arm_correlate_opt_q15.c 13.7 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
/* ----------------------------------------------------------------------    
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
*    
* $Date:        19. March 2015
* $Revision: 	V.1.4.5
*    
* Project: 	    CMSIS DSP Library    
* Title:		arm_correlate_opt_q15.c    
*    
* Description:	Correlation of Q15 sequences.  
*    
* Target Processor: Cortex-M4/Cortex-M3
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.    
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**    
 * @ingroup groupFilters    
 */

/**    
 * @addtogroup Corr    
 * @{    
 */

/**    
 * @brief Correlation of Q15 sequences.  
 * @param[in] *pSrcA points to the first input sequence.    
 * @param[in] srcALen length of the first input sequence.    
 * @param[in] *pSrcB points to the second input sequence.    
 * @param[in] srcBLen length of the second input sequence.    
 * @param[out] *pDst points to the location where the output result is written.  Length 2 * max(srcALen, srcBLen) - 1.    
 * @param[in]  *pScratch points to scratch buffer of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.    
 * @return none.    
 *    
 * \par Restrictions    
 *  If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE    
 *	In this case input, output, scratch buffers should be aligned by 32-bit    
 *     
 * @details    
 * <b>Scaling and Overflow Behavior:</b>    
 *    
 * \par    
 * The function is implemented using a 64-bit internal accumulator.    
 * Both inputs are in 1.15 format and multiplications yield a 2.30 result.    
 * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.    
 * This approach provides 33 guard bits and there is no risk of overflow.    
 * The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits and then saturated to 1.15 format.    
 *    
 * \par    
 * Refer to <code>arm_correlate_fast_q15()</code> for a faster but less precise version of this function for Cortex-M3 and Cortex-M4.   
 *  
 * 
 */


void arm_correlate_opt_q15(
  q15_t * pSrcA,
  uint32_t srcALen,
  q15_t * pSrcB,
  uint32_t srcBLen,
  q15_t * pDst,
  q15_t * pScratch)
{
  q15_t *pIn1;                                   /* inputA pointer               */
  q15_t *pIn2;                                   /* inputB pointer               */
  q63_t acc0, acc1, acc2, acc3;                  /* Accumulators                  */
  q15_t *py;                                     /* Intermediate inputB pointer  */
  q31_t x1, x2, x3;                              /* temporary variables for holding input1 and input2 values */
  uint32_t j, blkCnt, outBlockSize;              /* loop counter                 */
  int32_t inc = 1;                               /* output pointer increment     */
  uint32_t tapCnt;
  q31_t y1, y2;
  q15_t *pScr;                                   /* Intermediate pointers        */
  q15_t *pOut = pDst;                            /* output pointer               */
#ifdef UNALIGNED_SUPPORT_DISABLE

  q15_t a, b;

#endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/

  /* The algorithm implementation is based on the lengths of the inputs. */
  /* srcB is always made to slide across srcA. */
  /* So srcBLen is always considered as shorter or equal to srcALen */
  /* But CORR(x, y) is reverse of CORR(y, x) */
  /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
  /* and the destination pointer modifier, inc is set to -1 */
  /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
  /* But to improve the performance,        
   * we include zeroes in the output instead of zero padding either of the the inputs*/
  /* If srcALen > srcBLen,        
   * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
  /* If srcALen < srcBLen,        
   * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
  if(srcALen >= srcBLen)
  {
    /* Initialization of inputA pointer */
    pIn1 = (pSrcA);

    /* Initialization of inputB pointer */
    pIn2 = (pSrcB);

    /* Number of output samples is calculated */
    outBlockSize = (2u * srcALen) - 1u;

    /* When srcALen > srcBLen, zero padding is done to srcB        
     * to make their lengths equal.        
     * Instead, (outBlockSize - (srcALen + srcBLen - 1))        
     * number of output samples are made zero */
    j = outBlockSize - (srcALen + (srcBLen - 1u));

    /* Updating the pointer position to non zero value */
    pOut += j;

  }
  else
  {
    /* Initialization of inputA pointer */
    pIn1 = (pSrcB);

    /* Initialization of inputB pointer */
    pIn2 = (pSrcA);

    /* srcBLen is always considered as shorter or equal to srcALen */
    j = srcBLen;
    srcBLen = srcALen;
    srcALen = j;

    /* CORR(x, y) = Reverse order(CORR(y, x)) */
    /* Hence set the destination pointer to point to the last output sample */
    pOut = pDst + ((srcALen + srcBLen) - 2u);

    /* Destination address modifier is set to -1 */
    inc = -1;

  }

  pScr = pScratch;

