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Abstract. In this paper, we present Xoodyak, a cryptographic primitive that can
be used for hashing, encryption, MAC computation and authenticated encryption.
Essentially, it is a duplex object extended with an interface that allows absorbing
strings of arbitrary length, their encryption and squeezing output of arbitrary length.
It inherently hashes the history of all operations in its state, allowing to derive its
resistance against generic attacks from that of the full-state keyed duplex. Internally,
it uses the Xoodoo[12] permutation that, with its width of 48 bytes, allows for very
compact implementations. The choice of 12 rounds justifies a security claim in the
hermetic philosophy: It implies that there are no shortcut attacks with higher success
probability than generic attacks. The claimed security strength is 128 bits. We
illustrate the versatility of Xoodyak by describing a number of use cases, including
the ones requested by NIST in the lightweight competition. For those use cases,
we translate the relatively detailed security claim that we make for Xoodyak into
simple ones.
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1 Introduction
Xoodyak is a versatile cryptographic object that is suitable for most symmetric-key func-
tions, including hashing, pseudo-random bit generation, authentication, encryption and
authenticated encryption. It is based on the duplex construction, and in particular on
its full-state variant when it is fed with a secret key [3, 23, 17]. It is stateful and shares
features with Markku Saarinen’s Blinker [28], Mike Hamburg’s Strobe protocol frame-
work [18] and Trevor Perrin’s Stateful Hash Objects (SHO) [26]. In practice, Xoodyak is
straightforward to use and its implementation can be shared for many different use cases.

Internally, Xoodyak makes use of the Xoodoo permutation [12, 13]. The design ap-
proach of this 384-bit permutation is inspired by Keccak-p [5, 24], while it is dimensioned
like Gimli for efficiency on low-end processors [1]. The structure consists of three planes of
128 bits each, which interact per 3-bit columns through mixing and nonlinear operations,
and which otherwise move as three independent rigid objects. Its round function lends
itself nicely to low-end 32-bit processors as well as to compact dedicated hardware.

The mode of operation on top of Xoodoo is called Cyclist, as a lightweight counter-
part to Keyak’s Motorist mode [6]. It is simpler than Motorist, mainly thanks to the
absence of parallel variants. Another important difference is that Cyclist is not limited to
authenticated encryption, but rather offers fine-grained services, à la Strobe, and supports
hashing.



Of interest in the realm of embedded devices, Xoodyak contains several built-in mech-
anisms that help protect against side-channel attacks.

• Following an idea by Taha and Schaumont [32], Cyclist can absorb the session
counter that serves as nonce in chunks of a few bits. This counters differential power
analysis (DPA) by limiting the degrees of freedom of an attacker when exploiting a
selection function, see Section 3.2.2.

• Another mechanism consists in replacing the incrementation of a counter with a key
derivation mechanism: After using a secret key, a derived key is produced and saved
for the next invocation of Xoodyak. The key then becomes a moving target for
the attacker, see Section 3.2.6.

• Then, to mitigate the impact of recovering the internal state, e.g., after a side
channel attack, the Cyclist mode offers a ratchet mechanism, similar to the “forget”
call in [3]. This mechanism offers forward secrecy and prevents the attacker from
recovering the secret key prior to the application of the ratchet, see Section 3.2.5.

• Finally, the Xoodoo round function lends itself to efficient masking countermea-
sures against differential power analysis and similar attacks.

1.1 History
Here we describe the changes in this version of the document (v2) compared to last
submission in March 2019 (v1.1).

• In Section 6, we updated the sequence submitted for the NIST authenticated en-
cryption with associated data (AEAD) to use the third method described in Sec-
tion 3.2.2, that is, we integrated the nonce with the key identifier upon initialization.
This change was announced and described in our last update document [14].

• We updated the usage examples to favor the integration of the nonce into the key
identifier parameter.

• We merged the text published in ToSC Special Edition [16].

There is no change in the definition of Xoodyak or the underlying mode Cyclist.

1.2 Notation
The set of all bit strings is denoted Z∗

2 and ϵ is the empty string. Xoodyak works with
bytes and in the sequel we assume that all strings have a length that is multiple of 8 bits.
The length in bytes of a string X is denoted |X|, which is equal to its bit length divided
by 8.

We denote a sequence of m strings X(0) to X(m−1) as X(m−1) ◦ · · · ◦X(1) ◦X(0). The
set of all sequences of strings is denoted (Z∗

2)∗ and ∅ is the sequence containing no strings
at all.

We denote with enc8(x) a byte whose value is the integer x ∈ Z256.

1.3 Usage overview
Xoodyak is a stateful object. It offers two modes: the hash and the keyed modes, one of
which is selected upon initialization.
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1.3.1 Hash mode

In hash mode, it can absorb input strings and squeeze digests at will. Absorb(X) absorbs
an input string X, while Squeeze(ℓ) produces an ℓ-byte output depending on the data
absorbed so far. The simplest case goes as follows:

Cyclist(ϵ, ϵ, ϵ) {initialization in hash mode}
Absorb(x) {absorb string x}
h← Squeeze(n) {get n bytes of output}

Here, h gets a n-byte digest of x, where n can be chosen by the user. Xoodyak offers 128-
bit security against any attack, unless easier on a random oracle. To get 128-bit collision
resistance, we need to set n ≥ 32 bytes (256 bits), while for a matching level of (second)
preimage resistance, it is required to have n ≥ 16 bytes (128 bits). This is similar to the
SHAKE128 extendable output function (XOF) [24].

More complicated cases are possible, for instance:

Cyclist(ϵ, ϵ, ϵ)
Absorb(x)
Absorb(y)
h1 ← Squeeze(n1)
Absorb(z)
h2 ← Squeeze(n2)

Here, h1 is a digest over the two-string sequence y ◦x and h2 is a digest over z ◦y ◦x. The
digest is over the sequence of strings and not just their concatenation. In this aspect, we
here have a function that is similar to and has the same security level as TupleHash128 [25].

1.3.2 Keyed mode

In keyed mode, Xoodyak can do stream encryption, message authentication code (MAC)
computation and authenticated encryption.

As a first example, the following sequence produces a tag (a.k.a. MAC) on a mes-
sage M :

Cyclist(K, ϵ, ϵ) {initialization in keyed mode with key K}
Absorb(M) {absorb message M}
T ← Squeeze(t) {get tag T}

The last line produces a t-byte tag, where t can be specified by the application. A typical
tag length would be t = 16 bytes (128 bits).

Then, encryption is done in a stream cipher-like way, hence it requires a nonce. The ob-
vious way to do encryption would be do call Squeeze() and use the output as a keystream.
Encrypt(P ) works similarly, but it also absorbs P block per block as it is being encrypted.
This offers an advantage in case of nonce misuse, as the leakage is limited to one block
when the two plaintexts start to differ. Hence, to encrypt plaintext P under a given nonce,
we can run the following sequence:

Cyclist(K, ϵ, ϵ)
Absorb(nonce)
C ← Encrypt(P ) {get ciphertext C}

And to decrypt ciphertext C, we simply replace the last line with:
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P ← Decrypt(C) {get plaintext P}

Finally, authenticated encryption can be achieved by combining the previous sequences.
For instance, to encrypt plaintext P under a given nonce and associated data A, we
proceed as follows:

Cyclist(K, ϵ, ϵ)
Absorb(nonce)
Absorb(A) {absorb associated data A}
C ← Encrypt(P )
T ← Squeeze(t) {get tag T}

Note that Xoodyak usage goes much further than the simple examples above. In next
sections we give more examples showing how the nonce can be absorbed more efficiently
or in a way that makes side-channel attacks more difficult, or how Xoodyak supports
sessions and rolling subkeys.

We attach a fairly precise, yet involved, security claim to Xoodyak in keyed mode.
In addition, we provide clear corollaries with the resulting security strength for specific
use cases. Here are two examples, which both assume a single secret key made of κ = 128
uniformly and independently distributed bits.

• First, let us take the MAC computation at the beginning of this section. It does
not enforce the use of a nonce, hence an adversary gets more power in exploiting
adaptive queries. Yet, this authentication scheme can resist against an adversary
with up to 2128 computational complexity and up to 264 data complexity (measured
in blocks).

• Then, we discuss the last example of this section, namely the authenticated en-
cryption scheme. We assume an application that correctly implements nonces and
that does not release unverified decrypted ciphertexts. The use of nonces makes
Xoodyak resist against even stronger adversaries. Our claim implies that this
nonce-based authenticated encryption scheme can resist against an adversary with
up to 2128 computational complexity and up to 2160 data complexity. Furthermore,
the key size κ can be increased up to about 180 bits and the computational com-
plexity limit follows 2κ, still with a data complexity of 2160.

1.4 Advantages and limitations
The advantages of Xoodyak are the following.

• It is compact: It only requires a 48-byte state and some input and output pointers.
The underlying duplex construction allows for bytes that arrive to be immediately
integrated into the state without the need of a message queue. Furthermore, the
permutation can be computed in-place [12, Section 4.1].

