arm_correlate_f32.c 23.7 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
/* ----------------------------------------------------------------------------    
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
*    
* $Date:        19. March 2015
* $Revision: 	V.1.4.5
*    
* Project: 	    CMSIS DSP Library    
* Title:		arm_correlate_f32.c    
*    
* Description:	 Correlation of floating-point sequences.    
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.  
* -------------------------------------------------------------------------- */

#include "arm_math.h"

/**    
 * @ingroup groupFilters    
 */

/**    
 * @defgroup Corr Correlation    
 *    
 * Correlation is a mathematical operation that is similar to convolution.    
 * As with convolution, correlation uses two signals to produce a third signal.    
 * The underlying algorithms in correlation and convolution are identical except that one of the inputs is flipped in convolution.    
 * Correlation is commonly used to measure the similarity between two signals.    
 * It has applications in pattern recognition, cryptanalysis, and searching.    
 * The CMSIS library provides correlation functions for Q7, Q15, Q31 and floating-point data types.    
 * Fast versions of the Q15 and Q31 functions are also provided.    
 *    
 * \par Algorithm    
 * Let <code>a[n]</code> and <code>b[n]</code> be sequences of length <code>srcALen</code> and <code>srcBLen</code> samples respectively.    
 * The convolution of the two signals is denoted by    
 * <pre>    
 *                   c[n] = a[n] * b[n]    
 * </pre>    
 * In correlation, one of the signals is flipped in time    
 * <pre>    
 *                   c[n] = a[n] * b[-n]    
 * </pre>    
 *    
 * \par    
 * and this is mathematically defined as    
 * \image html CorrelateEquation.gif    
 * \par    
 * The <code>pSrcA</code> points to the first input vector of length <code>srcALen</code> and <code>pSrcB</code> points to the second input vector of length <code>srcBLen</code>.    
 * The result <code>c[n]</code> is of length <code>2 * max(srcALen, srcBLen) - 1</code> and is defined over the interval <code>n=0, 1, 2, ..., (2 * max(srcALen, srcBLen) - 2)</code>.    
 * The output result is written to <code>pDst</code> and the calling function must allocate <code>2 * max(srcALen, srcBLen) - 1</code> words for the result.    
 *    
 * <b>Note</b>   
 * \par  
 * The <code>pDst</code> should be initialized to all zeros before being used.  
 *  
 * <b>Fixed-Point Behavior</b>    
 * \par    
 * Correlation requires summing up a large number of intermediate products.    
 * As such, the Q7, Q15, and Q31 functions run a risk of overflow and saturation.    
 * Refer to the function specific documentation below for further details of the particular algorithm used.    
 *
 *
 * <b>Fast Versions</b>
 *
 * \par 
 * Fast versions are supported for Q31 and Q15.  Cycles for Fast versions are less compared to Q31 and Q15 of correlate and the design requires
 * the input signals should be scaled down to avoid intermediate overflows.   
 *
 *
 * <b>Opt Versions</b>
 *
 * \par 
 * Opt versions are supported for Q15 and Q7.  Design uses internal scratch buffer for getting good optimisation.
 * These versions are optimised in cycles and consumes more memory(Scratch memory) compared to Q15 and Q7 versions of correlate 
 */

/**    
 * @addtogroup Corr    
 * @{    
 */
/**    
 * @brief Correlation of floating-point sequences.    
 * @param[in]  *pSrcA points to the first input sequence.    
 * @param[in]  srcALen length of the first input sequence.    
 * @param[in]  *pSrcB points to the second input sequence.    
 * @param[in]  srcBLen length of the second input sequence.    
 * @param[out] *pDst points to the location where the output result is written.  Length 2 * max(srcALen, srcBLen) - 1.    
 * @return none.    
 */

void arm_correlate_f32(
  float32_t * pSrcA,
  uint32_t srcALen,
  float32_t * pSrcB,
  uint32_t srcBLen,
  float32_t * pDst)
{


