arm_linear_interp_example_f32.c 8.52 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
/* ----------------------------------------------------------------------
* Copyright (C) 2010-2012 ARM Limited. All rights reserved.
*
* $Date:         17. January 2013
* $Revision:     V1.4.0
*
* Project:       CMSIS DSP Library
* Title:         arm_linear_interp_example_f32.c
*
* Description:   Example code demonstrating usage of sin function
*                and uses linear interpolation to get higher precision
*
* Target Processor: Cortex-M4/Cortex-M3
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
 * -------------------------------------------------------------------- */


/**
 * @ingroup groupExamples
 */

/**
 * @defgroup LinearInterpExample Linear Interpolate Example
 *
 * <b> CMSIS DSP Software Library -- Linear Interpolate Example  </b>
 *
 * <b> Description </b>
 * This example demonstrates usage of linear interpolate modules and fast math modules.
 * Method 1 uses fast math sine function to calculate sine values using cubic interpolation and method 2 uses
 * linear interpolation function and results are compared to reference output.
 * Example shows linear interpolation function can be used to get higher precision compared to fast math sin calculation.
 *
 * \par Block Diagram:
 * \par
 * \image html linearInterpExampleMethod1.gif "Method 1: Sine caluclation using fast math"
 * \par
 * \image html linearInterpExampleMethod2.gif "Method 2: Sine caluclation using interpolation function"
 *
 * \par Variables Description:
 * \par
 * \li \c testInputSin_f32         points to the input values for sine calculation
 * \li \c testRefSinOutput32_f32   points to the reference values caculated from sin() matlab function
 * \li \c testOutput               points to output buffer calculation from cubic interpolation
 * \li \c testLinIntOutput         points to output buffer calculation from linear interpolation
 * \li \c snr1                     Signal to noise ratio for reference and cubic interpolation output
 * \li \c snr2                     Signal to noise ratio for reference and linear interpolation output
 *
 * \par CMSIS DSP Software Library Functions Used:
 * \par
 * - arm_sin_f32()
 * - arm_linear_interp_f32()
 *
 * <b> Refer  </b>
 * \link arm_linear_interp_example_f32.c \endlink
 *
 */


/** \example arm_linear_interp_example_f32.c
  */

#include "arm_math.h"
#include "math_helper.h"

#define SNR_THRESHOLD           90
#define TEST_LENGTH_SAMPLES     10
#define XSPACING               (0.00005f)

/* ----------------------------------------------------------------------
* Test input data for F32 SIN function
* Generated by the MATLAB rand() function
* randn('state', 0)
* xi = (((1/4.18318581819710)* randn(blockSize, 1) * 2* pi));
* --------------------------------------------------------------------*/
float32_t testInputSin_f32[TEST_LENGTH_SAMPLES] =
{
   -0.649716504673081170, -2.501723745497831200,
    0.188250329003310100,  0.432092748487532540,
   -1.722010988459680800,  1.788766476323060600,
    1.786136060975809500, -0.056525543169408797,
    0.491596272728153760,  0.262309671126153390
};

/*------------------------------------------------------------------------------
*  Reference out of SIN F32 function for Block Size = 10
*  Calculated from sin(testInputSin_f32)
*------------------------------------------------------------------------------*/
float32_t testRefSinOutput32_f32[TEST_LENGTH_SAMPLES] =
{
   -0.604960695383043530, -0.597090287967934840,
    0.187140422442966500,  0.418772124875992690,
   -0.988588831792106880,  0.976338412038794010,
    0.976903856413481100, -0.056495446835214236,
    0.472033731854734240,  0.259311907228582830
};

/*------------------------------------------------------------------------------
*  Method 1: Test out Buffer Calculated from Cubic Interpolation
*------------------------------------------------------------------------------*/
float32_t testOutput[TEST_LENGTH_SAMPLES];

/*------------------------------------------------------------------------------
*  Method 2: Test out buffer Calculated from Linear Interpolation
*------------------------------------------------------------------------------*/
float32_t testLinIntOutput[TEST_LENGTH_SAMPLES];

/*------------------------------------------------------------------------------
*  External table used for linear interpolation
*------------------------------------------------------------------------------*/
extern float arm_linear_interep_table[188495];

/* ----------------------------------------------------------------------
* Global Variables for caluclating SNR's for Method1 & Method 2
* ------------------------------------------------------------------- */
float32_t snr1;
float32_t snr2;

/* ----------------------------------------------------------------------------
* Calculation of Sine values from Cubic Interpolation and Linear interpolation
* ---------------------------------------------------------------------------- */
int32_t main(void)
{
  uint32_t i;
  arm_status status;

  arm_linear_interp_instance_f32 S = {188495, -3.141592653589793238, XSPACING, &arm_linear_interep_table[0]};

  /*------------------------------------------------------------------------------
  *  Method 1: Test out Calculated from Cubic Interpolation
  *------------------------------------------------------------------------------*/
  for(i=0; i< TEST_LENGTH_SAMPLES; i++)
  {
    testOutput[i] = arm_sin_f32(testInputSin_f32[i]);
  }

  /*------------------------------------------------------------------------------
  *  Method 2: Test out Calculated from Cubic Interpolation and Linear interpolation
  *------------------------------------------------------------------------------*/

  for(i=0; i< TEST_LENGTH_SAMPLES; i++)
  {
      testLinIntOutput[i] = arm_linear_interp_f32(&S, testInputSin_f32[i]);
  }

  /*------------------------------------------------------------------------------
  *            SNR calculation for method 1
  *------------------------------------------------------------------------------*/
  snr1 = arm_snr_f32(testRefSinOutput32_f32, testOutput, 2);

  /*------------------------------------------------------------------------------
  *            SNR calculation for method 2
  *------------------------------------------------------------------------------*/
  snr2 = arm_snr_f32(testRefSinOutput32_f32, testLinIntOutput, 2);

  /*------------------------------------------------------------------------------
  *            Initialise status depending on SNR calculations
  *------------------------------------------------------------------------------*/
  if( snr2 > snr1)
  {
    status = ARM_MATH_SUCCESS;
  }
  else
  {
    status = ARM_MATH_TEST_FAILURE;
  }

  /* ----------------------------------------------------------------------
  ** Loop here if the signals fail the PASS check.
  ** This denotes a test failure
  ** ------------------------------------------------------------------- */
  if( status != ARM_MATH_SUCCESS)
  {
    while(1);
  }

  while(1);                             /* main function does not return */
}

 /** \endlink */