• It foresees protections against side-channel attacks.

– It offers leakage resilience. During a session, the secret key is a moving target,
as there is no fixed key. In between sessions, it foresees a mechanism to roll
keys.

– If the same key must be used many times, one can easily add protection against
implementation attacks. The degree-2 round function of Xoodoo makes mask-
ing and threshold schemes relatively cheap.
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• Its specifications are short and simple, while supporting all symmetric crypto oper-
ations with a security strength of 128 bits.

• Its mode offers great flexibility and can be adapted to the specific needs of an
application. For instance, it supports sessions and intermediate tags in authenticated
encryption in a transparent way. Intermediate tags allow reducing the buffer at the
receiving end to store the plaintext before checking the tag.

• It considers the security against multi-target attacks in the design.

• It relies on a strong and efficient permutation.

– Xoodoo is based on the same principles as Keccak-p and hence its propaga-
tion properties are well understood.

– Xoodoo has an exceptionally good security strength build-up per operation
count. This is visible in the diffusion properties and trail bounds.

• In case of misuse (i.e., nonce misuse or release of unverified decrypted ciphertexts),
the key cannot be retrieved by cryptanalysis. Authentication does not rely on a
nonce.

It has the following limitations:

• It is inherently serial at construction level.

• It does stream encryption so accidental nonce re-use may result in a leakage of up
to 24 bytes of plaintext.

2 Specifications
Xoodyak is an instance of the Cyclist mode of operation on top of the Xoodoo permuta-
tion. We start with the definition of the permutation in Section 2.1. Then in Section 2.2
we present the mode of operation. And finally, in Section 2.3, we define Xoodyak and
its associated security claim.

2.1 The Xoodoo permutation
Xoodoo is a family of permutations parameterized by its number of rounds nr and de-
noted Xoodoo[nr].

Xoodoo has a classical iterated structure: It iteratively applies a round function to
a state. The state consists of 3 equally sized horizontal planes, each one consisting of 4
parallel 32-bit lanes. Similarly, the state can be seen as a set of 128 columns of 3 bits,
arranged in a 4× 32 array. The planes are indexed by y, with plane y = 0 at the bottom
and plane y = 2 at the top. Within a lane, we index bits with z. The lanes within a
plane are indexed by x, so the position of a lane in the state is determined by the two
coordinates (x, y). The bits of the state are indexed by (x, y, z) and the columns by (x, z).
Sheets are the arrays of three lanes on top of each other and they are indexed by x. The
Xoodoo state is illustrated in Figure 1.

The permutation consists of the iteration of a round function Ri that has 5 steps: a
mixing layer θ, a plane shifting ρwest, the addition of round constants ι, a non-linear layer
χ and another plane shifting ρeast.

We specify Xoodoo in Algorithm 1, completely in terms of operations on planes and
use thereby the notational conventions we specify in Table 1. We illustrate the step
mappings in a series of figures: the χ operation in Figure 2, the θ operation in Figure 3,
the ρeast and ρwest operations in Figure 4.
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Figure 1: Toy version of the Xoodoo state, with lanes reduced to 8 bits, and different
parts of the state highlighted.

Table 1: Notational conventions
Ay Plane y of state A
Ay ≪ (t, v) Cyclic shift of Ay moving bit in (x, z) to position (x + t, z + v)
Ay Bitwise complement of plane Ay

Ay + Ay′ Bitwise sum (XOR) of planes Ay and Ay′

Ay ·Ay′ Bitwise product (AND) of planes Ay and Ay′

Algorithm 1 Definition of Xoodoo[nr] with nr the number of rounds
Parameters: Number of rounds nr
for Round index i from 1− nr to 0 do

A = Ri(A)

Here Ri is specified by the following sequence of steps:
θ :

P ← A0 + A1 + A2
E ← P ≪ (1, 5) + P ≪ (1, 14)
Ay ← Ay + E for y ∈ {0, 1, 2}

ρwest :
A1 ← A1 ≪ (1, 0)
A2 ← A2 ≪ (0, 11)

ι :
A0 ← A0 + Ci

χ :
B0 ← A1 ·A2
B1 ← A2 ·A0
B2 ← A0 ·A1
Ay ← Ay + By for y ∈ {0, 1, 2}

ρeast :
A1 ← A1 ≪ (0, 1)
A2 ← A2 ≪ (2, 8)

Table 2: The round constants ci with −11 ≤ i ≤ 0, in hexadecimal notation (the least
significant bit is at z = 0).

i ci i ci i ci i ci

−11 0x00000058 −8 0x000000D0 −5 0x00000060 −2 0x000000F0
−10 0x00000038 −7 0x00000120 −4 0x0000002C −1 0x000001A0
−9 0x000003C0 −6 0x00000014 −3 0x00000380 0 0x00000012
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The round constants Ci are planes with a single non-zero lane at x = 0, denoted as ci.
We specify the value of this lane for indices −11 to 0 in Table 2 and refer to Appendix A
for the specification of the round constants for any index.

Finally, in many applications the state must be specified as a 384-bit string s with
the bits indexed by i. The mapping from the three-dimensional indexing (x, y, z) and i is
given by i = z + 32(x + 4y).

2.2 The Cyclist mode of operation
The Cyclist mode of operation relies on a cryptographic permutation and yields a stateful
object to which the user can make calls. It is parameterized by the permutation f , by the
block sizes Rhash, Rkin and Rkout, and by the ratchet size ℓratchet, all in bytes. Rhash, Rkin
and Rkout specify the block sizes of the hash and of the input and output in keyed modes,
respectively. As Cyclist uses up to 2 bytes for frame bits (i.e., bits used for padding and
domain separation), we require that max(Rhash, Rkin, Rkout) + 2 ≤ b′, where b′ = b/8 is
the permutation width in bytes.

Upon initialization with Cyclist(K, id, counter), the Cyclist object starts either in
hash mode if K = ϵ or in keyed mode otherwise. In the latter case, the object takes the
secret key K together with its (optional) identifier id, then absorbs a counter in a trickled
way if counter ̸= ϵ. In the former case, it ignores the initialization parameters. Note that,
unlike Strobe [18], there is no way to switch from hash to keyed mode, although we might
extend Cyclist this way in the future.

The available functions depend on the mode the object is started in: The functions
Absorb() and Squeeze() can be called in both hash and keyed modes, whereas the
functions Encrypt(), Decrypt(), SqueezeKey() and Ratchet() are restricted to the
keyed mode. The purpose of each function is as follows:

• Absorb(X) absorbs an input string X;

• C ← Encrypt(P ) enciphers P into C and absorbs P ;

• P ← Decrypt(C) deciphers C into P and absorbs P ;

• Y ← Squeeze(ℓ) produces an ℓ-byte output that depends on the data absorbed so
far;

• Y ← SqueezeKey(ℓ) works like Y ← Squeeze(ℓ) but in a different domain, for
the purpose of generating a derived key;

• Ratchet() transforms the state in an irreversible way to ensure forward secrecy.

Process history. Together, everything that influences the output of a Cyclist object,
as returned by Squeeze(), SqueezeKey() or as keystream produced by Encrypt(), is
captured by the process history, see Definition 1 below.

The state of a Cyclist object will depend on the sequence of calls to it and on its inputs.
More precisely, the intention is that any output depends on the sequence of all input strings
(without ambiguity on their boundaries) and of all input calls (i.e., Absorb(), Encrypt()
and Decrypt()) so far. In addition, any two subsequent output calls (i.e., Squeeze()
and SqueezeKey()) generate strings from different domains.

To capture the idea that the output depends also on the operations performed, the
process history contains symbols from the set S in Definition 1 below. For instance, a call
to Absorb(X) means the output will depend on the sequence X ◦Absorb, while a call
to Encrypt(P ) will make the output depend on P ◦Crypt, with Absorb, Crypt ∈ S.

As a side-effect of other design criteria, like minimizing the memory footprint, the state
also depends on the number of blocks in the previous calls to Squeeze() or SqueezeKey()
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Table 3: Symbols and strings appended to the process history.

Hash mode:
Absorb(X) X ◦Absorb
Squeeze(ℓ) after another Squeeze() Blocknhash(ℓ) ◦ Squeeze
Squeeze(ℓ) (otherwise) Blocknhash(ℓ)

Keyed mode:
Cyclist(K, id, counter) counter ◦ id ◦AbsorbKey
Absorb(X) X ◦Absorb
C ← Encrypt(P ) P ◦Crypt
P ← Decrypt(C) P ◦Crypt
Squeeze(ℓ) Blocknkout(ℓ) ◦ Squeeze
SqueezeKey(ℓ) Blocknkout(ℓ) ◦ SqueezeKey
Ratchet() Ratchet

and on the previously processed plaintext or ciphertext blocks in Encrypt() or Decrypt().
In particular, each symbol Block in the process history represents an extra output block
requested via Squeeze() or SqueezeKey(), see Table 3.

