arm_biquad_cascade_stereo_df2T_f32.c 23.4 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683
/* ----------------------------------------------------------------------    
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
*    
* $Date:        19. March 2015 
* $Revision: 	V.1.4.5
*    
* Project: 	    CMSIS DSP Library    
* Title:	    arm_biquad_cascade_stereo_df2T_f32.c    
*    
* Description:  Processing function for the floating-point transposed    
*               direct form II Biquad cascade filter. 2 channels  
*    
* Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.   
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**       
* @ingroup groupFilters       
*/

/**       
* @defgroup BiquadCascadeDF2T Biquad Cascade IIR Filters Using a Direct Form II Transposed Structure       
*       
* This set of functions implements arbitrary order recursive (IIR) filters using a transposed direct form II structure.       
* The filters are implemented as a cascade of second order Biquad sections.       
* These functions provide a slight memory savings as compared to the direct form I Biquad filter functions.      
* Only floating-point data is supported.       
*       
* This function operate on blocks of input and output data and each call to the function       
* processes <code>blockSize</code> samples through the filter.       
* <code>pSrc</code> points to the array of input data and       
* <code>pDst</code> points to the array of output data.       
* Both arrays contain <code>blockSize</code> values.       
*       
* \par Algorithm       
* Each Biquad stage implements a second order filter using the difference equation:       
* <pre>       
*    y[n] = b0 * x[n] + d1       
*    d1 = b1 * x[n] + a1 * y[n] + d2       
*    d2 = b2 * x[n] + a2 * y[n]       
* </pre>       
* where d1 and d2 represent the two state values.       
*       
* \par       
* A Biquad filter using a transposed Direct Form II structure is shown below.       
* \image html BiquadDF2Transposed.gif "Single transposed Direct Form II Biquad"       
* Coefficients <code>b0, b1, and b2 </code> multiply the input signal <code>x[n]</code> and are referred to as the feedforward coefficients.       
* Coefficients <code>a1</code> and <code>a2</code> multiply the output signal <code>y[n]</code> and are referred to as the feedback coefficients.       
* Pay careful attention to the sign of the feedback coefficients.       
* Some design tools flip the sign of the feedback coefficients:       
* <pre>       
*    y[n] = b0 * x[n] + d1;       
*    d1 = b1 * x[n] - a1 * y[n] + d2;       
*    d2 = b2 * x[n] - a2 * y[n];       
* </pre>       
* In this case the feedback coefficients <code>a1</code> and <code>a2</code> must be negated when used with the CMSIS DSP Library.       
*       
* \par       
* Higher order filters are realized as a cascade of second order sections.       
* <code>numStages</code> refers to the number of second order stages used.       
* For example, an 8th order filter would be realized with <code>numStages=4</code> second order stages.       
* A 9th order filter would be realized with <code>numStages=5</code> second order stages with the       
* coefficients for one of the stages configured as a first order filter (<code>b2=0</code> and <code>a2=0</code>).       
*       
* \par       
* <code>pState</code> points to the state variable array.       
* Each Biquad stage has 2 state variables <code>d1</code> and <code>d2</code>.       
* The state variables are arranged in the <code>pState</code> array as:       
* <pre>       
*     {d11, d12, d21, d22, ...}       
* </pre>       
* where <code>d1x</code> refers to the state variables for the first Biquad and       
* <code>d2x</code> refers to the state variables for the second Biquad.       
* The state array has a total length of <code>2*numStages</code> values.       
* The state variables are updated after each block of data is processed; the coefficients are untouched.       
*       
* \par       
* The CMSIS library contains Biquad filters in both Direct Form I and transposed Direct Form II.    
* The advantage of the Direct Form I structure is that it is numerically more robust for fixed-point data types.    
* That is why the Direct Form I structure supports Q15 and Q31 data types.    
* The transposed Direct Form II structure, on the other hand, requires a wide dynamic range for the state variables <code>d1</code> and <code>d2</code>.    
* Because of this, the CMSIS library only has a floating-point version of the Direct Form II Biquad.    
* The advantage of the Direct Form II Biquad is that it requires half the number of state variables, 2 rather than 4, per Biquad stage.    
*       
* \par Instance Structure       
* The coefficients and state variables for a filter are stored together in an instance data structure.       
* A separate instance structure must be defined for each filter.       
* Coefficient arrays may be shared among several instances while state variable arrays cannot be shared.       
*       
* \par Init Functions       
* There is also an associated initialization function.      
* The initialization function performs following operations:       
* - Sets the values of the internal structure fields.       
* - Zeros out the values in the state buffer.       
* To do this manually without calling the init function, assign the follow subfields of the instance structure:
* numStages, pCoeffs, pState. Also set all of the values in pState to zero. 
*       
* \par       
* Use of the initialization function is optional.       
* However, if the initialization function is used, then the instance structure cannot be placed into a const data section.       
* To place an instance structure into a const data section, the instance structure must be manually initialized.       
* Set the values in the state buffer to zeros before static initialization.       
* For example, to statically initialize the instance structure use       
* <pre>       
*     arm_biquad_cascade_df2T_instance_f32 S1 = {numStages, pState, pCoeffs};       
* </pre>       
* where <code>numStages</code> is the number of Biquad stages in the filter; <code>pState</code> is the address of the state buffer.       
* <code>pCoeffs</code> is the address of the coefficient buffer;        
*       
*/

