
PHOTON-Beetle Authenticated Encryption and Hash Family

Designers/Submitters:

Zhenzhen Bao - Nanyang Technological University, Singapore
Avik Chakraborti - University of Exeter, UK

Nilanjan Datta - Indian Statistical Institute, Kolkata, India
Jian Guo - Nanyang Technological University, Singapore

Mridul Nandi - Indian Statistical Institute, Kolkata, India
Thomas Peyrin - Nanyang Technological University, Singapore

Kan Yasuda - NTT Secure Platform Laboratories, Japan

zzbao@ntu.edu.sg, avikchkrbrti@gmail.com, nilanjan_isi_jrf@yahoo.com,
guojian@ntu.edu.sg, mridul.nandi@gmail.com, thomas.peyrin@ntu.edu.sg,

yasuda.kan@lab.ntt.co.jp

May 17, 2021

mailto:yasuda.kan@lab.ntt.co.jp
mailto:mridul.nandi@gmail.com
mailto:nilanjan_isi_jrf@yahoo.com
mailto:avikchkrbrti@gmail.com

Chapter 1

Introduction

In this document, we propose PHOTON-Beetle, an authenticated encryption and hash family, that uses a
sponge-based mode Beetle with the P256 (used for the PHOTON hash [6]) being the underlying permutation.
We denote this permutation by PHOTON256. Based on the functionalities, PHOTON-Beetle can be classified into
two categories: a family of authenticated encryptions, dubbed as PHOTON-Beetle-AEAD and a family of hash
functions, dubbed as PHOTON-Beetle-Hash. Both these families are parameterized by r, the rate of message
absorption.

1.1 Notations

Here we introduce all the required notations. By {0, 1}∗ we denote the set of all strings, and by {0, 1}n the
set of strings of length n. |A| denotes the number of the bits in the string A. We use the notation ⊕ and
⊙ to refer the binary addition and matrix multiplication respectively. For A, B ∈ {0, 1}∗ , A∥B to denotes

(a1,...,av)the concatenation of A and B. We use the notation V1∥ · · · ∥Vv ←−−−−−− V to denote parsing of the string
V into v vectors of size a1, . . . , av respectively. When a1 = · · · = av−1 = a and av ≤ a, we simply use

a
V1∥ · · · ∥Vv ←− V . B ≫ k denotes k bit right-rotation of the bit string B. The expression E? a : b evaluates
to a if E holds and b otherwise. Similarly, (E1 and E2)? a : b : c : d evaluates to a if both E1 and E2 holds, b if
only E1 holds, c if only E2 holds and d otherwise. Trunc(V, i) is a function that returns the most significant i
bits of the V and Ozs is the function that applies 10⋆ padding on r bits, i.e. Ozsr(V) = V ∥1∥0r−|V |−1 when
|V | < r. For any two integers m and n, we use m| n to denote that m divides n. and For any matrix X,
we use the notation X[i, j] to denote the element at i-th row and j-th column of X. We represent a serial
matrix Serial[a0, a1, a2, a3, a4, a5, a6, a7] by 

Serial[a0, a1, a2, a3, a4, a5, a6, a7] :=



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

a0 a1 a2 a3 a4 a5 a6 a7



.

1.2 Organization

Here we provide a brief organization of this write-up. We revisit and provide a brief description of PHOTON256

that we will use in our mode as the underlying permutation in Chapter 2. We provide the complete formal
specification of PHOTON-Beetle family of authenticated encryption and hash family and the recommended
versions in Chapter 3. In Chapter 4, we provide the security claims of our proposals with proper justification.
Finally, we detail our design decisions in Chapter 5.

1

Chapter 2

PHOTON256 Permutation

We use PHOTON256 [6] as the underlying 256-bit permutation in our mode. It is applied on a state of 64
elements of 4 bits each, which is represented as a (8 × 8) matrix X. PHOTON256 is composed of 12 rounds,
each containing four layers AddConstant, SubCells, ShiftRows and MixColumnSerial. Informally, AddConstant
adds fixed constants to the cells of the internal state. SubCells applies an 4-bit S-Box (see Table. 2.1) to
each of the 64 4-bit cells. ShiftRows rotates the position of the cells in each of the rows and MixColumnSerial
linearly mixes all the columns independently using a serial matrix multiplication. The multiplication with

4the coefficients in the matrix is in GF (24) with x + x + 1 being the irreducible polynomial.