#ifndef ARM_MATH_CM0_FAMILY

  /* Run the below code for Cortex-M4 and Cortex-M3 */

  float32_t *pIn1;                               /* inputA pointer */
  float32_t *pIn2;                               /* inputB pointer */
  float32_t *pOut = pDst;                        /* output pointer */
  float32_t *px;                                 /* Intermediate inputA pointer */
  float32_t *py;                                 /* Intermediate inputB pointer */
  float32_t *pSrc1;                              /* Intermediate pointers */
  float32_t sum, acc0, acc1, acc2, acc3;         /* Accumulators */
  float32_t x0, x1, x2, x3, c0;                  /* temporary variables for holding input and coefficient values */
  uint32_t j, k = 0u, count, blkCnt, outBlockSize, blockSize1, blockSize2, blockSize3;  /* loop counters */
  int32_t inc = 1;                               /* Destination address modifier */


  /* The algorithm implementation is based on the lengths of the inputs. */
  /* srcB is always made to slide across srcA. */
  /* So srcBLen is always considered as shorter or equal to srcALen */
  /* But CORR(x, y) is reverse of CORR(y, x) */
  /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
  /* and the destination pointer modifier, inc is set to -1 */
  /* If srcALen > srcBLen, zero pad has to be done to srcB to make the two inputs of same length */
  /* But to improve the performance,    
   * we assume zeroes in the output instead of zero padding either of the the inputs*/
  /* If srcALen > srcBLen,    
   * (srcALen - srcBLen) zeroes has to included in the starting of the output buffer */
  /* If srcALen < srcBLen,    
   * (srcALen - srcBLen) zeroes has to included in the ending of the output buffer */
  if(srcALen >= srcBLen)
  {
    /* Initialization of inputA pointer */
    pIn1 = pSrcA;

    /* Initialization of inputB pointer */
    pIn2 = pSrcB;

    /* Number of output samples is calculated */
    outBlockSize = (2u * srcALen) - 1u;

    /* When srcALen > srcBLen, zero padding has to be done to srcB    
     * to make their lengths equal.    
     * Instead, (outBlockSize - (srcALen + srcBLen - 1))    
     * number of output samples are made zero */
    j = outBlockSize - (srcALen + (srcBLen - 1u));

    /* Updating the pointer position to non zero value */
    pOut += j;

    //while(j > 0u)   
    //{   
    //  /* Zero is stored in the destination buffer */   
    //  *pOut++ = 0.0f;   

    //  /* Decrement the loop counter */   
    //  j--;   
    //}   

  }
  else
  {
    /* Initialization of inputA pointer */
    pIn1 = pSrcB;

    /* Initialization of inputB pointer */
    pIn2 = pSrcA;

    /* srcBLen is always considered as shorter or equal to srcALen */
    j = srcBLen;
    srcBLen = srcALen;
    srcALen = j;

    /* CORR(x, y) = Reverse order(CORR(y, x)) */
    /* Hence set the destination pointer to point to the last output sample */
    pOut = pDst + ((srcALen + srcBLen) - 2u);

    /* Destination address modifier is set to -1 */
    inc = -1;

  }

  /* The function is internally    
   * divided into three parts according to the number of multiplications that has to be    
   * taken place between inputA samples and inputB samples. In the first part of the    
   * algorithm, the multiplications increase by one for every iteration.    
   * In the second part of the algorithm, srcBLen number of multiplications are done.    
   * In the third part of the algorithm, the multiplications decrease by one    
   * for every iteration.*/
  /* The algorithm is implemented in three stages.    
   * The loop counters of each stage is initiated here. */
  blockSize1 = srcBLen - 1u;
  blockSize2 = srcALen - (srcBLen - 1u);
  blockSize3 = blockSize1;

  /* --------------------------    
   * Initializations of stage1    
   * -------------------------*/

