arm_fir_decimate_f32.c 16.9 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
/* ----------------------------------------------------------------------    
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
*    
* $Date:        19. March 2015
* $Revision: 	V.1.4.5
*    
* Project: 	    CMSIS DSP Library    
* Title:	    arm_fir_decimate_f32.c    
*    
* Description:	FIR decimation for floating-point sequences.    
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE. 
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**    
 * @ingroup groupFilters    
 */

/**    
 * @defgroup FIR_decimate Finite Impulse Response (FIR) Decimator    
 *    
 * These functions combine an FIR filter together with a decimator.    
 * They are used in multirate systems for reducing the sample rate of a signal without introducing aliasing distortion.    
 * Conceptually, the functions are equivalent to the block diagram below:    
 * \image html FIRDecimator.gif "Components included in the FIR Decimator functions"    
 * When decimating by a factor of <code>M</code>, the signal should be prefiltered by a lowpass filter with a normalized    
 * cutoff frequency of <code>1/M</code> in order to prevent aliasing distortion.    
 * The user of the function is responsible for providing the filter coefficients.    
 *    
 * The FIR decimator functions provided in the CMSIS DSP Library combine the FIR filter and the decimator in an efficient manner.    
 * Instead of calculating all of the FIR filter outputs and discarding <code>M-1</code> out of every <code>M</code>, only the    
 * samples output by the decimator are computed.    
 * The functions operate on blocks of input and output data.    
 * <code>pSrc</code> points to an array of <code>blockSize</code> input values and    
 * <code>pDst</code> points to an array of <code>blockSize/M</code> output values.    
 * In order to have an integer number of output samples <code>blockSize</code>    
 * must always be a multiple of the decimation factor <code>M</code>.    
 *    
 * The library provides separate functions for Q15, Q31 and floating-point data types.    
 *    
 * \par Algorithm:    
 * The FIR portion of the algorithm uses the standard form filter:    
 * <pre>    
 *    y[n] = b[0] * x[n] + b[1] * x[n-1] + b[2] * x[n-2] + ...+ b[numTaps-1] * x[n-numTaps+1]    
 * </pre>    
 * where, <code>b[n]</code> are the filter coefficients.    
 * \par   
 * The <code>pCoeffs</code> points to a coefficient array of size <code>numTaps</code>.    
 * Coefficients are stored in time reversed order.    
 * \par    
 * <pre>    
 *    {b[numTaps-1], b[numTaps-2], b[N-2], ..., b[1], b[0]}    
 * </pre>    
 * \par    
 * <code>pState</code> points to a state array of size <code>numTaps + blockSize - 1</code>.    
 * Samples in the state buffer are stored in the order:    
 * \par    
 * <pre>    
 *    {x[n-numTaps+1], x[n-numTaps], x[n-numTaps-1], x[n-numTaps-2]....x[0], x[1], ..., x[blockSize-1]}    
 * </pre>    
 * The state variables are updated after each block of data is processed, the coefficients are untouched.    
 *    
 * \par Instance Structure    
 * The coefficients and state variables for a filter are stored together in an instance data structure.    
 * A separate instance structure must be defined for each filter.    
 * Coefficient arrays may be shared among several instances while state variable array should be allocated separately.    
 * There are separate instance structure declarations for each of the 3 supported data types.    
 *    
 * \par Initialization Functions    
 * There is also an associated initialization function for each data type.    
 * The initialization function performs the following operations:    
 * - Sets the values of the internal structure fields.    
 * - Zeros out the values in the state buffer.    
 * - Checks to make sure that the size of the input is a multiple of the decimation factor.    
 * To do this manually without calling the init function, assign the follow subfields of the instance structure:
 * numTaps, pCoeffs, M (decimation factor), pState. Also set all of the values in pState to zero. 
 *    
 * \par    
 * Use of the initialization function is optional.    
 * However, if the initialization function is used, then the instance structure cannot be placed into a const data section.    
 * To place an instance structure into a const data section, the instance structure must be manually initialized.    
 * The code below statically initializes each of the 3 different data type filter instance structures    
 * <pre>    
 *arm_fir_decimate_instance_f32 S = {M, numTaps, pCoeffs, pState};    
 *arm_fir_decimate_instance_q31 S = {M, numTaps, pCoeffs, pState};    
 *arm_fir_decimate_instance_q15 S = {M, numTaps, pCoeffs, pState};    
 * </pre>    
 * where <code>M</code> is the decimation factor; <code>numTaps</code> is the number of filter coefficients in the filter;    
 * <code>pCoeffs</code> is the address of the coefficient buffer;    
 * <code>pState</code> is the address of the state buffer.    
 * Be sure to set the values in the state buffer to zeros when doing static initialization.    
 *    
 * \par Fixed-Point Behavior    
 * Care must be taken when using the fixed-point versions of the FIR decimate filter functions.    
 * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.    
 * Refer to the function specific documentation below for usage guidelines.    
 */