Table 2.1: The PHOTON S-box

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S-box C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Formal description of all these operations are given in Fig. 2.1.

PHOTON256(X)

1 : for i = 0 to 11 :

2 : X ← AddConstant(X, i);

3 : X ← SubCells(X);

4 : X ← ShiftRows(X);

5 : X ← MixColumnSerial(X);

return X;

AddConstant(X, k)

SubCells(X)

1 : for i = 0 to 7, j = 0 to 7 :

2 : X[i, j] ← S-Box(X[i, j]);

return X;

ShiftRows(X)

1 : for i = 0 to 7, j = 0 to 7 :

2 : X ′ [i, j] ← X[i, (j + i)%8]);

return X ′ ;

1 : RC[12] ← {1, 3, 7, 14, 13, 11, 6, 12, 9, 2, 5, 10};
2 : IC[8] ← {0, 1, 3, 7, 15, 14, 12, 8}; MixColumnSerial(X)
3 : for i = 0 to 7 : 1 : M ← Serial[2, 4, 2, 11, 2, 8, 5, 6];
4 : X[i, 0] ← X[i, 0] ⊕ RC[k] ⊕ IC[i]; 82 : X ← M ⊙ X;
return X;

return X;

Figure 2.1: PHOTON256 Permutation.

2

Chapter 3

Specification of PHOTON-Beetle Family

In this chapter, we provide a formal specification of PHOTON-Beetle that includes a family of authenticated
encryption PHOTON-Beetle-AEAD and a family of hash functions PHOTON-Beetle-Hash. Before going into the
details, we first introduce a mathematical component that we will use.

3.1 Mathematical Component ρ and ρ−1

ρ is a linear function that receives as input a state S ∈ {0, 1}r and an input data U ∈ {0, 1}≤r. It produces
an output data V ∈ {0, 1}|U | using the simple xor operation of the shuffled state and the input data (padded
with zeros to an r bit block), and then updates the state S by xoring it with the input data. By shuffled
state, we mean shuffling of the state bits in some order such that both S → Shuffle(S) and S → Shuffle(S)⊕S
are linear functions with rank r and r − 1 respectively. ρ−1 is the inverse function of ρ, which takes the state
S and the output data V to reproduce the input data U and update the state. Formal description of ρ and
ρ−1 can be found in Fig. 2.1.

ρ(S, U) ρ−1(S, V) Shuffle(S)
1 : V ← Trunc(Shuffle(S), |U |) ⊕ U ; 1 : U ← Trunc(Shuffle(S), |V |) ⊕ V ; 1 : ←r/−−

2
S;S1∥S2

2 : S ← S ⊕ Ozsr (U); 2 : S ← S ⊕ Ozsr(U); return S2∥(S1 ≫ 1);

return (S, V); return (S, U);

Figure 3.1: Mathematical Component: ρ and ρ−1.

3.2 PHOTON-Beetle-AEAD Authenticated Encryption

PHOTON-Beetle-AEAD.ENC[r] authenticated encryption takes an encryption key K ∈ {0, 1}128, a nonce N ∈
{0, 1}128, an associated data A ∈ {0, 1}∗ and a message M ∈ {0, 1}∗ as inputs and returns a ciphertext
C ∈ {0, 1}|M | and a tag T ∈ {0, 1}128. Corresponding decryption algorithm PHOTON-Beetle-AEAD.DEC[r]
takes a key K ∈ {0, 1}128, a nonce N ∈ {0, 1}128, an associated data A ∈ {0, 1}∗ , a ciphertext C ∈ {0, 1}∗

and a tag T ∈ {0, 1}128 as inputs and returns the plaintext M ∈ {0, 1}|C| corresponding to C if the tag T is
verified. The parameter r signifies the rate of message absorption.

In PHOTON-Beetle-AEAD.ENC[r], first an initial state is generated by simple concatenation of the nonce N
and the key K. Next we process the associated data A identically to the original sponge mode i.e. at each
step the state is updated using PHOTON256 and the first r bits (i.e. the rate part) of the permutation output is
xored with the next associated data block to define the rate part of the next input for the next permutation
call.

After A is processed, we process M in a similar way. To generate the ciphertext block, we shuffle the rate
part of the permutation output and then xor it with the corresponding message block. This step differentiates

3

N

K

f f f

⊕

A1

· · ·
⊕

⊕

Aa

1/2

IV

IV f f f f

ρ

M1 C1

· · ·
⊕

Cm

ρ

Mm

1/2

T

Figure 3.2: PHOTON-Beetle-AEAD.ENC with a AD blocks and m message blocks.