  /* sum = x[0] * y[srcBlen - 1]    
   * sum = x[0] * y[srcBlen-2] + x[1] * y[srcBlen - 1]    
   * ....    
   * sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen - 1] * y[srcBLen - 1]    
   */

  /* In this stage the MAC operations are increased by 1 for every iteration.    
     The count variable holds the number of MAC operations performed */
  count = 1u;

  /* Working pointer of inputA */
  px = pIn1;

  /* Working pointer of inputB */
  pSrc1 = pIn2 + (srcBLen - 1u);
  py = pSrc1;

  /* ------------------------    
   * Stage1 process    
   * ----------------------*/

  /* The first stage starts here */
  while(blockSize1 > 0u)
  {
    /* Accumulator is made zero for every iteration */
    sum = 0.0f;

    /* Apply loop unrolling and compute 4 MACs simultaneously. */
    k = count >> 2u;

    /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.    
     ** a second loop below computes MACs for the remaining 1 to 3 samples. */
    while(k > 0u)
    {
      /* x[0] * y[srcBLen - 4] */
      sum += *px++ * *py++;
      /* x[1] * y[srcBLen - 3] */
      sum += *px++ * *py++;
      /* x[2] * y[srcBLen - 2] */
      sum += *px++ * *py++;
      /* x[3] * y[srcBLen - 1] */
      sum += *px++ * *py++;

      /* Decrement the loop counter */
      k--;
    }

    /* If the count is not a multiple of 4, compute any remaining MACs here.    
     ** No loop unrolling is used. */
    k = count % 0x4u;

    while(k > 0u)
    {
      /* Perform the multiply-accumulate */
      /* x[0] * y[srcBLen - 1] */
      sum += *px++ * *py++;

      /* Decrement the loop counter */
      k--;
    }

    /* Store the result in the accumulator in the destination buffer. */
    *pOut = sum;
    /* Destination pointer is updated according to the address modifier, inc */
    pOut += inc;

    /* Update the inputA and inputB pointers for next MAC calculation */
    py = pSrc1 - count;
    px = pIn1;

    /* Increment the MAC count */
    count++;

    /* Decrement the loop counter */
    blockSize1--;
  }

  /* --------------------------    
   * Initializations of stage2    
   * ------------------------*/

  /* sum = x[0] * y[0] + x[1] * y[1] +...+ x[srcBLen-1] * y[srcBLen-1]    
   * sum = x[1] * y[0] + x[2] * y[1] +...+ x[srcBLen] * y[srcBLen-1]    
   * ....    
   * sum = x[srcALen-srcBLen-2] * y[0] + x[srcALen-srcBLen-1] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]    
   */

  /* Working pointer of inputA */
  px = pIn1;

  /* Working pointer of inputB */
  py = pIn2;

  /* count is index by which the pointer pIn1 to be incremented */
  count = 0u;

  /* -------------------    
   * Stage2 process    
   * ------------------*/

  /* Stage2 depends on srcBLen as in this stage srcBLen number of MACS are performed.    
   * So, to loop unroll over blockSize2,    
   * srcBLen should be greater than or equal to 4, to loop unroll the srcBLen loop */
  if(srcBLen >= 4u)
  {
    /* Loop unroll over blockSize2, by 4 */
    blkCnt = blockSize2 >> 2u;

    while(blkCnt > 0u)
    {
      /* Set all accumulators to zero */
      acc0 = 0.0f;
      acc1 = 0.0f;
      acc2 = 0.0f;
      acc3 = 0.0f;

      /* read x[0], x[1], x[2] samples */
      x0 = *(px++);
      x1 = *(px++);
      x2 = *(px++);

      /* Apply loop unrolling and compute 4 MACs simultaneously. */
      k = srcBLen >> 2u;

      /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.    
       ** a second loop below computes MACs for the remaining 1 to 3 samples. */
      do
      {
        /* Read y[0] sample */
        c0 = *(py++);