  /* Fill (srcBLen - 1u) zeros in scratch buffer */
  arm_fill_q15(0, pScr, (srcBLen - 1u));

  /* Update temporary scratch pointer */
  pScr += (srcBLen - 1u);

#ifndef UNALIGNED_SUPPORT_DISABLE

  /* Copy (srcALen) samples in scratch buffer */
  arm_copy_q15(pIn1, pScr, srcALen);

  /* Update pointers */
  //pIn1 += srcALen;    
  pScr += srcALen;

#else

  /* Apply loop unrolling and do 4 Copies simultaneously. */
  j = srcALen >> 2u;

  /* First part of the processing with loop unrolling copies 4 data points at a time.       
   ** a second loop below copies for the remaining 1 to 3 samples. */
  while(j > 0u)
  {
    /* copy second buffer in reversal manner */
    *pScr++ = *pIn1++;
    *pScr++ = *pIn1++;
    *pScr++ = *pIn1++;
    *pScr++ = *pIn1++;

    /* Decrement the loop counter */
    j--;
  }

  /* If the count is not a multiple of 4, copy remaining samples here.       
   ** No loop unrolling is used. */
  j = srcALen % 0x4u;

  while(j > 0u)
  {
    /* copy second buffer in reversal manner for remaining samples */
    *pScr++ = *pIn1++;

    /* Decrement the loop counter */
    j--;
  }

#endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/

#ifndef UNALIGNED_SUPPORT_DISABLE

  /* Fill (srcBLen - 1u) zeros at end of scratch buffer */
  arm_fill_q15(0, pScr, (srcBLen - 1u));

  /* Update pointer */
  pScr += (srcBLen - 1u);

#else

/* Apply loop unrolling and do 4 Copies simultaneously. */
  j = (srcBLen - 1u) >> 2u;

  /* First part of the processing with loop unrolling copies 4 data points at a time.       
   ** a second loop below copies for the remaining 1 to 3 samples. */
  while(j > 0u)
  {
    /* copy second buffer in reversal manner */
    *pScr++ = 0;
    *pScr++ = 0;
    *pScr++ = 0;
    *pScr++ = 0;

    /* Decrement the loop counter */
    j--;
  }

  /* If the count is not a multiple of 4, copy remaining samples here.       
   ** No loop unrolling is used. */
  j = (srcBLen - 1u) % 0x4u;

  while(j > 0u)
  {
    /* copy second buffer in reversal manner for remaining samples */
    *pScr++ = 0;

    /* Decrement the loop counter */
    j--;
  }

#endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/

  /* Temporary pointer for scratch2 */
  py = pIn2;


  /* Actual correlation process starts here */
  blkCnt = (srcALen + srcBLen - 1u) >> 2;

  while(blkCnt > 0)
  {
    /* Initialze temporary scratch pointer as scratch1 */
    pScr = pScratch;

    /* Clear Accumlators */
    acc0 = 0;
    acc1 = 0;
    acc2 = 0;
    acc3 = 0;

    /* Read four samples from scratch1 buffer */
    x1 = *__SIMD32(pScr)++;

    /* Read next four samples from scratch1 buffer */
    x2 = *__SIMD32(pScr)++;

    tapCnt = (srcBLen) >> 2u;

    while(tapCnt > 0u)
    {

#ifndef UNALIGNED_SUPPORT_DISABLE

      /* Read four samples from smaller buffer */
      y1 = _SIMD32_OFFSET(pIn2);
      y2 = _SIMD32_OFFSET(pIn2 + 2u);

      acc0 = __SMLALD(x1, y1, acc0);

      acc2 = __SMLALD(x2, y1, acc2);

#ifndef ARM_MATH_BIG_ENDIAN
      x3 = __PKHBT(x2, x1, 0);
#else
      x3 = __PKHBT(x1, x2, 0);
#endif

      acc1 = __SMLALDX(x3, y1, acc1);

      x1 = _SIMD32_OFFSET(pScr);

      acc0 = __SMLALD(x2, y2, acc0);

      acc2 = __SMLALD(x1, y2, acc2);

#ifndef ARM_MATH_BIG_ENDIAN
      x3 = __PKHBT(x1, x2, 0);
#else
      x3 = __PKHBT(x2, x1, 0);
#endif

      acc3 = __SMLALDX(x3, y1, acc3);

      acc1 = __SMLALDX(x3, y2, acc1);

      x2 = _SIMD32_OFFSET(pScr + 2u);

#ifndef ARM_MATH_BIG_ENDIAN
      x3 = __PKHBT(x2, x1, 0);
#else
      x3 = __PKHBT(x1, x2, 0);
#endif

      acc3 = __SMLALDX(x3, y2, acc3);