Note that, when in keyed mode, the output naturally also depends on the secret key
absorbed upon initialization, although the key is not part of the process history itself.
This ensures that the security claim can be properly expressed in an indistinguishability
setting where the adversary has full control on the process history but not on the secret
key, see Claim 2.

Definition 1. The process history (or history for short) is a sequence of strings and
symbols in (Z∗

2 ∪ S)∗, with

S = {Absorb, AbsorbKey, Crypt, Squeeze, SqueezeKey, Block, Ratchet}.

At initialization of the Cyclist object, the history is initialized to ∅. Then, each call to
the Cyclist object appends symbols and strings according to Table 3, where

nhash(ℓ) = max
(

0,

⌈
ℓ

Rhash

⌉
− 1

)
and nkout(ℓ) = max

(
0,

⌈
ℓ

Rkout

⌉
− 1

)
.

In addition, the process history is updated with the Rkout-byte blocks of plaintext as they
are processed by Encrypt() or Decrypt().

Inside Cyclist. The Cyclist mode of operation is defined in Algorithms 2 and 3. Here
are some notes for a better understanding of the behavior of Cyclist.

• At the bottom level, Cyclist defines the Down() and Up() methods.

– The Down() method absorbs one block of input, by bitwise adding it to the
state, together with a color cD in the last byte of the state. In this case,
the color is a value that provides domain separation between the first block
of Absorb() (‘01‘ in hash mode or ‘03‘ in keyed mode), the first block of
AbsorbKey() (‘02‘) and any other block.

– The Up() method aims at producing one block of output. It absorbs a color
cU , calls the underlying permutation f and returns the first bytes of the state.
Here the color provides domain separation between a block of keystream (‘80‘),
the first block of Squeeze() (‘40‘), the first block of SqueezeKey() (‘20‘), a
ratchet (‘10‘) and anything else.
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– The phase attribute keeps track of whether the last internal call was a Up() or
a Down().

• At the next level, the AbsorbAny() method aims at absorbing input. It cuts
the input string in blocks of given length (r parameter) and calls Down() and
Up() appropriately. Similarly, SqueezeAny() provides output of a given length
(ℓ parameter). Finally, the Crypt() method alternates calls to Up() to produce
keystream and to Down() to absorb the plaintext. The Rabsorb attribute contains
the block size when absorbing, which is Rkin in keyed mode or Rhash in hash mode.
Similarly, the Rsqueeze attribute contains the block size when squeezing, which is
Rkout in keyed mode or Rhash in hash mode.

• At the top level, the public methods rely on AbsorbAny(), Crypt() and SqueezeAny().

Algorithm 2 Definition of Cyclist[f, Rhash, Rkin, Rkout, ℓratchet]
Instantiation: cyclist← Cyclist[f, Rhash, Rkin, Rkout, ℓratchet](K, id, counter)

Phase and state: (phase, s)← (up, ‘00‘b′)
Mode and absorb rate: (mode, Rabsorb, Rsqueeze)← (hash, Rhash, Rhash)
if K not empty then AbsorbKey(K, id, counter)

Interface: Absorb(X)
AbsorbAny(X, Rabsorb, ‘03‘ (absorb))

Interface: C ← Encrypt(P ), with mode = keyed
return Crypt(P, false)

Interface: P ← Decrypt(C), with mode = keyed
return Crypt(C, true)

Interface: Y ← Squeeze(ℓ)
return SqueezeAny(ℓ, ‘40‘ (squeeze))

Interface: Y ← SqueezeKey(ℓ), with mode = keyed
return SqueezeAny(ℓ, ‘20‘ (key))

Interface: Ratchet(), with mode = keyed
AbsorbAny(SqueezeAny(ℓratchet, ‘10‘ (ratchet)), Rabsorb, ‘00‘)
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Algorithm 3 Internal interfaces of Cyclist[f, Rhash, Rkin, Rkout, ℓratchet]
Internal interface: AbsorbAny(X, r, cD)

for all blocks Xi in Split(X, r) do
if phase ̸= up then Up(0, ‘00‘)
Down(Xi, cD if first block else ‘00‘)

Internal interface: AbsorbKey(K, id, counter), with |K || id| ≤ Rkin − 1
(mode, Rabsorb, Rsqueeze)← (keyed, Rkin, Rkout)
AbsorbAny(K || id || enc8(|id|), Rabsorb, ‘02‘ (key))
if counter not empty then AbsorbAny(counter, 1, ‘00‘)

Internal interface: O ← Crypt(I, decrypt)
for all blocks Ii in Split(I, Rkout) do

Oi ← Ii ⊕Up(|Ii|, ‘80‘ (crypt) if first block else ‘00‘)
Pi ← Oi if decrypt else Ii

Down(Pi, ‘00‘)
return ||i Oi

Internal interface: Y ← SqueezeAny(ℓ, cU )
Y ← Up(min(ℓ, Rsqueeze), cU )
while |Y | < ℓ do

Down(ϵ, ‘00‘)
Y ← Y || Up(min(ℓ− |Y |, Rsqueeze), ‘00‘)

return Y

Internal interface: Down(Xi, cD)
(phase, s)← (down, s⊕ (Xi || ‘01‘ || ‘00‘∗ || (cD & ‘01‘ if mode = hash else cD)))

Internal interface: Yi ← Up(|Yi|, cU )
(phase, s)← (up, f(s if mode = hash else s⊕ (‘00‘∗ || cU )))
return s[0] || s[1] || . . . || s[|Yi| − 1]

Internal interface: [Xi]← Split(X, n)
if X is empty then return array with a single empty string [ϵ]
return array [Xi], with X = ||i Xi and |Xi| = n except possibly the last block.

2.3 Xoodyak and its claimed security
We instantiate Xoodyak in Definition 2 and attach to it security Claims 1 and 2.

Definition 2. Xoodyak is Cyclist[f, Rhash, Rkin, Rkout, ℓratchet] with

• f = Xoodoo[12] of width 48 bytes (or b = 384 bits)

• Rhash = 16 bytes

• Rkin = 44 bytes

• Rkout = 24 bytes

• ℓratchet = 16 bytes

Claim 1. The success probability of any attack on Xoodyak in hash mode shall not be
higher than the sum of that for a random oracle and N2/2255, with N the attack complexity
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in calls to Xoodoo[12] or its inverse. We exclude from the claim weaknesses due to the
mere fact that the function can be described compactly and can be efficiently executed, e.g.,
the so-called random oracle implementation impossibility [21], as well as properties that
cannot be modeled as a single-stage game [27].

This means that Xoodyak hashing has essentially the same claimed security as, e.g.,
SHAKE128 [24].

Claim 2. Let K = (K0, . . . , Ku−1) be an array of u secret keys, each uniformly and
independently chosen from Zκ

2 with κ ≤ 256 and κ a multiple of 8. Then, the advantage
of distinguishing the array of Xoodyak objects after initialization with Cyclist(Ki, ·, ·)
with i ∈ Zu from an array of random oracles RO(i, h), where h ∈ (Z∗

2 ∪ S)∗ is a process
history, is at most

qivN +
(

u
2
)

2κ
+ N

2184 +
(L + Ω)N +

(
L+Ω+1

2
)

2192 + M2

2382 + Mq

2min(192+κ,384) . (1)

Here we follow the notation of the generic security bound of the full-state keyed duplex [17],
namely:

• N is the computational complexity expressed in the (computationally equivalent)
number of executions of Xoodoo[12].

• M is the online or data complexity expressed in the total number of input and output
blocks processed by Xoodyak.

• q ≤M is the total number of initializations in keyed mode.

• Ω ≤ M is the number of blocks, in keyed mode, that overwrite the outer state
(i.e., the first Rkout bytes of the state) and for which the adversary gets a subsequent
output block. In particular, this counts the number of blocks processed by Decrypt(·)
for which the adversary can also get the corresponding key stream value or other
subsequent output (e.g., in the case of the release of unverified decrypted ciphertext
in authenticated encryption). And it also counts the number of calls to Ratchet()
followed by Squeeze(ℓ) or SqueezeKey(ℓ) with ℓ ̸= 0.

• L ≤ M is the number of blocks, in keyed mode, for which the adversary knows the
value of the outer state from a previous query and can choose the input block value
(e.g., in the case of authentication without a nonce, or of authenticated encryption
with nonce repetition). This includes the number of times a call to Absorb() follows
a call to Squeeze(ℓ) or to SqueezeKey(ℓ) with ℓ ̸= 0.

• qiv ≤ u is the maximum number of keys that are used with the same id, i.e.,

qiv = max
id
|{i | Cyclist(Ki, id, ·) is called at least once}| .

Claims 1 and 2 ensure Xoodyak has 128 bits of security both in hash and keyed modes
(assuming κ ≥ 128). Regarding the data complexity, it depends on the values of q, Ω and
L, for which we will see concrete examples in Section 3. Given that they are bounded by
M , Xoodyak resists to a data complexity of up to 264 blocks, as the probability in Eq. (1)
is negligible as long as N ≪ 2128 and M ≪ 264. In the particular case of L + Ω = 0,
it resists even higher data complexities, as the probability remains negligible also when
M ≪ 2160.