/**       
* @addtogroup BiquadCascadeDF2T       
* @{       
*/

/**      
* @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.      
* @param[in]  *S        points to an instance of the filter data structure.      
* @param[in]  *pSrc     points to the block of input data.      
* @param[out] *pDst     points to the block of output data      
* @param[in]  blockSize number of samples to process.      
* @return none.      
*/


LOW_OPTIMIZATION_ENTER
void arm_biquad_cascade_stereo_df2T_f32(
const arm_biquad_cascade_stereo_df2T_instance_f32 * S,
float32_t * pSrc,
float32_t * pDst,
uint32_t blockSize)
{

    float32_t *pIn = pSrc;                         /*  source pointer            */
    float32_t *pOut = pDst;                        /*  destination pointer       */
    float32_t *pState = S->pState;                 /*  State pointer             */
    float32_t *pCoeffs = S->pCoeffs;               /*  coefficient pointer       */
    float32_t acc1a, acc1b;                        /*  accumulator               */
    float32_t b0, b1, b2, a1, a2;                  /*  Filter coefficients       */
    float32_t Xn1a, Xn1b;                          /*  temporary input           */
    float32_t d1a, d2a, d1b, d2b;                  /*  state variables           */
    uint32_t sample, stage = S->numStages;         /*  loop counters             */

#if defined(ARM_MATH_CM7)
	
    float32_t Xn2a, Xn3a, Xn4a, Xn5a, Xn6a, Xn7a, Xn8a;         /*  Input State variables     */
    float32_t Xn2b, Xn3b, Xn4b, Xn5b, Xn6b, Xn7b, Xn8b;         /*  Input State variables     */
    float32_t acc2a, acc3a, acc4a, acc5a, acc6a, acc7a, acc8a;  /*  Simulates the accumulator */
    float32_t acc2b, acc3b, acc4b, acc5b, acc6b, acc7b, acc8b;  /*  Simulates the accumulator */

    do
    {
        /* Reading the coefficients */ 
        b0 = pCoeffs[0]; 
        b1 = pCoeffs[1]; 
        b2 = pCoeffs[2]; 
        a1 = pCoeffs[3]; 
        /* Apply loop unrolling and compute 8 output values simultaneously. */ 
        sample = blockSize >> 3u; 
        a2 = pCoeffs[4]; 

        /*Reading the state values */ 
        d1a = pState[0]; 
        d2a = pState[1]; 
        d1b = pState[2]; 
        d2b = pState[3]; 

        pCoeffs += 5u;