        /* Read x[3] sample */
        x3 = *(px++);

        /* Perform the multiply-accumulate */
        /* acc0 +=  x[0] * y[0] */
        acc0 += x0 * c0;
        /* acc1 +=  x[1] * y[0] */
        acc1 += x1 * c0;
        /* acc2 +=  x[2] * y[0] */
        acc2 += x2 * c0;
        /* acc3 +=  x[3] * y[0] */
        acc3 += x3 * c0;

        /* Read y[1] sample */
        c0 = *(py++);

        /* Read x[4] sample */
        x0 = *(px++);

        /* Perform the multiply-accumulate */
        /* acc0 +=  x[1] * y[1] */
        acc0 += x1 * c0;
        /* acc1 +=  x[2] * y[1] */
        acc1 += x2 * c0;
        /* acc2 +=  x[3] * y[1] */
        acc2 += x3 * c0;
        /* acc3 +=  x[4] * y[1] */
        acc3 += x0 * c0;

        /* Read y[2] sample */
        c0 = *(py++);

        /* Read x[5] sample */
        x1 = *(px++);

        /* Perform the multiply-accumulates */
        /* acc0 +=  x[2] * y[2] */
        acc0 += x2 * c0;
        /* acc1 +=  x[3] * y[2] */
        acc1 += x3 * c0;
        /* acc2 +=  x[4] * y[2] */
        acc2 += x0 * c0;
        /* acc3 +=  x[5] * y[2] */
        acc3 += x1 * c0;

        /* Read y[3] sample */
        c0 = *(py++);

        /* Read x[6] sample */
        x2 = *(px++);

        /* Perform the multiply-accumulates */
        /* acc0 +=  x[3] * y[3] */
        acc0 += x3 * c0;
        /* acc1 +=  x[4] * y[3] */
        acc1 += x0 * c0;
        /* acc2 +=  x[5] * y[3] */
        acc2 += x1 * c0;
        /* acc3 +=  x[6] * y[3] */
        acc3 += x2 * c0;


      } while(--k);

      /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.    
       ** No loop unrolling is used. */
      k = srcBLen % 0x4u;

      while(k > 0u)
      {
        /* Read y[4] sample */
        c0 = *(py++);

        /* Read x[7] sample */
        x3 = *(px++);

        /* Perform the multiply-accumulates */
        /* acc0 +=  x[4] * y[4] */
        acc0 += x0 * c0;
        /* acc1 +=  x[5] * y[4] */
        acc1 += x1 * c0;
        /* acc2 +=  x[6] * y[4] */
        acc2 += x2 * c0;
        /* acc3 +=  x[7] * y[4] */
        acc3 += x3 * c0;

        /* Reuse the present samples for the next MAC */
        x0 = x1;
        x1 = x2;
        x2 = x3;

        /* Decrement the loop counter */
        k--;
      }

      /* Store the result in the accumulator in the destination buffer. */
      *pOut = acc0;
      /* Destination pointer is updated according to the address modifier, inc */
      pOut += inc;

      *pOut = acc1;
      pOut += inc;

      *pOut = acc2;
      pOut += inc;

      *pOut = acc3;
      pOut += inc;

      /* Increment the pointer pIn1 index, count by 4 */
      count += 4u;

      /* Update the inputA and inputB pointers for next MAC calculation */
      px = pIn1 + count;
      py = pIn2;

      /* Decrement the loop counter */
      blkCnt--;
    }

    /* If the blockSize2 is not a multiple of 4, compute any remaining output samples here.    
     ** No loop unrolling is used. */
    blkCnt = blockSize2 % 0x4u;

    while(blkCnt > 0u)
    {
      /* Accumulator is made zero for every iteration */
      sum = 0.0f;

      /* Apply loop unrolling and compute 4 MACs simultaneously. */
      k = srcBLen >> 2u;