The parameter qiv relates to the possible security degradations in the case of multi-
target attacks, as an exhaustive key search would erode security by log2 qiv ≤ log2 u bits
in this case. However, when the protocol ensures qiv = 1, there is no degradation and the
security remains at min(128, κ) bits even in the case of multi-target attacks.

A rationale for the security claim is given in Section 4.
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3 Using Xoodyak
Xoodyak, as a Cyclist object, can be started in hash mode and therefore used as a
hash function, as an extendable output function (XOF) or most generally as a doubly
extendable cryptographic (or dec) function. Alternatively, one can start Xoodyak in
keyed mode and, e.g., to use it as a doubly-extendable cryptographic keyed (or deck)
function or for duplex-like session authenticated encryption. In this section, we cover use
cases in this order, first in hash mode, then in keyed mode, then some combination of
both.

3.1 Hash mode
As already mentioned, Xoodyak can be used as a hash function. More generally, it can
serve as a XOF, the generalization of a hash function with arbitrary output length. To
get a n-byte digest of some input x, one can use Xoodyak as follows:

Cyclist(ϵ, ϵ, ϵ)
Absorb(x)
Squeeze(n)

This sequence is the nominal sequence for using Xoodyak as a XOF. Its security is
summarized in the following Corollary.

Corollary 1. Assume that Xoodyak satisfies Claim 1. Then, this hash function has the
following security strength levels, with n the output size in bytes:

collision resistance min(8n/2, 128) bits
preimage and second preimage resistance min(8n, 128) bits
m-target preimage resistance min(8n− log m, 128) bits

By using consecutive calls to Absorb(), Xoodyak can hash not just one string, but
potentially a sequence of strings. For instance, to compute a n-byte digest over the
sequence x3 ◦ x2 ◦ x1, one does the following:

Cyclist(ϵ, ϵ, ϵ)
Absorb(x1)
Absorb(x2)
Absorb(x3)
Squeeze(n)

The output depends on the sequence as such and not just on the concatenation of the
different strings. In this respect Xoodyak is therefore similar to TupleHash [25].

Most generally, Xoodyak enjoys incrementality properties on both its input and its
output: Appending a string to the input sequence costs only the processing of the new
string, and requesting more output bits costs only the production of these new bits. Hence,
we say that Xoodyak implements a dec function [13].

A XOF can be implemented in a stateful manner and can come with an interface
that allows for requesting more output bits. This is the so-called extendable output
feature, and for Cyclist this is provided quite naturally by the Squeeze() function.
Here, some care must be taken for interoperability: For supporting use cases such as
the one in Section 3.2.4, Cyclist considers squeezing calls as being in distinct domains.
This means a Cyclist objects with some given history, the n + m bytes returned by
Squeeze(n) || Squeeze(m) and Squeeze(n + m) will be the same in the first n bytes
and differ in the last m bytes. If an extendable output is required without this feature,
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an interface can be built to allow incremental squeeze calls. For instance, an interface
SqueezeMore() would behave such that calling Squeeze(n) followed by SqueezeMore(m)
is equivalent to calling Squeeze(n + m) in the first place.

3.2 Keyed mode
In keyed mode, Xoodyak can naturally implement a deck function [13], although we
focus instead on duplex-based ways to perform authentication and (authenticated) en-
cryption [3].

To use Xoodyak as a keyed object, one starts it with Cyclist(K, id, counter) where
K is a secret key with a fixed length of κ bits. We first show how to use the id and
counter parameters, to counteract multi-target attacks and to handle the nonce, then
discuss various kinds of authenticated encryption use cases.

3.2.1 Two ways to counteract multi-target attacks

The id is an optional key identifier. It offers one of two ways to counteract multi-target
attacks.

In a multi-target attack, the adversary is not just interested in breaking a specific
device or key, but in breaking any device or key from a (possibly large) set. If there are u
keys in a system, the security can degrade by up to log2 u bits in such a case [8]. Claim 2
reflects this in the term qivN

2κ ≤ N
2κ−log2 u as qiv ≤ u.

Let us assume that we wish to target a security strength level of 128 bits including
multi-target attacks. Xoodyak can achieve this in two ways.

• We extend the length of the secret key. By setting κ = 128 + log2 u, then the term
qivN

2κ becomes
qivN

2128+log2 u
≤ N

2128 .

• We make the key identifier id globally unique among the u keys and therefore ensure
that qiv = 1. Then, there is no degradation for exhaustive key search in a multi-
target setting, and the key size can be equal to the target security strength level, so
κ = 128 in this example.

For instance, the following sequence gives an example on how to encrypt a message P
under a given nonce using a key K and key identifier id :

Cyclist(K, id, ϵ)
Absorb(nonce)
C ← Encrypt(P )

3.2.2 Three ways to handle the nonce

The counter parameter of Cyclist() is a data element in the form of a byte string that
can be incremented. It is absorbed in a trickled way, one digit at a time, so as to limit the
number of power traces an attacker can take with distinct inputs [32]. At the upper level,
the user or protocol designer fixes a basis 2 ≤ B ≤ 256 and assumes that the counter is
a string in Z∗

B . A possible way to go through all the possible strings in Z∗
B is as follows.

First, the counter is initialized to the empty string. Then, as the counter is incremented,
it takes all the possible strings in Z1

B , then all the possible strings in Z2
B , and so on.

The counter shall be absorbed starting with the most significant digits. This allows
caching the state after absorbing part of the counter as the first digits absorbed will change
the least often. The smaller the value B, the smaller the number of possible inputs at
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each iteration of the permutation, so the better protection against power analysis attacks
and variants.

This method of absorbing a nonce, as a counter absorbed in a trickled way, is desired in
situations where protection against power analysis attacks matter. Otherwise, the nonce
can be absorbed at once with Absorb(nonce) just after Cyclist(K, id, ϵ).

Finally, a third method consists in integrating the nonce with the id parameter. This
method is the most efficient, in particular for small messages. In addition, if id is a global
nonce, i.e., it is unique among all the keys used in the system, this also ensures qiv = 1 as
explained above.

3.2.3 Authenticated encryption

We propose using Xoodyak for authenticated encryption as follows. To encrypt a plain-
text P under a given nonce and associated data A under key K, and to get a tag of t = 16
bytes, we make the following sequence of calls:

Cyclist(K, nonce, ϵ)
Absorb(A)
C ← Encrypt(P )
T ← Squeeze(t)
return (C, T )

To decrypt (C, T ), we proceed similarly:

Cyclist(K, nonce, ϵ)
Absorb(A)
P ← Decrypt(C)
T ′ ← Squeeze(t)
if T = T ′ then

return P
else

return ⊥

If the nonce is not repeated and if the decryption does not leak unverified decrypted
ciphertexts, then we have L = Ω = 0 here, see Claim 2. In addition, if the nonce is globally
unique in order to ensure qiv = 1, we obtain the following simplified security claim.

Corollary 2. Assume that (1) Xoodyak satisfies Claim 2; (2) this authenticated encryp-
tion scheme is fed with a single κ-bit key with κ ≤ 192; (3) it is implemented such that
the nonce is not repeated and the decryption does not leak unverified decrypted ciphertexts.
Then, it can be distinguished from an ideal scheme with an advantage whose dominating
terms are:

N

2κ
+ N

2184 + M2

2192+κ
.

This translates into the following security strength levels assuming a t-byte tag (the com-
plexities are in bits):

computation data
plaintext confidentiality min(184, κ, 8t) 96 + κ/2
plaintext integrity min(184, κ, 8t) 96 + κ/2
associated data integrity min(184, κ, 8t) 96 + κ/2
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3.2.4 Session authenticated encryption

Session authenticated encryption works on a sequence of messages and the tag authen-
ticates the complete sequence of messages received so far. Starting from the sequence
in Section 3.2.3, we add the support for messages (Ai, Pi), where Ai, Pi or both can be
empty.

Cyclist(K, nonce, ϵ)
Absorb(A1)
C1 ← Encrypt(P1)
T1 ← Squeeze(t)
⇒ output (C1, T1) and wait for next message

Absorb(A2)
C2 ← Encrypt(P2)
T2 ← Squeeze(t)
⇒ output (C2, T2) and wait for next message

Absorb(A3)
T3 ← Squeeze(t)
⇒ output T3 and wait for next message

C4 ← Encrypt(P4)
T4 ← Squeeze(t)
⇒ output (C4, T4) and wait for next message

T5 ← Squeeze(t)
⇒ output T5 and wait for next message

In this example, T2 authenticates (A2, P2) ◦ (A1, P1). The third message has no plain-
text, the fourth message has no associated data, and the fifth message is empty. In such
a sequence, the convention is that the call to Squeeze() ends a message. Since it appears
in the processing history, there is no ambiguity on the boundaries of the messages even if
some of the elements (or both) are empty.

