      
         p0 = x5 * c0;
         p1 = x6 * c0;   
         p2 = x7 * c0;   
         p3 = x0 * c0;   
         p4 = x1 * c0;   
         p5 = x2 * c0;   
         p6 = x3 * c0;   
         p7 = x4 * c0;   

         /* Read the b[numTaps-4] coefficient */
         c0 = *(pb++);

         /* Read x[n-numTaps-6] sample */
         x5 = *(px++);
         
         acc0 += p0;
         acc1 += p1;
         acc2 += p2;
         acc3 += p3;
         acc4 += p4;
         acc5 += p5;
         acc6 += p6;
         acc7 += p7;

         /* Perform the multiply-accumulates */      
         p0 = x6 * c0;
         p1 = x7 * c0;   
         p2 = x0 * c0;   
         p3 = x1 * c0;   
         p4 = x2 * c0;   
         p5 = x3 * c0;   
         p6 = x4 * c0;   
         p7 = x5 * c0;   

         /* Read the b[numTaps-4] coefficient */
         c0 = *(pb++);

         /* Read x[n-numTaps-6] sample */
         x6 = *(px++);
         
         acc0 += p0;
         acc1 += p1;
         acc2 += p2;
         acc3 += p3;
         acc4 += p4;
         acc5 += p5;
         acc6 += p6;
         acc7 += p7;

         /* Perform the multiply-accumulates */      
         p0 = x7 * c0;
         p1 = x0 * c0;   
         p2 = x1 * c0;   
         p3 = x2 * c0;   
         p4 = x3 * c0;   
         p5 = x4 * c0;   
         p6 = x5 * c0;   
         p7 = x6 * c0;   

         tapCnt--;
         
         acc0 += p0;
         acc1 += p1;
         acc2 += p2;
         acc3 += p3;
         acc4 += p4;
         acc5 += p5;
         acc6 += p6;
         acc7 += p7;
      }

      /* If the filter length is not a multiple of 8, compute the remaining filter taps */
      tapCnt = numTaps % 0x8u;

      while(tapCnt > 0u)
      {
         /* Read coefficients */
         c0 = *(pb++);

         /* Fetch 1 state variable */
         x7 = *(px++);

         /* Perform the multiply-accumulates */      
         p0 = x0 * c0;
         p1 = x1 * c0;   
         p2 = x2 * c0;   
         p3 = x3 * c0;   
         p4 = x4 * c0;   
         p5 = x5 * c0;   
         p6 = x6 * c0;   
         p7 = x7 * c0;   

         /* Reuse the present sample states for next sample */
         x0 = x1;
         x1 = x2;
         x2 = x3;
         x3 = x4;
         x4 = x5;
         x5 = x6;
         x6 = x7;
         
         acc0 += p0;
         acc1 += p1;
         acc2 += p2;
         acc3 += p3;
         acc4 += p4;
         acc5 += p5;
         acc6 += p6;
         acc7 += p7;

         /* Decrement the loop counter */
         tapCnt--;
      }

      /* Advance the state pointer by 8 to process the next group of 8 samples */
      pState = pState + 8;

      /* The results in the 8 accumulators, store in the destination buffer. */
      *pDst++ = acc0;
      *pDst++ = acc1;
      *pDst++ = acc2;
      *pDst++ = acc3;
      *pDst++ = acc4;
      *pDst++ = acc5;
      *pDst++ = acc6;
      *pDst++ = acc7;

      blkCnt--;
   }

   /* If the blockSize is not a multiple of 8, compute any remaining output samples here.  
   ** No loop unrolling is used. */
   blkCnt = blockSize % 0x8u;

   while(blkCnt > 0u)
   {
      /* Copy one sample at a time into state buffer */
      *pStateCurnt++ = *pSrc++;

      /* Set the accumulator to zero */
      acc0 = 0.0f;

      /* Initialize state pointer */
      px = pState;

      /* Initialize Coefficient pointer */
      pb = (pCoeffs);

      i = numTaps;

      /* Perform the multiply-accumulates */
      do
      {
         acc0 += *px++ * *pb++;
         i--;

      } while(i > 0u);

      /* The result is store in the destination buffer. */
      *pDst++ = acc0;

      /* Advance state pointer by 1 for the next sample */
      pState = pState + 1;

      blkCnt--;
   }

   /* Processing is complete.  
   ** Now copy the last numTaps - 1 samples to the start of the state buffer.  
   ** This prepares the state buffer for the next function call. */

   /* Points to the start of the state buffer */
   pStateCurnt = S->pState;

   tapCnt = (numTaps - 1u) >> 2u;

   /* copy data */
   while(tapCnt > 0u)
   {
      *pStateCurnt++ = *pState++;
      *pStateCurnt++ = *pState++;
      *pStateCurnt++ = *pState++;
      *pStateCurnt++ = *pState++;

      /* Decrement the loop counter */
      tapCnt--;
   }

   /* Calculate remaining number of copies */
   tapCnt = (numTaps - 1u) % 0x4u;

   /* Copy the remaining q31_t data */
   while(tapCnt > 0u)
   {
      *pStateCurnt++ = *pState++;

      /* Decrement the loop counter */
      tapCnt--;
   }
}

#endif 

/**  
* @} end of FIR group  
*/