        /* First part of the processing with loop unrolling.  Compute 8 outputs at a time.       
        ** a second loop below computes the remaining 1 to 7 samples. */
        while(sample > 0u) {

            /* y[n] = b0 * x[n] + d1 */
            /* d1 = b1 * x[n] + a1 * y[n] + d2 */
            /* d2 = b2 * x[n] + a2 * y[n] */

            /* Read the first 2 inputs. 2 cycles */
            Xn1a  = pIn[0 ];
            Xn1b  = pIn[1 ];

            /* Sample 1. 5 cycles */
            Xn2a  = pIn[2 ];
            acc1a = b0 * Xn1a + d1a;

            Xn2b  = pIn[3 ];
            d1a = b1 * Xn1a + d2a;

            Xn3a  = pIn[4 ];
            d2a = b2 * Xn1a;

            Xn3b  = pIn[5 ];
            d1a += a1 * acc1a;

            Xn4a  = pIn[6 ];
            d2a += a2 * acc1a;

            /* Sample 2. 5 cycles */
            Xn4b  = pIn[7 ];
            acc1b = b0 * Xn1b + d1b;

            Xn5a  = pIn[8 ];
            d1b = b1 * Xn1b + d2b;

            Xn5b = pIn[9 ];
            d2b = b2 * Xn1b;

            Xn6a = pIn[10];
            d1b += a1 * acc1b;

            Xn6b = pIn[11];
            d2b += a2 * acc1b;

            /* Sample 3. 5 cycles */
            Xn7a = pIn[12];
            acc2a = b0 * Xn2a + d1a;

            Xn7b = pIn[13];
            d1a = b1 * Xn2a + d2a;

            Xn8a = pIn[14];
            d2a = b2 * Xn2a;

            Xn8b = pIn[15];
            d1a += a1 * acc2a;

            pIn += 16;
            d2a += a2 * acc2a;

            /* Sample 4. 5 cycles */
            acc2b = b0 * Xn2b + d1b;
            d1b = b1 * Xn2b + d2b;
            d2b = b2 * Xn2b;
            d1b += a1 * acc2b;
            d2b += a2 * acc2b;

            /* Sample 5. 5 cycles */
            acc3a = b0 * Xn3a + d1a;
            d1a = b1 * Xn3a + d2a;
            d2a = b2 * Xn3a;
            d1a += a1 * acc3a;
            d2a += a2 * acc3a;

            /* Sample 6. 5 cycles */
            acc3b = b0 * Xn3b + d1b;
            d1b = b1 * Xn3b + d2b;
            d2b = b2 * Xn3b;
            d1b += a1 * acc3b;
            d2b += a2 * acc3b;

            /* Sample 7. 5 cycles */
            acc4a = b0 * Xn4a + d1a;
            d1a = b1 * Xn4a + d2a;
            d2a = b2 * Xn4a;
            d1a += a1 * acc4a;
            d2a += a2 * acc4a;

            /* Sample 8. 5 cycles */
            acc4b = b0 * Xn4b + d1b;
            d1b = b1 * Xn4b + d2b;
            d2b = b2 * Xn4b;
            d1b += a1 * acc4b;
            d2b += a2 * acc4b;

            /* Sample 9. 5 cycles */
            acc5a = b0 * Xn5a + d1a;
            d1a = b1 * Xn5a + d2a;
            d2a = b2 * Xn5a;
            d1a += a1 * acc5a;
            d2a += a2 * acc5a;

            /* Sample 10. 5 cycles */
            acc5b = b0 * Xn5b + d1b;
            d1b = b1 * Xn5b + d2b;
            d2b = b2 * Xn5b;
            d1b += a1 * acc5b;
            d2b += a2 * acc5b;

            /* Sample 11. 5 cycles */
            acc6a = b0 * Xn6a + d1a;
            d1a = b1 * Xn6a + d2a;
            d2a = b2 * Xn6a;
            d1a += a1 * acc6a;
            d2a += a2 * acc6a;