The use of empty messages may be clearer in the case of a session shared by two (or
more) communicating devices, where each device takes a turn. A device may have nothing
to say and so skips its turn by just producing a tag.

To relate to Claim 2, we have to determine L by counting the number of invocations
to Absorb() that follow Squeeze(). If the nonce is not repeated and if the decryption
does not leak unverified decrypted ciphertexts, we have L = T − q, with T the number of
messages processed (or tags produced), and Ω = 0.

3.2.5 Ratchet

At any time in keyed mode, the user can call Ratchet(). This causes part of the state to
be overwritten with zeroes, thereby making it computationally infeasible to compute the
state value before the call to Ratchet() to mitigate the impact of recovering the internal
state, e.g., after a side channel attack.

In an authenticated encryption scheme, the call to Ratchet() can be typically in-
serted either just before producing the tag or just after. The advantage of calling it just
before the tag is that it is most efficient: It requires only one extra call to the permutation
f . An advantage of calling it just after the tag is that its processing can be done asyn-
chronously, while the ciphertext is being transmitted and it waits for the next message.
Unless Ratchet() is the last call, the number of calls to it must be counted in Ω.

Cyclist(K, nonce, ϵ)
Absorb(A)
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C ← Encrypt(P )
Ratchet() {either here . . . }
T ← Squeeze(t)
Ratchet() {. . . or here}

3.2.6 Rolling subkeys

As an alternative to using a long-term secret key together with its associated nonce
that is incremented at each use, Cyclist offers a mechanism to derive a subkey via the
SqueezeKey() call. On an encrypting device, one can therefore replace the process of
incrementing and storing the updated nonce at each use of the long-term secret key with
the process of updating a rolling subkey:

K1 ← K and i← 1
while necessary do

Initialize a new Xoodyak instance with Cyclist(Ki, ϵ, ϵ)
Ki+1 ← SqueezeKey(ℓsub) {and store Ki+1 by overwriting Ki}
Ratchet() {optional}
Absorb(Ai)
Ci ← Encrypt(Pi)
Ti ← Squeeze(t)
⇒ output (Ci, Ti) and wait for next message

i← i + 1

Here ℓsub should be chosen large enough to avoid collisions, say ℓsub = 32 bytes (256
bits). Assuming that there are no collisions in the subkeys, L = 0 and Ω is the number of
calls to Ratchet().

Using Cyclist this way offers resilience against side channel attacks, as the long-term
key is not exposed any more and can even be discarded as soon as the first subkey is derived.
The key to attack becomes a moving target, just like the state in session authenticated
encryption.

3.2.7 Nonce reuse and release of unverified decrypted ciphertext

The authenticated encryption schemes presented in this section assume that the nonce is
unique per session, namely that the value is used only once per secret key. It also assumes
that an implementation returns only an error when receiving an invalid cryptogram and
in particular does not release the decrypted ciphertext if the tag is invalid. If these two
assumptions are satisfied, we refer to this as the nominal case; otherwise, we call it the
misuse case.

In the misuse case security degrades and hence we strongly advise implementers and
users to respect the nonce requirement at all times and never release unverified decrypted
ciphertext. We detail security degradation in the following paragraphs.

A nonce violation in general breaks confidentiality of part of the plaintext. In partic-
ular, two sessions that have the same key and the same process history (i.e., the same K,
id and/or nonce, counter and the same sequence of associated data, plaintexts) will result
in the same output (ciphertext, tag). We call such a pair of sessions in-sync. Clearly,
in-sync sessions leak equality of inputs and hence also plaintexts. As soon as in-sync ses-
sions get different input blocks, they lose synchronicity. If these input blocks are plaintext
blocks, the corresponding ciphertext blocks leak the bitwise difference of the corresponding
plaintext blocks (of Rkout = 24 bytes). We call this the nonce-misuse leakage.

Release of unverified decrypted ciphertext also has an impact on confidentiality as it
allows an adversary to harvest keystream that may be used in the future by legitimate
parties. An adversary can harvest one key stream block at each attempt.
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Nonce violation and release of unverified decrypted ciphertext have no consequences for
integrity and do not put the key in danger for Xoodyak. This is formalized in Corollary 3.

Corollary 3. Assume that (1) Xoodyak satisfies Claim 2; (2) this authenticated encryp-
tion scheme is fed with a single κ-bit key with κ ≤ 192. Then, except for nonce-misuse
leakage and keystream harvesting, it can be distinguished from an ideal scheme with an
advantage whose dominating terms are:

N

2κ
+ N

2184 + MN + M2

2192 .

This translates into the following security strength levels assuming a t-byte tag (the com-
plexities are in bits):

computation data
plaintext confidentiality (nominal case) min(128, κ, 8t) 64
plaintext confidentiality (misuse case) - -
plaintext integrity min(128, κ, 8t) 64
associated data integrity min(128, κ, 8t) 64

3.3 Authenticated encryption with a common secret
A key exchange protocol, such as Diffie-Hellman or variant, results in a common secret
that usually requires further derivation before being used as a symmetric secret key. To
do this with a Cyclist object, we can use an object in hash mode, process the common
secret, and use the derived key in a new object that we start in keyed mode. For example:

Cyclist(ϵ, ϵ, ϵ)
Absorb(ID of the chosen protocol)
Absorb(KA) {Alice’s public key}
Absorb(KB) {Bob’s public key}
Absorb(KAB) {Their common secret produced with Diffie-Hellman}
KD ← Squeeze(ℓ)

Cyclist(KD, nonce, ϵ)
Absorb(A)
C ← Encrypt(P )
T ← Squeeze(t)
return (C, T )

Note that if ℓ ≤ Rhash, an implementation can efficiently chain KD ← Squeeze(ℓ)
and the subsequent reinitialization Cyclist(KD, ϵ, ϵ). Since KD is located in the outer
part (i.e., the first Rhash bytes) of the state, it needs only to set the rest of the state to
the appropriate value before calling f .

Note also that if at least one of the public key pairs is ephemeral, the common secret
KAB is used only once and no nonce is needed.

4 Design rationale
In this section, we give the design rationale of Xoodyak. First, we give the general
strategy. Then, we report on the generic security of the Cyclist mode and relate it to
Xoodyak’s security claim. Finally, we highlight the properties of the Xoodoo[12] per-
mutation.
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4.1 Design strategy
Xoodyak connects a mode of operation, namely Cyclist, to a permutation, namely
Xoodoo[12]. The design strategy is hermetic in the following sense: We chose the num-
ber of rounds in Xoodoo such that the best attacks on Xoodyak are (claimed to be)
the generic attacks on the Cyclist mode. This is visible in the security claims Claim 1
and 2, as they replicate the best known security bounds of the sponge and keyed duplex
constructions. In contrast, a non-hermetic strategy would keep some buffer between the
claimed security level and the generic attacks.

Note that the strategy behind Xoodyak differs from the so-called “hermetic sponge
strategy” [5]. Putting aside definitional issues, the hermetic sponge strategy described
in [5] targets the absence of distinguishers on the permutation in an absolute sense, whereas
we only consider the security of the resulting function Xoodyak. Hence we do not claim
that Xoodoo[12] is free of distinguishers, only that it is strong enough when plugged in
Cyclist.

4.2 Generic security and the security claim
We now give more details to relate the generic security of the sponge and keyed duplex
constructions to Xoodyak’s security claim.

4.2.1 Xoodyak in hash mode

In hash mode, Cyclist can be expressed on top of the duplex construction [3] with simple
padding as recalled in Algorithm 4. The state is initialized to the all-zero string like
Cyclist, and a duplexing call corresponds to a sequence of Down() and Up().

The rate is set to r = 8Rhash + 2 bits, which amounts to the input block size plus two
additional bits that can be potentially controlled by the attacker, namely the padding bit
and one color bit (i.e., cD & ‘01‘) via Down() in Algorithm 3. Note that, in the duplex
construction, the input σ and its padding affect only the first r bits, whereas Cyclist’s
color bit is in the last byte of the state. This could be formalized by permuting the bit
positions before and after f , i.e., by running the duplex construction on f ′ = π−1 ◦ f ◦ π
with π a bit transposition such that all the input bits are in the first r positions, and this
would not affect the generic security.

Algorithm 4 The duplex construction duplex[f, pad10∗, r]
Instantiation: duplex← duplex[f, pad10∗, r]

State: s← 0b

Interface: Z ← duplexing(σ, ℓ) with ℓ ≤ r, σ ∈
∪r−1

n=0 Zn
2 , and Z ∈ Zℓ

2
s← s⊕ (σ||10∗)
s← f(s)
return ⌊s⌋ℓ

Using the Duplexing-Sponge Lemma [3], the generic security of the duplex construction
can be reduced to that of the sponge construction with a capacity of c = b− r, so c = 254
bits in the case of Xoodyak. Consequently, we make a flat sponge claim [2] with claimed
capacity equal to c, hence accounting for a success probability of N2

2c+1 = N2

2255 in Claim 1.