/**    
 * @addtogroup FIR_decimate    
 * @{    
 */

  /**    
   * @brief Processing function for the floating-point FIR decimator.    
   * @param[in] *S        points to an instance of the floating-point FIR decimator structure.    
   * @param[in] *pSrc     points to the block of input data.    
   * @param[out] *pDst    points to the block of output data.    
   * @param[in] blockSize number of input samples to process per call.    
   * @return none.    
   */

void arm_fir_decimate_f32(
  const arm_fir_decimate_instance_f32 * S,
  float32_t * pSrc,
  float32_t * pDst,
  uint32_t blockSize)
{
  float32_t *pState = S->pState;                 /* State pointer */
  float32_t *pCoeffs = S->pCoeffs;               /* Coefficient pointer */
  float32_t *pStateCurnt;                        /* Points to the current sample of the state */
  float32_t *px, *pb;                            /* Temporary pointers for state and coefficient buffers */
  float32_t sum0;                                /* Accumulator */
  float32_t x0, c0;                              /* Temporary variables to hold state and coefficient values */
  uint32_t numTaps = S->numTaps;                 /* Number of filter coefficients in the filter */
  uint32_t i, tapCnt, blkCnt, outBlockSize = blockSize / S->M;  /* Loop counters */

#ifndef ARM_MATH_CM0_FAMILY

  uint32_t blkCntN4;
  float32_t *px0, *px1, *px2, *px3;
  float32_t acc0, acc1, acc2, acc3;
  float32_t x1, x2, x3;

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  /* S->pState buffer contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = S->pState + (numTaps - 1u);

  /* Total number of output samples to be computed */
  blkCnt = outBlockSize / 4;
  blkCntN4 = outBlockSize - (4 * blkCnt);

  while(blkCnt > 0u)
  {
    /* Copy 4 * decimation factor number of new input samples into the state buffer */
    i = 4 * S->M;

    do
    {
      *pStateCurnt++ = *pSrc++;

    } while(--i);

    /* Set accumulators to zero */
    acc0 = 0.0f;
    acc1 = 0.0f;
    acc2 = 0.0f;
    acc3 = 0.0f;

    /* Initialize state pointer for all the samples */
    px0 = pState;
    px1 = pState + S->M;
    px2 = pState + 2 * S->M;
    px3 = pState + 3 * S->M;

    /* Initialize coeff pointer */
    pb = pCoeffs;

    /* Loop unrolling.  Process 4 taps at a time. */
    tapCnt = numTaps >> 2;

    /* Loop over the number of taps.  Unroll by a factor of 4.       
     ** Repeat until we've computed numTaps-4 coefficients. */

    while(tapCnt > 0u)
    {
      /* Read the b[numTaps-1] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-1] sample for acc0 */
      x0 = *(px0++);
      /* Read x[n-numTaps-1] sample for acc1 */
      x1 = *(px1++);
      /* Read x[n-numTaps-1] sample for acc2 */
      x2 = *(px2++);
      /* Read x[n-numTaps-1] sample for acc3 */
      x3 = *(px3++);

      /* Perform the multiply-accumulate */
      acc0 += x0 * c0;
      acc1 += x1 * c0;
      acc2 += x2 * c0;
      acc3 += x3 * c0;

      /* Read the b[numTaps-2] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-2] sample for acc0, acc1, acc2, acc3 */
      x0 = *(px0++);
      x1 = *(px1++);
      x2 = *(px2++);
      x3 = *(px3++);

      /* Perform the multiply-accumulate */
      acc0 += x0 * c0;
      acc1 += x1 * c0;
      acc2 += x2 * c0;
      acc3 += x3 * c0;

      /* Read the b[numTaps-3] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-3] sample acc0, acc1, acc2, acc3 */
      x0 = *(px0++);
      x1 = *(px1++);
      x2 = *(px2++);
      x3 = *(px3++);

      /* Perform the multiply-accumulate */
      acc0 += x0 * c0;
      acc1 += x1 * c0;
      acc2 += x2 * c0;
      acc3 += x3 * c0;

      /* Read the b[numTaps-4] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-4] sample acc0, acc1, acc2, acc3 */
      x0 = *(px0++);
      x1 = *(px1++);
      x2 = *(px2++);
      x3 = *(px3++);

      /* Perform the multiply-accumulate */
      acc0 += x0 * c0;
      acc1 += x1 * c0;
      acc2 += x2 * c0;
      acc3 += x3 * c0;

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
    tapCnt = numTaps % 0x4u;

    while(tapCnt > 0u)
    {
      /* Read coefficients */
      c0 = *(pb++);

      /* Fetch  state variables for acc0, acc1, acc2, acc3 */
      x0 = *(px0++);
      x1 = *(px1++);
      x2 = *(px2++);
      x3 = *(px3++);