N

K

f f f f

ρ

M1 C1

· · ·
⊕

Cm

ρ

Mm

5/6

T

Figure 3.3: PHOTON-Beetle-AEAD.ENC with empty AD and m message blocks.

N

K

f f f f

⊕

A1

· · ·
⊕

⊕

Aa

3/4

T

Figure 3.4: PHOTON-Beetle-AEAD.ENC Construction with a AD blocks and empty message.

N

K

f

T

1

⊕

Figure 3.5: PHOTON-Beetle-AEAD.ENC Construction with empty AD and empty message.

our mode from the Sponge Duplex where the rate part of the next input to the permutation itself is released
as the ciphertext block. This state update and the ciphertext generation during the message processing
is captured by the function ρ. During decryption, the state update and the message block computation

4

PHOTON-Beetle-AEAD.ENC[r](K, N, A, M)

1 : IV ← N∥K; C ← λ;

2 : if A = λ, M = λ :

3 : T ← TAG128(IV ⊕ 1); return (λ, T);

4 :

5 :

6 :

c0 ← (M ̸= λ and r| |A|)? 1 : 2 : 3 : 4

c1 ← (A ̸= λ and r| |M |)? 1 : 2 : 5 : 6

if A ̸= λ :

7 : IV ← HASHr (IV, A, c0);

8 : if M ̸= λ :

9 :
r

M1∥ · · · ∥Mm ←− M ;

10 : for i = 1 to m :

11 :
(r,256−r)

Y ∥Z ←−−−−−−− PHOTON256(IV);
12 : (W, Ci) ← ρ(Y, Mi);

13 : IV ← W ∥Z;

14 : IV ← IV ⊕ c1;

15 : C ← C1∥ · · · ∥Cm;

16 : T ← TAG128(IV);
return (C, T);

PHOTON-Beetle-Hash[r](M)

1 : if M = λ :

2 : IV ← 0∥0;
3 : T ← TAG256(IV ⊕ 1); return T ;

4 : if |M | ≤ 128 :

5 : c0 ← (|M | < 128)? 1 : 2

6 : IV ← Ozs128(M)∥0;
7 : T ← TAG256(IV ⊕ c0); return T ;

(128,|M |−128)
8 : M1∥M ′ ←−−−−−−−−− M ;

9 : c0 ← (r| |M ′ |)? 1 : 2

10 : IV ← M1∥0

11 : IV ← HASHr (IV,M ′ , c0);

12 : T ← TAG256(IV);
return T ;

PHOTON-Beetle-AEAD.DEC[r](K, N, A, C, T)

1 : IV ← N∥K; M ← λ;

2 : if A = λ, C = λ :

3 : ⋆ T ← TAG128(IV ⊕ 1);

4 : ⋆
return (T = T)? λ : ⊥;

5 :

6 :

7 :

c0 ← (C ̸= λ and r| |A|)? 1 : 2 : 3 : 4

c1 ← (A ̸= λ and r| |C|)? 1 : 2 : 5 : 6

if A ̸= λ :

8 : IV ← HASHr (IV, A, c0);

9 : if C ̸= λ :

10 :
r

C1∥ · · · ∥Cm ←− C;

11 : for i = 1 to m :

12 :
(r,256−r)

Y ∥Z ←−−−−−−− PHOTON256(IV);
13 : −1(W, Mi) ← ρ (Y, Ci);

14 : IV ← W ∥Z;

15 : IV ← IV ⊕ c1;

16 : M ← M1∥ · · · ∥Mm;

17 : ⋆ T ← TAG128(IV);
⋆ return (T = T)? M : ⊥;

HASHr(IV, D, c0)

1 :
r

D1∥ · · · ∥Dd ←− Ozsr (D);

2 : for i = 1 to d :

3 :
(r,256−r)

Y ∥Z ←−−−−−−− PHOTON256(IV);
4 : W ← Y ⊕ Di;

5 : IV ← W ∥Z;

6 : IV ← IV ⊕ c0;

return IV;

TAGτ (T0)

1 : for i = 1 to ⌈τ/128⌉ :
2 : Ti ← PHOTON256(Ti−1);

3 : T ← Trunc(T1, 128) ∥ · · · ∥ Trunc(Tτ/128, 128);

return T ;

