arm_conv_opt_q7.c 12 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
/* ----------------------------------------------------------------------    
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
*    
* $Date:        19. March 2015
* $Revision: 	V.1.4.5
*    
* Project: 	    CMSIS DSP Library    
* Title:		arm_conv_opt_q7.c    
*    
* Description:	Convolution of Q7 sequences.  
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.  
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**    
 * @ingroup groupFilters    
 */

/**    
 * @addtogroup Conv    
 * @{    
 */

/**    
 * @brief Convolution of Q7 sequences.    
 * @param[in] *pSrcA points to the first input sequence.    
 * @param[in] srcALen length of the first input sequence.    
 * @param[in] *pSrcB points to the second input sequence.    
 * @param[in] srcBLen length of the second input sequence.    
 * @param[out] *pDst points to the location where the output result is written.  Length srcALen+srcBLen-1.    
 * @param[in]  *pScratch1 points to scratch buffer(of type q15_t) of size max(srcALen, srcBLen) + 2*min(srcALen, srcBLen) - 2.   
 * @param[in]  *pScratch2 points to scratch buffer (of type q15_t) of size min(srcALen, srcBLen).   
 * @return none.    
 *    
 * \par Restrictions    
 *  If the silicon does not support unaligned memory access enable the macro UNALIGNED_SUPPORT_DISABLE    
 *	In this case input, output, scratch1 and scratch2 buffers should be aligned by 32-bit     
 *       
 * @details    
 * <b>Scaling and Overflow Behavior:</b>    
 *    
 * \par    
 * The function is implemented using a 32-bit internal accumulator.    
 * Both the inputs are represented in 1.7 format and multiplications yield a 2.14 result.    
 * The 2.14 intermediate results are accumulated in a 32-bit accumulator in 18.14 format.    
 * This approach provides 17 guard bits and there is no risk of overflow as long as <code>max(srcALen, srcBLen)<131072</code>.    
 * The 18.14 result is then truncated to 18.7 format by discarding the low 7 bits and then saturated to 1.7 format.    
 *
 */

void arm_conv_opt_q7(
  q7_t * pSrcA,
  uint32_t srcALen,
  q7_t * pSrcB,
  uint32_t srcBLen,
  q7_t * pDst,
  q15_t * pScratch1,
  q15_t * pScratch2)
{

  q15_t *pScr2, *pScr1;                          /* Intermediate pointers for scratch pointers */
  q15_t x4;                                      /* Temporary input variable */
  q7_t *pIn1, *pIn2;                             /* inputA and inputB pointer */
  uint32_t j, k, blkCnt, tapCnt;                 /* loop counter */
  q7_t *px;                                      /* Temporary input1 pointer */
  q15_t *py;                                     /* Temporary input2 pointer */
  q31_t acc0, acc1, acc2, acc3;                  /* Accumulator */
  q31_t x1, x2, x3, y1;                          /* Temporary input variables */
  q7_t *pOut = pDst;                             /* output pointer */
  q7_t out0, out1, out2, out3;                   /* temporary variables */

  /* The algorithm implementation is based on the lengths of the inputs. */
  /* srcB is always made to slide across srcA. */
  /* So srcBLen is always considered as shorter or equal to srcALen */
  if(srcALen >= srcBLen)
  {
    /* Initialization of inputA pointer */
    pIn1 = pSrcA;

    /* Initialization of inputB pointer */
    pIn2 = pSrcB;
  }
  else
  {
    /* Initialization of inputA pointer */
    pIn1 = pSrcB;

    /* Initialization of inputB pointer */
    pIn2 = pSrcA;

    /* srcBLen is always considered as shorter or equal to srcALen */
    j = srcBLen;
    srcBLen = srcALen;
    srcALen = j;
  }

  /* pointer to take end of scratch2 buffer */
  pScr2 = pScratch2;

  /* points to smaller length sequence */
  px = pIn2 + srcBLen - 1;

  /* Apply loop unrolling and do 4 Copies simultaneously. */
  k = srcBLen >> 2u;