4.2.2 Xoodyak in keyed mode

When in keyed mode, Cyclist can be rephrased in terms of calls to the full-state keyed
duplex (KD), as recalled in Algorithm 5. Here the rate is r = 8Rkout and c = b − r,
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so c = 192 bits in the case of Xoodyak. A crucial property of the KD is that each
duplexing call starts with applying the permutation f , then generates a block of output
and finally adds an input block to the outer state, as depicted in Figure 5. In the language
of Cyclist, a duplexing call translates into a sequence of Up() followed by Down(X). This
cycle is exactly an iteration of Encrypt(), where the plaintext block is given before the
corresponding keystream block is output, so an iteration of Encrypt() directly translates
to a call to KD. A similar comment applies to AbsorbAny(), possibly except the first
iteration.

±

K
f

iv

Z ¾

f

Z ¾

f

Z ¾

…

Figure 5: The full-state keyed duplex construction.

Algorithm 5 Full-state keyed duplex construction KDf
K=(K0,...,Ku−1) with ∀i, Ki ∈ Zκ

2

Interface: Z ← KD.Init(Kδ, iv, σ, flag) with δ ∈ Zu, iv ∈ Zb−κ
2 , σ ∈ Zb

2, flag ∈
{true, false}, and Z ∈ Zr

2
s← f(Kδ||iv)
Z ← the first r bits of s
if flag = true then σ ← σ ⊕ (Z||0∗)
s← s⊕ σ
return Z

Interface: Z = KD.Duplexing(σ, flag) with σ ∈ Zb
2, flag ∈ {true, false}, and Z ∈ Zr

2
s← f(s)
Z ← the first r bits of s
if flag = true then σ ← σ ⊕ (Z||0∗)
s← s⊕ σ
return Z

However, a call to SqueezeAny() always ends with Up(), without knowing what the
next input will be. To simulate this and properly remap it to the KD setting [17], we can
say that in that case the Cyclist object gets its output block by making a duplexing call
with an arbitrary input block. When the actual input block becomes known, it restarts
the whole KD object with the same queries, but this time with the correct input block.
This is like re-doing a query with the same path and is accounted for in L each time it
happens.

The different terms of Claim 2’s Eq. (1) stem from the security bound in the KD
paper [17], which we now detail.

• (L+Ω)N
2c and (L+Ω+1

2 )
2c are present as is in Eq. (1).

• 2ν2(M−L)
r,c (N+1)

2c is upper bounded as 2b(N+1)
4×2c since it is shown in [17] that 2(r−c)/2 <

M ≤ 2r−1 implies ν
2(M−L)
r,c ≤ ν2M

r,c ≤ b/4. We then bound 2b(N+1)
4×2c = 384(N+1)

2c+1 ≤
N

2c−8 .
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• (M−q−L)q
2b−q

+ M(M−L−1)
2b is not greater than 4M2

2b for q ≤ 2b−1, and 4M2

2b = M2

2382 here.

• Hmin(DK) = Hcoll(DK) = κ in our setting, so (M−q−L)q

2Hmin(DK)+min(c,b−k) is upper bounded

as Mq
2min(c+κ,b) , qivN

2Hmin(DK)
as uN

2κ (since qiv ≤ u), and (u
2)

2Hcoll(DK) = (u
2)

2κ .

4.2.3 Decodability

In this section, we show the following lemma, which means that any output of Cyclist
unambiguously depends on the process history. For the keyed mode, in particular, this
links the Cyclist mode to the full-state keyed duplex construction [17].

Lemma 1. From the sequence of b-bit blocks that are added to the state between each call
to f , one can recover the process history of the Xoodyak object, together with the secret
key if in keyed mode.

Proof. First let us observe that any sequence of calls to the Cyclist object is translated
internally into an alternating sequence of Down(Xi, cD) and Up(|Yi|, cU ) steps. The first
step is the internal input step that takes a message block Xi, applies a simple reversible
padding to it and injects the result into the state, complemented optionally by a color
byte cD, i.e., a byte that performs domain separation between the different operations.
The second step is the internal output step, which first optionally injects a color byte cU

into state, applies the permutation f and then produces the requested number of bytes
as output. Since the parts of the state that these two steps deal with are not overlapping,
and since each input block Xi is padded in a reversible way, it is straightforward to extract
from the b-bit block sequence the corresponding calls to Down() and Up() along with
their parameters Xi, cD and cU . We ignore the output length parameter |Yi| that is not
necessary for the decodability.

In general, each Cyclist call starts with a first colored step and continues with zero,
one or several uncolored steps. One can use this property to easily detect where each call
starts in the alternating sequence of Down() and Up() steps. There are a few exceptions
to this color property that we detail now.

The most notable exception is in hash mode, where none of Squeeze() steps are
colored. If there are Down() steps, these will have empty input strings. For the sake of
decodability, we can then simply consider that these steps are part of the previous call.

There are also exceptions in keyed mode. In the case the phase is down, Absorb() will
start with an uncolored Up() step. This case may occur for instance if Absorb() is called
twice in a row. A similar yet more subtle situation occurs if Squeeze() is called after any
call that terminates with a Up() step. In that case, Squeeze() starts with an implicit
uncolored void step, i.e., a Down()-like step that has no effect on the state. The same
situation occurs for Encrypt(), Decrypt() and Ratchet(). For all these exceptions,
we can in fact either ignore the first uncolored step or consider that this step is part of
the sequence attached to the previous call. Since each call to Cyclist is associated with a
unique color, we can then use this color property to decode the alternating step sequence
and extract the corresponding call parameters.

To summarize, the decodability of Cyclist works as follows. First, we convert the
sequence of b-bit blocks that are added to the state into the corresponding sequence of
step calls Down() and Up() along with their parameters. Working backward, we cut
this sequence into sub-sequences, each starting with a colored step (or a void step) and
followed by zero, one or more uncolored steps. We associate then each sub-sequence
to corresponding call, reconstructing when necessary the message parameter from the
concatenation of all block parameters extracted in the sub-sequence. This is illustrated
in Table 4. In hash mode, we observe that although calls to Squeeze() are not meant to
be decodable, some of them can still be decoded as a side-effect of the insertion of a void
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Table 4: Matching up and down sub-sequences with process history. Here u() and d()
are shortcut notations for Up() and Down(), respectively.

Hash mode:
[u(·)] d(Xi, ‘01‘) (u(·) d(Xi or ϵ, ·))∗ [u(·)] Block∗ ◦X = ||iXi ◦Absorb
d() u(·) (d(ϵ, ·) u(·))nhash(ℓ) Blocknhash(ℓ) ◦ Squeeze
Keyed mode:
[u(·)] d(Xi, ‘02‘) (u(·) d(Xi, ·))∗ (counter ◦ (K||id)) = ||iXi ◦AbsorbKey
[u(·)] d(Xi, ‘03‘) (u(·) d(Xi, ·))∗ X = ||iXi ◦Absorb
[d()] u(‘80‘) d(Xi, ·) (u(·) d(Xi, ·))∗ P = ||iXi ◦Crypt
[d()] u(‘40‘) (d(ϵ, ·) u(·))nkout(ℓ) Blocknkout(ℓ) ◦ Squeeze
[d()] u(‘20‘) (d(ϵ, ·) u(·))nkout(ℓ) Blocknkout(ℓ) ◦ SqueezeKey
[d()] u(‘10‘) (d(Xi or ϵ, ·) u(·))∗ Ratchet

step (denoted d()) between two consecutive calls to Squeeze(), or due to empty down
steps that appear in long Squeeze() calls (ℓ > Rhash).

4.3 Choice of the permutation
The choice of the permutation was driven by the idea of sharing resources between hash
and keyed modes. The size of the permutation is therefore determined mainly by the
hash mode, as for a given security level, it requires more capacity than the keyed mode.
Since 128-bit security is desired, we need to have a capacity of at least 256 bits to prevent
collisions. The permutation should therefore be wider than 256 bits, but not too much
wider.

A possible candidate was Keccak-p[400, nr], as the permutation size leaves enough
room for the input block. However, it uses operations on 16-bit lanes but 16-bit processors
are not so common nowadays. Instead, the choice of Xoodoo was quite natural as it shares
a lot of similarity with the Keccak-p family and works on 32-bit lanes. The entire state
of 384 bits can be held in 12 registers of 32 bits, making it a nice fit with the low-end
32-bit devices.

For the design rationale of Xoodoo, we give here some highlights and refer to [12] for
more details. Xoodoo operates on three planes of 128 bits each, which interact per 3-bit
columns through mixing and nonlinear operations, and which otherwise move as three
independent rigid objects. Its round function uses the five step mappings θ, ρwest, ι, χ
and ρeast. The nonlinear layer χ is an instance of the transformation χ that was already
described and analyzed in [10], and that operates on 3 bits in Xoodoo. It has algebraic
degree 2, it is involutive and hence r rounds of Xoodoo or its inverse cannot have an
algebraic degree higher than 2r. The mixing layer θ is a column parity mixer [31]. As
in both the parity plane computation in θ and in χ the state bits interact only within
columns, the dispersion steps aim at dislocating the bits of the columns between every
application of θ and of χ. For that reason, ρeast and ρwest shift the planes, treating
them as rigid objects, between each χ and each θ step. Finally, the translation-invariance
symmetry is destroyed by adding a round constants in the step ι.

