arm_biquad_cascade_df1_fast_q15.c 10.4 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
/* ----------------------------------------------------------------------    
* Copyright (C) 2010-2014 ARM Limited. All rights reserved.    
*    
* $Date:        19. March 2015
* $Revision: 	V.1.4.5
*    
* Project: 	    CMSIS DSP Library    
* Title:	    arm_biquad_cascade_df1_fast_q15.c    
*    
* Description:	Fast processing function for the    
*				Q15 Biquad cascade filter.    
*    
* Target Processor: Cortex-M4/Cortex-M3
*  
* Redistribution and use in source and binary forms, with or without 
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the 
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE. 
* -------------------------------------------------------------------- */

#include "arm_math.h"

/**    
 * @ingroup groupFilters    
 */

/**    
 * @addtogroup BiquadCascadeDF1    
 * @{    
 */

/**    
 * @details    
 * @param[in]  *S points to an instance of the Q15 Biquad cascade structure.    
 * @param[in]  *pSrc points to the block of input data.    
 * @param[out] *pDst points to the block of output data.    
 * @param[in]  blockSize number of samples to process per call.    
 * @return none.    
 *    
 * <b>Scaling and Overflow Behavior:</b>    
 * \par    
 * This fast version uses a 32-bit accumulator with 2.30 format.    
 * The accumulator maintains full precision of the intermediate multiplication results but provides only a single guard bit.    
 * Thus, if the accumulator result overflows it wraps around and distorts the result.    
 * In order to avoid overflows completely the input signal must be scaled down by two bits and lie in the range [-0.25 +0.25).    
 * The 2.30 accumulator is then shifted by <code>postShift</code> bits and the result truncated to 1.15 format by discarding the low 16 bits.    
 *    
 * \par    
 * Refer to the function <code>arm_biquad_cascade_df1_q15()</code> for a slower implementation of this function which uses 64-bit accumulation to avoid wrap around distortion.  Both the slow and the fast versions use the same instance structure.    
 * Use the function <code>arm_biquad_cascade_df1_init_q15()</code> to initialize the filter structure.    
 *    
 */

void arm_biquad_cascade_df1_fast_q15(
  const arm_biquad_casd_df1_inst_q15 * S,
  q15_t * pSrc,
  q15_t * pDst,
  uint32_t blockSize)
{
  q15_t *pIn = pSrc;                             /*  Source pointer                               */
  q15_t *pOut = pDst;                            /*  Destination pointer                          */
  q31_t in;                                      /*  Temporary variable to hold input value       */
  q31_t out;                                     /*  Temporary variable to hold output value      */
  q31_t b0;                                      /*  Temporary variable to hold bo value          */
  q31_t b1, a1;                                  /*  Filter coefficients                          */
  q31_t state_in, state_out;                     /*  Filter state variables                       */
  q31_t acc;                                     /*  Accumulator                                  */
  int32_t shift = (int32_t) (15 - S->postShift); /*  Post shift                                   */
  q15_t *pState = S->pState;                     /*  State pointer                                */
  q15_t *pCoeffs = S->pCoeffs;                   /*  Coefficient pointer                          */
  uint32_t sample, stage = S->numStages;         /*  Stage loop counter                           */



  do
  {

    /* Read the b0 and 0 coefficients using SIMD  */
    b0 = *__SIMD32(pCoeffs)++;

    /* Read the b1 and b2 coefficients using SIMD */
    b1 = *__SIMD32(pCoeffs)++;

    /* Read the a1 and a2 coefficients using SIMD */
    a1 = *__SIMD32(pCoeffs)++;

    /* Read the input state values from the state buffer:  x[n-1], x[n-2] */
    state_in = *__SIMD32(pState)++;

    /* Read the output state values from the state buffer:  y[n-1], y[n-2] */
    state_out = *__SIMD32(pState)--;

    /* Apply loop unrolling and compute 2 output values simultaneously. */
    /*      The variable acc hold output values that are being computed:       
     *    
     *    acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]       
     *    acc =  b0 * x[n] + b1 * x[n-1] + b2 * x[n-2] + a1 * y[n-1] + a2 * y[n-2]       
     */
    sample = blockSize >> 1u;

    /* First part of the processing with loop unrolling.  Compute 2 outputs at a time.    
     ** a second loop below computes the remaining 1 sample. */
    while(sample > 0u)
    {

      /* Read the input */
      in = *__SIMD32(pIn)++;