  /* First part of the processing with loop unrolling copies 4 data points at a time.       
   ** a second loop below copies for the remaining 1 to 3 samples. */
  while(k > 0u)
  {
    /* copy second buffer in reversal manner */
    x4 = (q15_t) * px--;
    *pScr2++ = x4;
    x4 = (q15_t) * px--;
    *pScr2++ = x4;
    x4 = (q15_t) * px--;
    *pScr2++ = x4;
    x4 = (q15_t) * px--;
    *pScr2++ = x4;

    /* Decrement the loop counter */
    k--;
  }

  /* If the count is not a multiple of 4, copy remaining samples here.       
   ** No loop unrolling is used. */
  k = srcBLen % 0x4u;

  while(k > 0u)
  {
    /* copy second buffer in reversal manner for remaining samples */
    x4 = (q15_t) * px--;
    *pScr2++ = x4;

    /* Decrement the loop counter */
    k--;
  }

  /* Initialze temporary scratch pointer */
  pScr1 = pScratch1;

  /* Fill (srcBLen - 1u) zeros in scratch buffer */
  arm_fill_q15(0, pScr1, (srcBLen - 1u));

  /* Update temporary scratch pointer */
  pScr1 += (srcBLen - 1u);

  /* Copy (srcALen) samples in scratch buffer */
  /* Apply loop unrolling and do 4 Copies simultaneously. */
  k = srcALen >> 2u;

  /* First part of the processing with loop unrolling copies 4 data points at a time.       
   ** a second loop below copies for the remaining 1 to 3 samples. */
  while(k > 0u)
  {
    /* copy second buffer in reversal manner */
    x4 = (q15_t) * pIn1++;
    *pScr1++ = x4;
    x4 = (q15_t) * pIn1++;
    *pScr1++ = x4;
    x4 = (q15_t) * pIn1++;
    *pScr1++ = x4;
    x4 = (q15_t) * pIn1++;
    *pScr1++ = x4;

    /* Decrement the loop counter */
    k--;
  }

  /* If the count is not a multiple of 4, copy remaining samples here.       
   ** No loop unrolling is used. */
  k = srcALen % 0x4u;

  while(k > 0u)
  {
    /* copy second buffer in reversal manner for remaining samples */
    x4 = (q15_t) * pIn1++;
    *pScr1++ = x4;

    /* Decrement the loop counter */
    k--;
  }

#ifndef UNALIGNED_SUPPORT_DISABLE

  /* Fill (srcBLen - 1u) zeros at end of scratch buffer */
  arm_fill_q15(0, pScr1, (srcBLen - 1u));

  /* Update pointer */
  pScr1 += (srcBLen - 1u);

#else

  /* Apply loop unrolling and do 4 Copies simultaneously. */
  k = (srcBLen - 1u) >> 2u;

  /* First part of the processing with loop unrolling copies 4 data points at a time.       
   ** a second loop below copies for the remaining 1 to 3 samples. */
  while(k > 0u)
  {
    /* copy second buffer in reversal manner */
    *pScr1++ = 0;
    *pScr1++ = 0;
    *pScr1++ = 0;
    *pScr1++ = 0;

    /* Decrement the loop counter */
    k--;
  }

  /* If the count is not a multiple of 4, copy remaining samples here.       
   ** No loop unrolling is used. */
  k = (srcBLen - 1u) % 0x4u;

  while(k > 0u)
  {
    /* copy second buffer in reversal manner for remaining samples */
    *pScr1++ = 0;

    /* Decrement the loop counter */
    k--;
  }

#endif

  /* Temporary pointer for scratch2 */
  py = pScratch2;

  /* Initialization of pIn2 pointer */
  pIn2 = (q7_t *) py;

  pScr2 = py;

  /* Actual convolution process starts here */
  blkCnt = (srcALen + srcBLen - 1u) >> 2;

  while(blkCnt > 0)
  {
    /* Initialze temporary scratch pointer as scratch1 */
    pScr1 = pScratch1;

    /* Clear Accumlators */
    acc0 = 0;
    acc1 = 0;
    acc2 = 0;
    acc3 = 0;

    /* Read two samples from scratch1 buffer */
    x1 = *__SIMD32(pScr1)++;