      /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.    
       ** a second loop below computes MACs for the remaining 1 to 3 samples. */
      while(k > 0u)
      {
        /* Perform the multiply-accumulates */
        sum += *px++ * *py++;
        sum += *px++ * *py++;
        sum += *px++ * *py++;
        sum += *px++ * *py++;

        /* Decrement the loop counter */
        k--;
      }

      /* If the srcBLen is not a multiple of 4, compute any remaining MACs here.    
       ** No loop unrolling is used. */
      k = srcBLen % 0x4u;

      while(k > 0u)
      {
        /* Perform the multiply-accumulate */
        sum += *px++ * *py++;

        /* Decrement the loop counter */
        k--;
      }

      /* Store the result in the accumulator in the destination buffer. */
      *pOut = sum;
      /* Destination pointer is updated according to the address modifier, inc */
      pOut += inc;

      /* Increment the pointer pIn1 index, count by 1 */
      count++;

      /* Update the inputA and inputB pointers for next MAC calculation */
      px = pIn1 + count;
      py = pIn2;

      /* Decrement the loop counter */
      blkCnt--;
    }
  }
  else
  {
    /* If the srcBLen is not a multiple of 4,    
     * the blockSize2 loop cannot be unrolled by 4 */
    blkCnt = blockSize2;

    while(blkCnt > 0u)
    {
      /* Accumulator is made zero for every iteration */
      sum = 0.0f;

      /* Loop over srcBLen */
      k = srcBLen;

      while(k > 0u)
      {
        /* Perform the multiply-accumulate */
        sum += *px++ * *py++;

        /* Decrement the loop counter */
        k--;
      }

      /* Store the result in the accumulator in the destination buffer. */
      *pOut = sum;
      /* Destination pointer is updated according to the address modifier, inc */
      pOut += inc;

      /* Increment the pointer pIn1 index, count by 1 */
      count++;

      /* Update the inputA and inputB pointers for next MAC calculation */
      px = pIn1 + count;
      py = pIn2;

      /* Decrement the loop counter */
      blkCnt--;
    }
  }

  /* --------------------------    
   * Initializations of stage3    
   * -------------------------*/

  /* sum += x[srcALen-srcBLen+1] * y[0] + x[srcALen-srcBLen+2] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]    
   * sum += x[srcALen-srcBLen+2] * y[0] + x[srcALen-srcBLen+3] * y[1] +...+ x[srcALen-1] * y[srcBLen-1]    
   * ....    
   * sum +=  x[srcALen-2] * y[0] + x[srcALen-1] * y[1]    
   * sum +=  x[srcALen-1] * y[0]    
   */

  /* In this stage the MAC operations are decreased by 1 for every iteration.    
     The count variable holds the number of MAC operations performed */
  count = srcBLen - 1u;

  /* Working pointer of inputA */
  pSrc1 = pIn1 + (srcALen - (srcBLen - 1u));
  px = pSrc1;

  /* Working pointer of inputB */
  py = pIn2;

  /* -------------------    
   * Stage3 process    
   * ------------------*/

  while(blockSize3 > 0u)
  {
    /* Accumulator is made zero for every iteration */
    sum = 0.0f;

    /* Apply loop unrolling and compute 4 MACs simultaneously. */
    k = count >> 2u;

    /* First part of the processing with loop unrolling.  Compute 4 MACs at a time.    
     ** a second loop below computes MACs for the remaining 1 to 3 samples. */
    while(k > 0u)
    {
      /* Perform the multiply-accumulates */
      /* sum += x[srcALen - srcBLen + 4] * y[3] */
      sum += *px++ * *py++;
      /* sum += x[srcALen - srcBLen + 3] * y[2] */
      sum += *px++ * *py++;
      /* sum += x[srcALen - srcBLen + 2] * y[1] */
      sum += *px++ * *py++;
      /* sum += x[srcALen - srcBLen + 1] * y[0] */
      sum += *px++ * *py++;