            /* Sample 12. 5 cycles */
            acc6b = b0 * Xn6b + d1b;
            d1b = b1 * Xn6b + d2b;
            d2b = b2 * Xn6b;
            d1b += a1 * acc6b;
            d2b += a2 * acc6b;

            /* Sample 13. 5 cycles */
            acc7a = b0 * Xn7a + d1a;         
            d1a = b1 * Xn7a + d2a;   
            
            pOut[0 ] = acc1a ;      
            d2a = b2 * Xn7a;

            pOut[1 ] = acc1b ;	
            d1a += a1 * acc7a;

            pOut[2 ] = acc2a ;	
            d2a += a2 * acc7a;

            /* Sample 14. 5 cycles */
            pOut[3 ] = acc2b ;
            acc7b = b0 * Xn7b + d1b;

            pOut[4 ] = acc3a ; 
            d1b = b1 * Xn7b + d2b;

            pOut[5 ] = acc3b ;	
            d2b = b2 * Xn7b;

            pOut[6 ] = acc4a ;	  
            d1b += a1 * acc7b;

            pOut[7 ] = acc4b ;
            d2b += a2 * acc7b;

            /* Sample 15. 5 cycles */
            pOut[8 ] = acc5a ;  
            acc8a = b0 * Xn8a + d1a;

            pOut[9 ] = acc5b;	
            d1a = b1 * Xn8a + d2a;

            pOut[10] = acc6a;	
            d2a = b2 * Xn8a;

            pOut[11] = acc6b;
            d1a += a1 * acc8a;

            pOut[12] = acc7a;
            d2a += a2 * acc8a;

            /* Sample 16. 5 cycles */
            pOut[13] = acc7b;	
            acc8b = b0 * Xn8b + d1b;

            pOut[14] = acc8a;	
            d1b = b1 * Xn8b + d2b;

            pOut[15] = acc8b;
            d2b = b2 * Xn8b;

            sample--;	 
            d1b += a1 * acc8b;

            pOut += 16;
            d2b += a2 * acc8b;
        }

        sample = blockSize & 0x7u;
        while(sample > 0u) {
            /* Read the input */
            Xn1a = *pIn++; //Channel a
            Xn1b = *pIn++; //Channel b

            /* y[n] = b0 * x[n] + d1 */
            acc1a = (b0 * Xn1a) + d1a;
            acc1b = (b0 * Xn1b) + d1b;

            /* Store the result in the accumulator in the destination buffer. */
            *pOut++ = acc1a;
            *pOut++ = acc1b;

            /* Every time after the output is computed state should be updated. */
            /* d1 = b1 * x[n] + a1 * y[n] + d2 */
            d1a = ((b1 * Xn1a) + (a1 * acc1a)) + d2a;
            d1b = ((b1 * Xn1b) + (a1 * acc1b)) + d2b;

            /* d2 = b2 * x[n] + a2 * y[n] */
            d2a = (b2 * Xn1a) + (a2 * acc1a);
            d2b = (b2 * Xn1b) + (a2 * acc1b);

            sample--;	
        }

        /* Store the updated state variables back into the state array */ 
        pState[0] = d1a; 
        pState[1] = d2a;         

        pState[2] = d1b; 
        pState[3] = d2b; 
        
        /* The current stage input is given as the output to the next stage */ 
        pIn = pDst; 
        /* decrement the loop counter */ 
        stage--; 

        pState += 4u;
        /*Reset the output working pointer */ 
        pOut = pDst; 

    } while(stage > 0u);
	
#elif defined(ARM_MATH_CM0_FAMILY)

    /* Run the below code for Cortex-M0 */

    do
    {
        /* Reading the coefficients */
        b0 = *pCoeffs++;
        b1 = *pCoeffs++;
        b2 = *pCoeffs++;
        a1 = *pCoeffs++;
        a2 = *pCoeffs++;