The Xoodoo round function exhibits fast avalanche properties: It needs 3.5 rounds
or 2 inverse rounds to satisfy the strict avalanche criterion [36]. Like Keccak-p, it has
so-called weak alignment [4], where alignment characterizes the way differences or linear
correlations propagate. The weak alignment has the advantage of making Xoodoo less
susceptible to truncated differentials attacks or to trail clustering effects.
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Finally, in terms of differential and linear cryptanalysis, Xoodoo has strong bounds on
the weight of its trails (see below). Note that the weight of a trail relates to its differential
probability or its correlation, see [12, Section 5.2] for more details.

The choice for the number of rounds, namely 12, comes for one part from our experience
in designing sponge-based hash functions and authenticated encryption schemes, and for
another part from the similarity to Keccak-p on which extensive cryptanalysis has been
performed in the last ten years [7]. With 12 rounds, Xoodoo[12] has strong avalanche, dif-
ferential and linear propagation properties, even stronger than those of Keccak-p[400, nr]
in terms of differential and linear trails. Even if an attack can somehow skip 4 rounds, it
is guaranteed that any 8-round trail, either differential or linear, has weight at least 148.

For hashing, the best collision or (second) preimage attack on Keccak reaches only 5
or 6 rounds, depending on how many degrees of freedom are available [30]. Note that in
hashing mode, Xoodyak has a much smaller rate (or block size), hence much less degrees
of freedom, than the aforementioned Keccak instances.

For keyed operations, we believe that Xoodoo[12] is suitable to be plugged in the
full-state keyed duplex construction, on which Cyclist relies. As a comparison, this is
the same number of rounds that is used for Keccak-p in Keyak [6], also relying on the
full-state keyed duplex construction.

4.3.1 Extended trail analysis

Since the publication of Xoodoo, we have extended the trail analysis and improved the
bounds. Table 5 shows the currently known lower bounds. In particular, we improved
upon [12, Table 7] for 4 and 5 rounds.

Let us first summarize the notions related to differential and linear trails. For more
details, please refer to [12, Sections 5.2 and 7].

We split the round function into the nonlinear layer χ and the sequence of linear
mappings λ = ρwest ◦ θ ◦ ρeast. An n-round differential trail is the concatenation of n
round differentials (ai, ai+1), with ai the difference at the output of χ after i rounds, and is
fully specified by the sequence (a0, a1, . . . , an). We use a redundant representation of trails,
where we also include the differences after the linear layer: Q = (a0, b0, a1, b1 . . . , bn−1, an),
with bi = λ(ai). We define the restriction weight wr(bi → ai+1) as DP(bi → ai+1) =
2−wr(bi→ai+1). As shown in [12], wr(bi → ai+1) is equal to 2 times the number of active
columns in bi or ai+1, and this number is preserved through χ, so we can write wr(bi →
ai+1) = wr(bi) = wr(ai+1).

We define the weight of a trail Q as wr(Q) =
∑b−1

i=0 wr(bi) = wr(a1) +
∑b−1

i=1 wr(bi).
Consequently, the evaluation of wr(Q) do not require the value of a0, b0 or an. To bound
the weight of trails, we can therefore restrict our attention to differential trail cores, as
in [11]:

Q = a1
λ−→ b1

χ−→ a2
λ−→ b2

χ−→ a3
λ−→ . . . an−1

λ−→ bn−1 .

For linear trails, the reasoning is similar, but differences are replaced with masks, the
restriction weight is replaced with the correlation weight, and the operations are taken
in reverse order and transposed [12]. The correlation weight of an n-round linear trail
(a0, b0, a1, b1, . . . , bn−1, an) is given by wc(a1) +

∑n−1
i=1 wc(bi), with wc(u) denoting the

correlation weight of a mask u. This is a linear trail core:

Q = a1
λ⊤

−→ b1
χ−→ a2

λ⊤

−→ b2
χ−→ a3

λ⊤

−→ . . . an−1
λ⊤

−→ bn−1 .

Due to the high similarity of the trail search between differential and linear trails, we
discuss them generically, and use the notation w(·) to denote either wr(·) or wc(·).

• For 4 rounds, we exhaustively covered the space of differential and linear trail cores
with weight w(a1) + w(b1) + w(b2) + w(b3) ≤ 72. Since no such trail core was
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Table 5: The weight of the best differential and linear trails (or lower bounds) as a function
of the number of rounds.

# rounds: 1 2 3 4 5 6 8 10 12
differential: 2 8 36 ≥ 74 ≥ 94 ≥ 104 ≥ 148 ≥ 188 ≥ 222
linear: 2 8 36 ≥ 74 ≥ 94 ≥ 104 ≥ 148 ≥ 188 ≥ 222

found and since all weights are even, a 4-round trail must have weight at least 74.
We divided the search into two parts. First, we generated 2-round trail cores with
weight w(a1) + w(b1) ≤ 38 and extended them forward to 4 rounds up to weight 72.
Second, when w(a1) + w(b1) > 38, we have w(b2) + w(b3) = w(a3) + w(b3) ≤ 32.
So we generated 2-round trail cores with weight w(a3) + w(b3) ≤ 32 and extended
them backwards to 4 rounds up to weight 72. The unbalance between the two parts
compensates for the higher cost of the backward extension compared to the forward
extension.

• For 5 rounds, we exhaustively covered the space of differential and linear trail cores
with weight w(a1)+w(b1)+w(b2)+w(b3)+w(b4) ≤ 92. Since no such trail core was
found, a 5-round trail must have weight at least 94. We again divided the search into
two parts. First, we generated 2-round trail cores with weight w(a1)+w(b1) ≤ 40 and
extended them forward to 5 rounds up to weight 92. Second, when w(a1) + w(b1) >
40, we have w(b2) + w(b3) + w(b4) ≤ 50, and this coincides with the set of 3-round
trail cores produced in [12]. So we just took these trail cores and extended them
backwards to 5 rounds up to weight 92.

4.4 Known attacks
At the time of writing, there are no known attacks on Xoodyak and therefore Claims 1
and 2 can plausibly be believed to hold.

Xoodyak is built on strong foundations and is based on conservative design choices.
There is a large number of research papers on the generic security of sponge and duplex-
based modes, on Keccak, Ketje, Keyak and other permutation-based designs for hash-
ing or authenticated encryption. These show the fairly wide understanding of the field
around Xoodyak by the cryptographic community.

In [29], Song et al. mounted cube attacks on a Xoodoo-based authenticated encryp-
tion scheme following the same mode as Ketje. The authors succeed on the initialization
phase reduced to 6 rounds of Xoodoo. Despite that Xoodyak does not use the same
mode as Ketje, there is nevertheless significant similarity between their initializations.
Furthermore, the authors discuss the effects of switching from 5-bit to 3-bit χ between
Keccak-p and Xoodoo, and argue that the narrower χ contributes to an increased
resistance against cube-attack-like analysis.

In [38], Zhou et al. mounted a conditional cube attack on Xoodyak with the permu-
tation reduced to 6 rounds (out of the nominal 12). In the nonce-misuse setting, their
attack could recover the 128-bit key in about 244 operations with negligible memory costs.

In [20], Liu et al. show that a zero-sum distinguisher can be mounted on Xoodoo[12].
This is not surprising given the current knowledge on such distinguishers on Keccak-p,
see, e.g., [9]. This distinguisher on the permutation does not contradict our claim of
hermetic strategy as it does not extend to Xoodyak (or to a sponge-based function on
top of Xoodoo[12] in general), see [15, Section 4.1].

From these two research papers, we can deduce that 12 rounds provide enough safety
margin against this type of attacks.
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4.5 Tunable parameters
Xoodyak does not have user-chosen parameters, as the security claims apply to the only
defined instance of Xoodyak. In contrast, Keccak has user-chosen parameters, namely
the rate and capacity, for which the full range is covered by a security claim.

This said, should the need arise, we can already identify the parameters that could be
modified to adapt Xoodyak’s performance or security.

• The number of rounds of the permutation. Clearly, this is an essential parameter
to protect against shortcut attacks. Reducing it can improve the performance but
lower the safety margin. Should shortcut attacks be found, it can be increased to
add safety margin.

• The different rates (or block sizes) Rhash, Rkin and Rkout. In a hermetic approach,
tuning the rates (hence the associated capacities) have an impact mainly on the
generic security. Increasing such a rate would have a positive impact on performance
and the expense of the generic, and therefore claimed, security levels. For instance,
we have a lot of margin in terms of data complexity in the case L = Ω = 0 (see
Corollary 2), and in that case we could increase Rkout to, say, 28 bytes. In the other
direction, we could also wish to increase the generic and claimed security levels by
reducing Rhash or Rkin. Decreasing these rates may also be a way to counteract
some shortcut attacks, but this idea is not in the spirit of a hermetic approach.