      /* Perform the multiply-accumulate */
      acc0 += x0 * c0;
      acc1 += x1 * c0;
      acc2 += x2 * c0;
      acc3 += x3 * c0;

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Advance the state pointer by the decimation factor       
     * to process the next group of decimation factor number samples */
    pState = pState + 4 * S->M;

    /* The result is in the accumulator, store in the destination buffer. */
    *pDst++ = acc0;
    *pDst++ = acc1;
    *pDst++ = acc2;
    *pDst++ = acc3;

    /* Decrement the loop counter */
    blkCnt--;
  }

  while(blkCntN4 > 0u)
  {
    /* Copy decimation factor number of new input samples into the state buffer */
    i = S->M;

    do
    {
      *pStateCurnt++ = *pSrc++;

    } while(--i);

    /* Set accumulator to zero */
    sum0 = 0.0f;

    /* Initialize state pointer */
    px = pState;

    /* Initialize coeff pointer */
    pb = pCoeffs;

    /* Loop unrolling.  Process 4 taps at a time. */
    tapCnt = numTaps >> 2;

    /* Loop over the number of taps.  Unroll by a factor of 4.       
     ** Repeat until we've computed numTaps-4 coefficients. */
    while(tapCnt > 0u)
    {
      /* Read the b[numTaps-1] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-1] sample */
      x0 = *(px++);

      /* Perform the multiply-accumulate */
      sum0 += x0 * c0;

      /* Read the b[numTaps-2] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-2] sample */
      x0 = *(px++);

      /* Perform the multiply-accumulate */
      sum0 += x0 * c0;

      /* Read the b[numTaps-3] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-3] sample */
      x0 = *(px++);

      /* Perform the multiply-accumulate */
      sum0 += x0 * c0;

      /* Read the b[numTaps-4] coefficient */
      c0 = *(pb++);

      /* Read x[n-numTaps-4] sample */
      x0 = *(px++);

      /* Perform the multiply-accumulate */
      sum0 += x0 * c0;

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* If the filter length is not a multiple of 4, compute the remaining filter taps */
    tapCnt = numTaps % 0x4u;

    while(tapCnt > 0u)
    {
      /* Read coefficients */
      c0 = *(pb++);

      /* Fetch 1 state variable */
      x0 = *(px++);

      /* Perform the multiply-accumulate */
      sum0 += x0 * c0;

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Advance the state pointer by the decimation factor       
     * to process the next group of decimation factor number samples */
    pState = pState + S->M;

    /* The result is in the accumulator, store in the destination buffer. */
    *pDst++ = sum0;

    /* Decrement the loop counter */
    blkCntN4--;
  }

  /* Processing is complete.    
   ** Now copy the last numTaps - 1 samples to the satrt of the state buffer.    
   ** This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

  i = (numTaps - 1u) >> 2;

  /* copy data */
  while(i > 0u)
  {
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    i--;
  }

  i = (numTaps - 1u) % 0x04u;

  /* copy data */
  while(i > 0u)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    i--;
  }

#else

/* Run the below code for Cortex-M0 */

  /* S->pState buffer contains previous frame (numTaps - 1) samples */
  /* pStateCurnt points to the location where the new input data should be written */
  pStateCurnt = S->pState + (numTaps - 1u);

  /* Total number of output samples to be computed */
  blkCnt = outBlockSize;

  while(blkCnt > 0u)
  {
    /* Copy decimation factor number of new input samples into the state buffer */
    i = S->M;

    do
    {
      *pStateCurnt++ = *pSrc++;

    } while(--i);

    /* Set accumulator to zero */
    sum0 = 0.0f;

    /* Initialize state pointer */
    px = pState;

    /* Initialize coeff pointer */
    pb = pCoeffs;

    tapCnt = numTaps;

    while(tapCnt > 0u)
    {
      /* Read coefficients */
      c0 = *pb++;

      /* Fetch 1 state variable */
      x0 = *px++;

      /* Perform the multiply-accumulate */
      sum0 += x0 * c0;

      /* Decrement the loop counter */
      tapCnt--;
    }

    /* Advance the state pointer by the decimation factor           
     * to process the next group of decimation factor number samples */
    pState = pState + S->M;

    /* The result is in the accumulator, store in the destination buffer. */
    *pDst++ = sum0;

    /* Decrement the loop counter */
    blkCnt--;
  }

  /* Processing is complete.         
   ** Now copy the last numTaps - 1 samples to the start of the state buffer.       
   ** This prepares the state buffer for the next function call. */

  /* Points to the start of the state buffer */
  pStateCurnt = S->pState;

  /* Copy numTaps number of values */
  i = (numTaps - 1u);

  /* copy data */
  while(i > 0u)
  {
    *pStateCurnt++ = *pState++;

    /* Decrement the loop counter */
    i--;
  }

#endif /*   #ifndef ARM_MATH_CM0_FAMILY        */

}

/**    
 * @} end of FIR_decimate group    
 */