      /* out =  b0 * x[n] + 0 * 0 */
      out = __SMUAD(b0, in);
      /* acc =  b1 * x[n-1] + acc +=  b2 * x[n-2] + out */
      acc = __SMLAD(b1, state_in, out);
      /* acc +=  a1 * y[n-1] + acc +=  a2 * y[n-2] */
      acc = __SMLAD(a1, state_out, acc);

      /* The result is converted from 3.29 to 1.31 and then saturation is applied */
      out = __SSAT((acc >> shift), 16);

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
      /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */

#ifndef  ARM_MATH_BIG_ENDIAN

      state_in = __PKHBT(in, state_in, 16);
      state_out = __PKHBT(out, state_out, 16);

#else

      state_in = __PKHBT(state_in >> 16, (in >> 16), 16);
      state_out = __PKHBT(state_out >> 16, (out), 16);

#endif /*      #ifndef  ARM_MATH_BIG_ENDIAN    */

      /* out =  b0 * x[n] + 0 * 0 */
      out = __SMUADX(b0, in);
      /* acc0 =  b1 * x[n-1] , acc0 +=  b2 * x[n-2] + out */
      acc = __SMLAD(b1, state_in, out);
      /* acc +=  a1 * y[n-1] + acc +=  a2 * y[n-2] */
      acc = __SMLAD(a1, state_out, acc);

      /* The result is converted from 3.29 to 1.31 and then saturation is applied */
      out = __SSAT((acc >> shift), 16);


      /* Store the output in the destination buffer. */

#ifndef  ARM_MATH_BIG_ENDIAN

      *__SIMD32(pOut)++ = __PKHBT(state_out, out, 16);

#else

      *__SIMD32(pOut)++ = __PKHBT(out, state_out >> 16, 16);

#endif /*      #ifndef  ARM_MATH_BIG_ENDIAN    */

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
      /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */

#ifndef  ARM_MATH_BIG_ENDIAN

      state_in = __PKHBT(in >> 16, state_in, 16);
      state_out = __PKHBT(out, state_out, 16);

#else

      state_in = __PKHBT(state_in >> 16, in, 16);
      state_out = __PKHBT(state_out >> 16, out, 16);

#endif /*      #ifndef  ARM_MATH_BIG_ENDIAN    */


      /* Decrement the loop counter */
      sample--;

    }

    /* If the blockSize is not a multiple of 2, compute any remaining output samples here.    
     ** No loop unrolling is used. */

    if((blockSize & 0x1u) != 0u)
    {
      /* Read the input */
      in = *pIn++;

      /* out =  b0 * x[n] + 0 * 0 */

#ifndef  ARM_MATH_BIG_ENDIAN

      out = __SMUAD(b0, in);

#else

      out = __SMUADX(b0, in);

#endif /*      #ifndef  ARM_MATH_BIG_ENDIAN    */

      /* acc =  b1 * x[n-1], acc +=  b2 * x[n-2] + out */
      acc = __SMLAD(b1, state_in, out);
      /* acc +=  a1 * y[n-1] + acc +=  a2 * y[n-2] */
      acc = __SMLAD(a1, state_out, acc);

      /* The result is converted from 3.29 to 1.31 and then saturation is applied */
      out = __SSAT((acc >> shift), 16);

      /* Store the output in the destination buffer. */
      *pOut++ = (q15_t) out;

      /* Every time after the output is computed state should be updated. */
      /* The states should be updated as:  */
      /* Xn2 = Xn1    */
      /* Xn1 = Xn     */
      /* Yn2 = Yn1    */
      /* Yn1 = acc   */
      /* x[n-N], x[n-N-1] are packed together to make state_in of type q31 */
      /* y[n-N], y[n-N-1] are packed together to make state_out of type q31 */

#ifndef  ARM_MATH_BIG_ENDIAN

      state_in = __PKHBT(in, state_in, 16);
      state_out = __PKHBT(out, state_out, 16);

#else

      state_in = __PKHBT(state_in >> 16, in, 16);
      state_out = __PKHBT(state_out >> 16, out, 16);

#endif /*   #ifndef  ARM_MATH_BIG_ENDIAN    */

    }

    /*  The first stage goes from the input buffer to the output buffer.  */
    /*  Subsequent (numStages - 1) occur in-place in the output buffer  */
    pIn = pDst;

    /* Reset the output pointer */
    pOut = pDst;

    /*  Store the updated state variables back into the state array */
    *__SIMD32(pState)++ = state_in;
    *__SIMD32(pState)++ = state_out;


    /* Decrement the loop counter */
    stage--;

  } while(stage > 0u);
}


/**    
 * @} end of BiquadCascadeDF1 group    
 */