        /*Reading the state values */
        d1a = pState[0];
        d2a = pState[1];
        d1b = pState[2];
        d2b = pState[3];


        sample = blockSize;

        while(sample > 0u)
        {
            /* Read the input */
            Xn1a = *pIn++; //Channel a
            Xn1b = *pIn++; //Channel b

            /* y[n] = b0 * x[n] + d1 */
            acc1a = (b0 * Xn1a) + d1a;
            acc1b = (b0 * Xn1b) + d1b;

            /* Store the result in the accumulator in the destination buffer. */
            *pOut++ = acc1a;
            *pOut++ = acc1b;

            /* Every time after the output is computed state should be updated. */
            /* d1 = b1 * x[n] + a1 * y[n] + d2 */
            d1a = ((b1 * Xn1a) + (a1 * acc1a)) + d2a;
            d1b = ((b1 * Xn1b) + (a1 * acc1b)) + d2b;

            /* d2 = b2 * x[n] + a2 * y[n] */
            d2a = (b2 * Xn1a) + (a2 * acc1a);
            d2b = (b2 * Xn1b) + (a2 * acc1b);

            /* decrement the loop counter */
            sample--;
        }

        /* Store the updated state variables back into the state array */
        *pState++ = d1a;
        *pState++ = d2a;
        *pState++ = d1b;
        *pState++ = d2b;

        /* The current stage input is given as the output to the next stage */
        pIn = pDst;

        /*Reset the output working pointer */
        pOut = pDst;

        /* decrement the loop counter */
        stage--;

    } while(stage > 0u);
	 
#else

    float32_t Xn2a, Xn3a, Xn4a;                          /*  Input State variables     */
    float32_t Xn2b, Xn3b, Xn4b;                          /*  Input State variables     */
    float32_t acc2a, acc3a, acc4a;                       /*  accumulator               */
    float32_t acc2b, acc3b, acc4b;                       /*  accumulator               */
    float32_t p0a, p1a, p2a, p3a, p4a, A1a;
    float32_t p0b, p1b, p2b, p3b, p4b, A1b;

    /* Run the below code for Cortex-M4 and Cortex-M3 */
    do
    {
        /* Reading the coefficients */     
        b0 = *pCoeffs++;
        b1 = *pCoeffs++;
        b2 = *pCoeffs++;
        a1 = *pCoeffs++;
        a2 = *pCoeffs++;      

        /*Reading the state values */
        d1a = pState[0];
        d2a = pState[1];
        d1b = pState[2];
        d2b = pState[3];

        /* Apply loop unrolling and compute 4 output values simultaneously. */
        sample = blockSize >> 2u;

        /* First part of the processing with loop unrolling.  Compute 4 outputs at a time.       
        ** a second loop below computes the remaining 1 to 3 samples. */
        while(sample > 0u) {

            /* y[n] = b0 * x[n] + d1 */
            /* d1 = b1 * x[n] + a1 * y[n] + d2 */
            /* d2 = b2 * x[n] + a2 * y[n] */

            /* Read the four inputs */
            Xn1a = pIn[0];
            Xn1b = pIn[1];
            Xn2a = pIn[2];
            Xn2b = pIn[3];
            Xn3a = pIn[4];
            Xn3b = pIn[5];
            Xn4a = pIn[6];
            Xn4b = pIn[7];
            pIn += 8;     
            
            p0a = b0 * Xn1a; 
            p0b = b0 * Xn1b; 
            p1a = b1 * Xn1a;
            p1b = b1 * Xn1b;
            acc1a = p0a + d1a;
            acc1b = p0b + d1b;
            p0a = b0 * Xn2a; 
            p0b = b0 * Xn2b; 
            p3a = a1 * acc1a;
            p3b = a1 * acc1b;
            p2a = b2 * Xn1a;
            p2b = b2 * Xn1b;
            A1a = p1a + p3a;
            A1b = p1b + p3b;
            p4a = a2 * acc1a;
            p4b = a2 * acc1b;
            d1a = A1a + d2a;
            d1b = A1b + d2b;
            d2a = p2a + p4a;
            d2b = p2b + p4b;
            