5 Implementation
The purpose of the NIST Lightweight Cryptography Standardization Process [15] is to get
algorithms that are suitable for use in constrained environments. In this section, we discuss
the implementation of Xoodyak in the light of this aspect and report on implementations
on ARM Cortex-M0 and Cortex-M3. For more details on the implementation of the
Xoodoo permutation, we refer to [12, Section 4].

5.1 Lightweight?
It is a reasonable question to ask whether a scheme like Xoodyak, based on a 384-bit
permutation, can be called lightweight.

Part of the answer comes from the use of a permutation-based construction like duplex.
Even if, say, the AES-128 block cipher has only a data path of 128 bits, one must take into
account an extra 128 bits for its key schedule, plus the memory needed for whatever mode
of operation on top the block cipher. In contrast, all the use-cases of Xoodyak rely on
the duplex construction having a state whose size is equal to the width of the permutation,
and it needs almost no additional state for the modes on top. The Xoodoo permutation
can be computed essentially in-place (see [12, Section 4.1]), and the input and output
are added to and extracted directly from the state, without the need of a message queue.
Even if the interface allows the user to enter inputs and extract outputs incrementally,
everything fits in the 384 bits of the permutation plus a couple of pointers for bookkeeping.
In a different (i.e., non-lightweight) context, Yalla et al. showed the benefits of such a
construction in terms of area in a hardware implementation [37]. Not surprisingly, many
candidates to the NIST Lightweight Cryptography Standardization Process adopted the
same strategy [15].

Another aspect is the permutation itself and the choice of operations in it. Xoodoo
has a lot of symmetry, making it possible to reuse parts of the circuit or the code. The
operations are all simple, making use of logical XORs and ANDs, and we deliberately
avoided modular additions with their long carry chains. Finally, Xoodyak comes with
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Table 6: Performance figures of Xoodyak in cycles per byte.

ARM ARM
Cortex-M0 Cortex-M3

Hash mode
Absorb() 134.5 39.3
Squeeze() 136.2 40.6
Keyed mode
Absorb() 48.7 14.2
Encrypt() 91.2 27.1
Decrypt() 91.3 27.4
Squeeze() 86.2 24.3

Table 7: Code sizes (in bytes) of our implementations of Xoodyak and of the permutation
only.

of which
Xoodyak Xoodoo[12] Notes

ARM Cortex-M0 3494 468 1 round in a loop
ARM Cortex-M3 4058 2388 12 rounds unrolled

several features to protect against side-channel attacks, something that is otherwise very
costly to achieve.

5.2 Software implementation results
We implemented Xoodyak on ARM Cortex-M0 and -M3 processors. On Cortex-M0, the
implementation of Xoodoo[12] executes one round in a loop. Being a compact proces-
sor, the focus was more on compactness than on speed. In contrast, the implementation
on Cortex-M3 unrolls the 12 rounds of the permutation, hence maximizing the speed by
taking advantage of the implicit rotations in parallel with the other operations. Note
that we could also unroll the implementation on Cortex-M0 and/or make a more com-
pact implementation on Cortex-M3, but these give interesting extreme points. These
implementations are available in the extended Keccak code package (XKCP) [35].

We report on the computational performance of Xoodyak in Table 6. In terms of
memory consumption, our implementation maintains a state of size the width of the
permutation (48 bytes) together with 4 bytes to store the phase, the mode, Rabsorb and
Rsqueeze, so 52 bytes in total.

Finally, we report in Table 7 the sizes of the code of these two implementations. We
also report the code size taken by the permutation only. Naturally, the size of the unrolled
permutation is significantly larger than the other one. At the time of this writing, we are
experimenting with code size optimizations and we expect to reach around 1200 bytes of
code for the full Xoodyak with similar speeds.

5.3 Hardware implementation results
We developed hardware implementations of the algorithms for authenticated encryption
with associated data and hashing described in Section 6 and performed performance anal-
ysis for ASIC and FPGA.

The implementation makes use of the Development Package for Hardware Implemen-
tations Compliant with the Hardware API for Lightweight Cryptography, v1.1.0 [34]. The
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supported external data bus width is 32 bits. The number of rounds R performed in a
clock cycle is configurable at design time and can be set to one of the divisors of the total
number of rounds of the permutation, namely 1, 2, 3, 4, 6, or 12.

The code is publicly available on GitHub as part of the Xoodyak repository [22] and
was submitted to the FPGA and ASIC benchmarking projects [33, 19].

To compute the throughput of our implementation, note that the processing of a n-bit
block of data takes n/32 + 12/R + 1 clock cycles, where n = 352, 192, 128 for associated
data, plaintext/ciphertext and message to hash, respectively.

5.3.1 ASIC results

We synthesized the circuit in STMicroelectronics 40nm technology with Synopsys Design
Compiler version Q-2019.12-sp1.

Table 8 reports the throughput and the area cost in gate equivalent (GE) for the most
interesting R-frequency pairs. It appears that small values of R are usually better in terms
of speed per area, unless a small frequency is required.

Note that we also developed an alternative version that supports only authenticated
encryption and decryption (i.e., without hashing), and we noticed that the performance
gain in terms of area is negligible (between 200 and 326 GE for the variants in Table 8).

Table 8: Area cost (GE) and throughput (Gbit/second) for associated data (AD), encryp-
tion and hashing for some area/speed trade-offs of the ASIC implementation synthesized
in STMicroelectronics 40nm technology.

Area (GE) Freq. (MHz) R AD Enc. Hash
8097 100 1 1.47 1.01 0.75
8101 200 1 2.93 2.02 1.51
8144 300 1 4.40 3.03 2.26
8234 400 1 5.87 4.04 3.01
8492 500 1 7.33 5.05 3.76
8770 600 1 8.80 6.06 4.52
9593 700 1 10.27 7.07 5.27

10558 100 2 1.96 1.48 1.16
10565 200 2 3.91 2.95 2.33
10604 300 2 5.87 4.43 3.49
10671 400 2 7.82 5.91 4.65
12942 500 2 9.78 7.38 5.82
13020 100 3 2.20 1.75 1.42
13024 200 3 4.40 3.49 2.84
13073 300 3 6.60 5.24 4.27

5.3.2 FPGA results

We performed the synthesis using Vivado v2019.2 and a board of the Xilinx Artix-7 family
(xc7a12tcsg325-3), which has 8,000 lookup tables (LUTs) and 16,000 flip-flops (FFs). The
board is one of those suggested by the Athena FPGA benchmarking project.

Table 9 reports the resource utilization (in terms of LUTs, FFs, and slices), the maxi-
mum frequency reached, and the relative throughput for the values of R that give the most
interesting area/throughput trade-offs. Like for the ASIC, it appears that small values
of R are usually better in terms of speed per area, unless a small frequency is required.
Also in this case, the cost of the variant supporting only authenticated encryption and
decryption does not differ significantly from the reported values.
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Table 9: Resource usage, maximum frequency, and maximum throughput (Gbit/second)
for associated data (AD), encryption and hashing area, for some area/speed trade-offs of
the FPGA implementation.

LUTs FFs Slices Max Freq. (MHz) R AD Enc. Hash
1410 576 410 218 1 3.20 2.20 1.64
2057 576 578 176 2 3.44 2.60 2.05
2770 576 772 122 3 2.68 2.13 1.74

6 Submission to NIST Lightweight Cryptography Standard-
ization Process

This document is part of the submission of Xoodyak to NIST Lightweight Cryptography
Standardization Process.

• The algorithm submitted for authenticated encryption with associated data (AEAD)
is the sequence in Section 3.2.3 executed with Xoodyak. By default, the key length
is κ = 128 bits, there is no global key identifier but the nonce (length is 128 bits) is
integrated into the id parameter (id = nonce) and the tag length is 128 bits (t = 16).
The amount of data that can be processed by a key is only implied by the security
claim.
This gives the following sequence of calls to encrypt a plaintext P :

Xoodyak(K, nonce, ϵ)
Absorb(A)
C ← Encrypt(P )
T ← Squeeze(t)
return (C, T )

To decrypt (C, T ), we proceed similarly:

Xoodyak(K, nonce, ϵ)
Absorb(A)
P ← Decrypt(C)
T ′ ← Squeeze(t)
if T = T ′ then

return P
else

return ⊥

• The algorithm submitted for hashing is the first sequence in Section 3.1 executed
with Xoodyak. The default output length is n = 32 bytes, or otherwise freely
chosen as in a XOF. The limit on the message size is only implied by the security
claim.

Xoodyak(ϵ, ϵ, ϵ)
Absorb(x)
Squeeze(n)

These two algorithms share the same underlying Xoodyak algorithm and an implementa-
tion would naturally share the Xoodoo permutation and several input-output operations
for absorbing and squeezing data. These two algorithms are therefore paired to be evalu-
ated jointly.
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