arm_fir_example_f32.c 8.97 KB
Newer Older
Sebastian Renner committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
/* ----------------------------------------------------------------------
 * Copyright (C) 2010-2012 ARM Limited. All rights reserved.
 *
* $Date:         17. January 2013
* $Revision:     V1.4.0
*
* Project:       CMSIS DSP Library
 * Title:        arm_fir_example_f32.c
 *
 * Description:  Example code demonstrating how an FIR filter can be used
 *               as a low pass filter.
 *
 * Target Processor: Cortex-M4/Cortex-M3
 *
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*   - Redistributions of source code must retain the above copyright
*     notice, this list of conditions and the following disclaimer.
*   - Redistributions in binary form must reproduce the above copyright
*     notice, this list of conditions and the following disclaimer in
*     the documentation and/or other materials provided with the
*     distribution.
*   - Neither the name of ARM LIMITED nor the names of its contributors
*     may be used to endorse or promote products derived from this
*     software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
 * -------------------------------------------------------------------- */

/**
 * @ingroup groupExamples
 */

/**
 * @defgroup FIRLPF FIR Lowpass Filter Example
 *
 * \par Description:
 * \par
 * Removes high frequency signal components from the input using an FIR lowpass filter.
 * The example demonstrates how to configure an FIR filter and then pass data through
 * it in a block-by-block fashion.
 * \image html FIRLPF_signalflow.gif
 *
 * \par Algorithm:
 * \par
 * The input signal is a sum of two sine waves:  1 kHz and 15 kHz.
 * This is processed by an FIR lowpass filter with cutoff frequency 6 kHz.
 * The lowpass filter eliminates the 15 kHz signal leaving only the 1 kHz sine wave at the output.
 * \par
 * The lowpass filter was designed using MATLAB with a sample rate of 48 kHz and
 * a length of 29 points.
 * The MATLAB code to generate the filter coefficients is shown below:
 * <pre>
 *     h = fir1(28, 6/24);
 * </pre>
 * The first argument is the "order" of the filter and is always one less than the desired length.
 * The second argument is the normalized cutoff frequency.  This is in the range 0 (DC) to 1.0 (Nyquist).
 * A 6 kHz cutoff with a Nyquist frequency of 24 kHz lies at a normalized frequency of 6/24 = 0.25.
 * The CMSIS FIR filter function requires the coefficients to be in time reversed order.
 * <pre>
 *     fliplr(h)
 * </pre>
 * The resulting filter coefficients and are shown below.
 * Note that the filter is symmetric (a property of linear phase FIR filters)
 * and the point of symmetry is sample 14.  Thus the filter will have a delay of
 * 14 samples for all frequencies.
 * \par
 * \image html FIRLPF_coeffs.gif
 * \par
 * The frequency response of the filter is shown next.
 * The passband gain of the filter is 1.0 and it reaches 0.5 at the cutoff frequency 6 kHz.
 * \par
 * \image html FIRLPF_response.gif
 * \par
 * The input signal is shown below.
 * The left hand side shows the signal in the time domain while the right hand side is a frequency domain representation.
 * The two sine wave components can be clearly seen.
 * \par
 * \image html FIRLPF_input.gif
 * \par
 * The output of the filter is shown below.  The 15 kHz component has been eliminated.
 * \par
 * \image html FIRLPF_output.gif
 *
 * \par Variables Description:
 * \par
 * \li \c testInput_f32_1kHz_15kHz points to the input data
 * \li \c refOutput points to the reference output data
 * \li \c testOutput points to the test output data
 * \li \c firStateF32 points to state buffer
 * \li \c firCoeffs32 points to coefficient buffer
 * \li \c blockSize number of samples processed at a time
 * \li \c numBlocks number of frames
 *
 * \par CMSIS DSP Software Library Functions Used:
 * \par
 * - arm_fir_init_f32()
 * - arm_fir_f32()
 *
 * <b> Refer  </b>
 * \link arm_fir_example_f32.c \endlink
 *
 */


/** \example arm_fir_example_f32.c
 */

/* ----------------------------------------------------------------------
** Include Files
** ------------------------------------------------------------------- */