#else	 

      /* Read four samples from smaller buffer */
	  a = *pIn2;
	  b = *(pIn2 + 1);

#ifndef ARM_MATH_BIG_ENDIAN
      y1 = __PKHBT(a, b, 16);
#else
      y1 = __PKHBT(b, a, 16);
#endif
	  
	  a = *(pIn2 + 2);
	  b = *(pIn2 + 3);
#ifndef ARM_MATH_BIG_ENDIAN
      y2 = __PKHBT(a, b, 16);
#else
      y2 = __PKHBT(b, a, 16);
#endif				

      acc0 = __SMLALD(x1, y1, acc0);

      acc2 = __SMLALD(x2, y1, acc2);

#ifndef ARM_MATH_BIG_ENDIAN
      x3 = __PKHBT(x2, x1, 0);
#else
      x3 = __PKHBT(x1, x2, 0);
#endif

      acc1 = __SMLALDX(x3, y1, acc1);

	  a = *pScr;
	  b = *(pScr + 1);

#ifndef ARM_MATH_BIG_ENDIAN
      x1 = __PKHBT(a, b, 16);
#else
      x1 = __PKHBT(b, a, 16);
#endif

      acc0 = __SMLALD(x2, y2, acc0);

      acc2 = __SMLALD(x1, y2, acc2);

#ifndef ARM_MATH_BIG_ENDIAN
      x3 = __PKHBT(x1, x2, 0);
#else
      x3 = __PKHBT(x2, x1, 0);
#endif

      acc3 = __SMLALDX(x3, y1, acc3);

      acc1 = __SMLALDX(x3, y2, acc1);

	  a = *(pScr + 2);
	  b = *(pScr + 3);

#ifndef ARM_MATH_BIG_ENDIAN
      x2 = __PKHBT(a, b, 16);
#else
      x2 = __PKHBT(b, a, 16);
#endif

#ifndef ARM_MATH_BIG_ENDIAN
      x3 = __PKHBT(x2, x1, 0);
#else
      x3 = __PKHBT(x1, x2, 0);
#endif

      acc3 = __SMLALDX(x3, y2, acc3);

#endif	/*	#ifndef UNALIGNED_SUPPORT_DISABLE	*/

      pIn2 += 4u;

      pScr += 4u;


      /* Decrement the loop counter */
      tapCnt--;
    }



    /* Update scratch pointer for remaining samples of smaller length sequence */
    pScr -= 4u;


    /* apply same above for remaining samples of smaller length sequence */
    tapCnt = (srcBLen) & 3u;

    while(tapCnt > 0u)
    {

      /* accumlate the results */
      acc0 += (*pScr++ * *pIn2);
      acc1 += (*pScr++ * *pIn2);
      acc2 += (*pScr++ * *pIn2);
      acc3 += (*pScr++ * *pIn2++);

      pScr -= 3u;

      /* Decrement the loop counter */
      tapCnt--;
    }

    blkCnt--;


    /* Store the results in the accumulators in the destination buffer. */
    *pOut = (__SSAT(acc0 >> 15u, 16));
    pOut += inc;
    *pOut = (__SSAT(acc1 >> 15u, 16));
    pOut += inc;
    *pOut = (__SSAT(acc2 >> 15u, 16));
    pOut += inc;
    *pOut = (__SSAT(acc3 >> 15u, 16));
    pOut += inc;

    /* Initialization of inputB pointer */
    pIn2 = py;

    pScratch += 4u;

  }


  blkCnt = (srcALen + srcBLen - 1u) & 0x3;

  /* Calculate correlation for remaining samples of Bigger length sequence */
  while(blkCnt > 0)
  {
    /* Initialze temporary scratch pointer as scratch1 */
    pScr = pScratch;

    /* Clear Accumlators */
    acc0 = 0;

    tapCnt = (srcBLen) >> 1u;

    while(tapCnt > 0u)
    {

      acc0 += (*pScr++ * *pIn2++);
      acc0 += (*pScr++ * *pIn2++);

      /* Decrement the loop counter */
      tapCnt--;
    }

    tapCnt = (srcBLen) & 1u;

    /* apply same above for remaining samples of smaller length sequence */
    while(tapCnt > 0u)
    {

      /* accumlate the results */
      acc0 += (*pScr++ * *pIn2++);

      /* Decrement the loop counter */
      tapCnt--;
    }

    blkCnt--;

    /* Store the result in the accumulator in the destination buffer. */
    *pOut = (q15_t) (__SSAT((acc0 >> 15), 16));

    pOut += inc;

    /* Initialization of inputB pointer */
    pIn2 = py;

    pScratch += 1u;

  }


}

/**    
 * @} end of Corr group    
 */