      /* Decrement the loop counter */
      k--;
    }

    /* If the count is not a multiple of 4, compute any remaining MACs here.    
     ** No loop unrolling is used. */
    k = count % 0x4u;

    while(k > 0u)
    {
      /* Perform the multiply-accumulates */
      sum += *px++ * *py++;

      /* Decrement the loop counter */
      k--;
    }

    /* Store the result in the accumulator in the destination buffer. */
    *pOut = sum;
    /* Destination pointer is updated according to the address modifier, inc */
    pOut += inc;

    /* Update the inputA and inputB pointers for next MAC calculation */
    px = ++pSrc1;
    py = pIn2;

    /* Decrement the MAC count */
    count--;

    /* Decrement the loop counter */
    blockSize3--;
  }

#else

  /* Run the below code for Cortex-M0 */

  float32_t *pIn1 = pSrcA;                       /* inputA pointer */
  float32_t *pIn2 = pSrcB + (srcBLen - 1u);      /* inputB pointer */
  float32_t sum;                                 /* Accumulator */
  uint32_t i = 0u, j;                            /* loop counters */
  uint32_t inv = 0u;                             /* Reverse order flag */
  uint32_t tot = 0u;                             /* Length */

  /* The algorithm implementation is based on the lengths of the inputs. */
  /* srcB is always made to slide across srcA. */
  /* So srcBLen is always considered as shorter or equal to srcALen */
  /* But CORR(x, y) is reverse of CORR(y, x) */
  /* So, when srcBLen > srcALen, output pointer is made to point to the end of the output buffer */
  /* and a varaible, inv is set to 1 */
  /* If lengths are not equal then zero pad has to be done to  make the two    
   * inputs of same length. But to improve the performance, we assume zeroes    
   * in the output instead of zero padding either of the the inputs*/
  /* If srcALen > srcBLen, (srcALen - srcBLen) zeroes has to included in the    
   * starting of the output buffer */
  /* If srcALen < srcBLen, (srcALen - srcBLen) zeroes has to included in the   
   * ending of the output buffer */
  /* Once the zero padding is done the remaining of the output is calcualted   
   * using convolution but with the shorter signal time shifted. */

  /* Calculate the length of the remaining sequence */
  tot = ((srcALen + srcBLen) - 2u);

  if(srcALen > srcBLen)
  {
    /* Calculating the number of zeros to be padded to the output */
    j = srcALen - srcBLen;

    /* Initialise the pointer after zero padding */
    pDst += j;
  }

  else if(srcALen < srcBLen)
  {
    /* Initialization to inputB pointer */
    pIn1 = pSrcB;

    /* Initialization to the end of inputA pointer */
    pIn2 = pSrcA + (srcALen - 1u);

    /* Initialisation of the pointer after zero padding */
    pDst = pDst + tot;

    /* Swapping the lengths */
    j = srcALen;
    srcALen = srcBLen;
    srcBLen = j;

    /* Setting the reverse flag */
    inv = 1;

  }

  /* Loop to calculate convolution for output length number of times */
  for (i = 0u; i <= tot; i++)
  {
    /* Initialize sum with zero to carry on MAC operations */
    sum = 0.0f;

    /* Loop to perform MAC operations according to convolution equation */
    for (j = 0u; j <= i; j++)
    {
      /* Check the array limitations */
      if((((i - j) < srcBLen) && (j < srcALen)))
      {
        /* z[i] += x[i-j] * y[j] */
        sum += pIn1[j] * pIn2[-((int32_t) i - j)];
      }
    }
    /* Store the output in the destination buffer */
    if(inv == 1)
      *pDst-- = sum;
    else
      *pDst++ = sum;
  }

#endif /*   #ifndef ARM_MATH_CM0_FAMILY */

}

/**    
 * @} end of Corr group    
 */