#include "arm_math.h"
#include "math_helper.h"

/* ----------------------------------------------------------------------
** Macro Defines
** ------------------------------------------------------------------- */

#define TEST_LENGTH_SAMPLES  320
#define SNR_THRESHOLD_F32    140.0f
#define BLOCK_SIZE            32
#define NUM_TAPS              29

/* -------------------------------------------------------------------
 * The input signal and reference output (computed with MATLAB)
 * are defined externally in arm_fir_lpf_data.c.
 * ------------------------------------------------------------------- */

extern float32_t testInput_f32_1kHz_15kHz[TEST_LENGTH_SAMPLES];
extern float32_t refOutput[TEST_LENGTH_SAMPLES];

/* -------------------------------------------------------------------
 * Declare Test output buffer
 * ------------------------------------------------------------------- */

static float32_t testOutput[TEST_LENGTH_SAMPLES];

/* -------------------------------------------------------------------
 * Declare State buffer of size (numTaps + blockSize - 1)
 * ------------------------------------------------------------------- */

static float32_t firStateF32[BLOCK_SIZE + NUM_TAPS - 1];

/* ----------------------------------------------------------------------
** FIR Coefficients buffer generated using fir1() MATLAB function.
** fir1(28, 6/24)
** ------------------------------------------------------------------- */

const float32_t firCoeffs32[NUM_TAPS] = {
  -0.0018225230f, -0.0015879294f, +0.0000000000f, +0.0036977508f, +0.0080754303f, +0.0085302217f, -0.0000000000f, -0.0173976984f,
  -0.0341458607f, -0.0333591565f, +0.0000000000f, +0.0676308395f, +0.1522061835f, +0.2229246956f, +0.2504960933f, +0.2229246956f,
  +0.1522061835f, +0.0676308395f, +0.0000000000f, -0.0333591565f, -0.0341458607f, -0.0173976984f, -0.0000000000f, +0.0085302217f,
  +0.0080754303f, +0.0036977508f, +0.0000000000f, -0.0015879294f, -0.0018225230f
};

/* ------------------------------------------------------------------
 * Global variables for FIR LPF Example
 * ------------------------------------------------------------------- */

uint32_t blockSize = BLOCK_SIZE;
uint32_t numBlocks = TEST_LENGTH_SAMPLES/BLOCK_SIZE;

float32_t  snr;

/* ----------------------------------------------------------------------
 * FIR LPF Example
 * ------------------------------------------------------------------- */

int32_t main(void)
{
  uint32_t i;
  arm_fir_instance_f32 S;
  arm_status status;
  float32_t  *inputF32, *outputF32;

  /* Initialize input and output buffer pointers */
  inputF32 = &testInput_f32_1kHz_15kHz[0];
  outputF32 = &testOutput[0];

  /* Call FIR init function to initialize the instance structure. */
  arm_fir_init_f32(&S, NUM_TAPS, (float32_t *)&firCoeffs32[0], &firStateF32[0], blockSize);

  /* ----------------------------------------------------------------------
  ** Call the FIR process function for every blockSize samples
  ** ------------------------------------------------------------------- */

  for(i=0; i < numBlocks; i++)
  {
    arm_fir_f32(&S, inputF32 + (i * blockSize), outputF32 + (i * blockSize), blockSize);
  }

  /* ----------------------------------------------------------------------
  ** Compare the generated output against the reference output computed
  ** in MATLAB.
  ** ------------------------------------------------------------------- */

  snr = arm_snr_f32(&refOutput[0], &testOutput[0], TEST_LENGTH_SAMPLES);

  if (snr < SNR_THRESHOLD_F32)
  {
    status = ARM_MATH_TEST_FAILURE;
  }
  else
  {
    status = ARM_MATH_SUCCESS;
  }

  /* ----------------------------------------------------------------------
  ** Loop here if the signal does not match the reference output.
  ** ------------------------------------------------------------------- */

  if( status != ARM_MATH_SUCCESS)
  {
    while(1);
  }

  while(1);                             /* main function does not return */
}

/** \endlink */