            p1a = b1 * Xn2a;
            p1b = b1 * Xn2b;
            acc2a = p0a + d1a;
            acc2b = p0b + d1b;
            p0a = b0 * Xn3a; 
            p0b = b0 * Xn3b; 
            p3a = a1 * acc2a;
            p3b = a1 * acc2b;
            p2a = b2 * Xn2a;
            p2b = b2 * Xn2b;
            A1a = p1a + p3a;
            A1b = p1b + p3b;
            p4a = a2 * acc2a;
            p4b = a2 * acc2b;
            d1a = A1a + d2a;
            d1b = A1b + d2b;
            d2a = p2a + p4a;
            d2b = p2b + p4b;
            
            p1a = b1 * Xn3a;
            p1b = b1 * Xn3b;
            acc3a = p0a + d1a;
            acc3b = p0b + d1b;
            p0a = b0 * Xn4a; 
            p0b = b0 * Xn4b; 
            p3a = a1 * acc3a;
            p3b = a1 * acc3b;
            p2a = b2 * Xn3a;
            p2b = b2 * Xn3b;
            A1a = p1a + p3a;
            A1b = p1b + p3b;
            p4a = a2 * acc3a;
            p4b = a2 * acc3b;
            d1a = A1a + d2a;
            d1b = A1b + d2b;
            d2a = p2a + p4a;
            d2b = p2b + p4b;
            
            acc4a = p0a + d1a;
            acc4b = p0b + d1b;
            p1a = b1 * Xn4a;
            p1b = b1 * Xn4b;
            p3a = a1 * acc4a;
            p3b = a1 * acc4b;
            p2a = b2 * Xn4a;
            p2b = b2 * Xn4b;
            A1a = p1a + p3a;
            A1b = p1b + p3b;
            p4a = a2 * acc4a;
            p4b = a2 * acc4b;
            d1a = A1a + d2a;
            d1b = A1b + d2b;
            d2a = p2a + p4a;
            d2b = p2b + p4b;

            pOut[0] = acc1a;	
            pOut[1] = acc1b;	
            pOut[2] = acc2a;	
            pOut[3] = acc2b;
            pOut[4] = acc3a;	
            pOut[5] = acc3b;	
            pOut[6] = acc4a;	
            pOut[7] = acc4b;
            pOut += 8;
             
            sample--;	       
        }

        sample = blockSize & 0x3u;
        while(sample > 0u) {
            Xn1a = *pIn++;
            Xn1b = *pIn++;

            p0a = b0 * Xn1a; 
            p0b = b0 * Xn1b; 
            p1a = b1 * Xn1a;
            p1b = b1 * Xn1b;
            acc1a = p0a + d1a;
            acc1b = p0b + d1b;
            p3a = a1 * acc1a;
            p3b = a1 * acc1b;
            p2a = b2 * Xn1a;
            p2b = b2 * Xn1b;
            A1a = p1a + p3a;
            A1b = p1b + p3b;
            p4a = a2 * acc1a;
            p4b = a2 * acc1b;
            d1a = A1a + d2a;
            d1b = A1b + d2b;
            d2a = p2a + p4a;
            d2b = p2b + p4b;

            *pOut++ = acc1a;
            *pOut++ = acc1b;

            sample--;	       
        }

        /* Store the updated state variables back into the state array */
        *pState++ = d1a;
        *pState++ = d2a;
        *pState++ = d1b;
        *pState++ = d2b;

        /* The current stage input is given as the output to the next stage */
        pIn = pDst;

        /*Reset the output working pointer */
        pOut = pDst;

        /* decrement the loop counter */
        stage--;

    } while(stage > 0u);

#endif 

}
LOW_OPTIMIZATION_EXIT

/**       
   * @} end of BiquadCascadeDF2T group       
   */