    /* Read next two samples from scratch1 buffer */
    x2 = *__SIMD32(pScr1)++;

    tapCnt = (srcBLen) >> 2u;

    while(tapCnt > 0u)
    {

      /* Read four samples from smaller buffer */
      y1 = _SIMD32_OFFSET(pScr2);

      /* multiply and accumlate */
      acc0 = __SMLAD(x1, y1, acc0);
      acc2 = __SMLAD(x2, y1, acc2);

      /* pack input data */
#ifndef ARM_MATH_BIG_ENDIAN
      x3 = __PKHBT(x2, x1, 0);
#else
      x3 = __PKHBT(x1, x2, 0);
#endif

      /* multiply and accumlate */
      acc1 = __SMLADX(x3, y1, acc1);

      /* Read next two samples from scratch1 buffer */
      x1 = *__SIMD32(pScr1)++;

      /* pack input data */
#ifndef ARM_MATH_BIG_ENDIAN
      x3 = __PKHBT(x1, x2, 0);
#else
      x3 = __PKHBT(x2, x1, 0);
#endif

      acc3 = __SMLADX(x3, y1, acc3);

      /* Read four samples from smaller buffer */
      y1 = _SIMD32_OFFSET(pScr2 + 2u);

      acc0 = __SMLAD(x2, y1, acc0);

      acc2 = __SMLAD(x1, y1, acc2);

      acc1 = __SMLADX(x3, y1, acc1);

      x2 = *__SIMD32(pScr1)++;

#ifndef ARM_MATH_BIG_ENDIAN
      x3 = __PKHBT(x2, x1, 0);
#else
      x3 = __PKHBT(x1, x2, 0);
#endif

      acc3 = __SMLADX(x3, y1, acc3);

      pScr2 += 4u;


      /* Decrement the loop counter */
      tapCnt--;
    }



    /* Update scratch pointer for remaining samples of smaller length sequence */
    pScr1 -= 4u;


    /* apply same above for remaining samples of smaller length sequence */
    tapCnt = (srcBLen) & 3u;

    while(tapCnt > 0u)
    {

      /* accumlate the results */
      acc0 += (*pScr1++ * *pScr2);
      acc1 += (*pScr1++ * *pScr2);
      acc2 += (*pScr1++ * *pScr2);
      acc3 += (*pScr1++ * *pScr2++);

      pScr1 -= 3u;

      /* Decrement the loop counter */
      tapCnt--;
    }

    blkCnt--;

    /* Store the result in the accumulator in the destination buffer. */
    out0 = (q7_t) (__SSAT(acc0 >> 7u, 8));
    out1 = (q7_t) (__SSAT(acc1 >> 7u, 8));
    out2 = (q7_t) (__SSAT(acc2 >> 7u, 8));
    out3 = (q7_t) (__SSAT(acc3 >> 7u, 8));

    *__SIMD32(pOut)++ = __PACKq7(out0, out1, out2, out3);

    /* Initialization of inputB pointer */
    pScr2 = py;

    pScratch1 += 4u;

  }


  blkCnt = (srcALen + srcBLen - 1u) & 0x3;

  /* Calculate convolution for remaining samples of Bigger length sequence */
  while(blkCnt > 0)
  {
    /* Initialze temporary scratch pointer as scratch1 */
    pScr1 = pScratch1;

    /* Clear Accumlators */
    acc0 = 0;

    tapCnt = (srcBLen) >> 1u;

    while(tapCnt > 0u)
    {
      acc0 += (*pScr1++ * *pScr2++);
      acc0 += (*pScr1++ * *pScr2++);

      /* Decrement the loop counter */
      tapCnt--;
    }

    tapCnt = (srcBLen) & 1u;

    /* apply same above for remaining samples of smaller length sequence */
    while(tapCnt > 0u)
    {

      /* accumlate the results */
      acc0 += (*pScr1++ * *pScr2++);

      /* Decrement the loop counter */
      tapCnt--;
    }

    blkCnt--;

    /* Store the result in the accumulator in the destination buffer. */
    *pOut++ = (q7_t) (__SSAT(acc0 >> 7u, 8));

    /* Initialization of inputB pointer */
    pScr2 = py;

    pScratch1 += 1u;

  }

}


/**    
 * @} end of Conv group    
 */