Figure 3.6: Formal Specification of PHOTON-Beetle-AEAD [r] := (PHOTON-Beetle-AEAD.ENC [r], PHOTON-Beetle-
AEAD.DEC [r]) authenticated encryption and PHOTON-Beetle-Hash[r] hash mode.

using the ciphertext blocks is captured by ρ−1. 3-bit constants are added in the capacity part after the
associated data and message processing for domain separation. A proper usage of these constants ensure
that the algorithm allows empty associated data and/or empty message processing without any additional
permutation calls. Formal specification PHOTON-Beetle-AEAD.ENC is given in Fig. 3.6. Corresponding figures
can be found in Fig. 3.2 − 3.5. In the figure f denotes the permutation PHOTON256.

5

3.3 PHOTON-Beetle-Hash Hash function

PHOTON-Beetle-Hash takes a message M ∈ {0, 1}∗ and generates a tag T ∈ {0, 1}256. We first parse the
message into 128-bit block (the first block) followed by r-bit blocks. In this algorithm, the output of each
permutation is xored with the next r-bit message block concatenated with zeros to compute the input to the
next permutation call. We initialize the state by the first 128 bit block of the message concatenated with
the required number of zeros and this initial state is the input to the first permutation call. When the final
message block is processed, we xor a small constant in the capacity part depending on whether the final
block is full or partial. This is done for domain separation. The 256-bit tag is squeezed into 2 parts of 128
bits each. The description of PHOTON-Beetle-Hash is given in Fig. 3.6.

M1

0

f f f f f

⊕

M2

· · ·
⊕

⊕

Mm

1/2

T ?
1 T ?

2

T1 T2

Figure 3.7: PHOTON-Beetle-Hash with m message blocks. Here |M1| = 128, |Mi| = r, for i = 2, . . . ,m − 1 and
⋆|Mm| ≤ r. The tag T is computed as T1 ∥T2

⋆ , where T ⋆ = Trunc(Ti, 128).i

3.4 Recommended Versions

3.4.1 Authenticated Encryption Family

Our recommended versions for authenticated encryption with associated data are:

1. PHOTON-Beetle-AEAD[128]. This is our primary AEAD member. This design aims to be implemented
with low hardware footprint yet with high throughput. Here we keep the rate of absorption of this
cipher to be r = 128.

2. PHOTON-Beetle-AEAD[32]. This is another AEAD member that aims to be implemented with extremely
low hardware footprint without giving much importance to the throughput. Hence, we keep the rate
of absorption of this cipher to only r = 32.

3.4.2 Hash Function Family

Our recommended version for hash function is:

1. PHOTON-Beetle-Hash[32]. This is our only recommended Hash. The hash function absorbs the first 128
bits of plaintext as the initial vector and successive rate of absorption is kept to r = 32 bits. This
design also aims to be implemented with extremely low hardware footprint and it is in particular has
excellent throughput and energy efficiency for smaller messages. Note that, for any plaintext of size
less than or equal to 128 bits, the hash function requires only 1 primitive call to process the message
along with the two additional calls require to generate the hash value.

3.4.3 Combined AEAD and Hash Function Family

Based on our recommendations, we pair the following that provide both AEAD and hashing functionality.

1. PHOTON-Beetle-AEAD[32] + PHOTON-Beetle-Hash[32]. Both these AEAD and Hash operate on a 256-bit
state, follow the sponge mode and use PHOTON256 as the underlying permutation with the same rate of
data absorption (i.e. r = 32). The associated data process phase in PHOTON-Beetle-AEAD[32] is exactly
the same as the message process phase of PHOTON-Beetle-Hash[32]. PHOTON-Beetle-Hash[32] with input

6

X := X1∥X ′ , where X1 ∈ {0, 1}128, functions exactly in the similar way as PHOTON-Beetle-AEAD[32]
= 0128 ′with N = X1, K , A = X and M = λ except the fact that PHOTON-Beetle-Hash[32] makes an ad-

ditional call to PHOTON to generate 256 bit tag (in contrast with 128 bit tags in PHOTON-Beetle-AEAD[32]).
Hence, in a combined PHOTON-Beetle-AEAD[32], PHOTON-Beetle-Hash[32] implementation, the implemen-
tation of PHOTON-Beetle-Hash[32] comes at a free of cost.

2. PHOTON-Beetle-AEAD[128] + PHOTON-Beetle-Hash[32]. In this version, the state size, mode and the un-
derlying permutation remain same. However, the rate of absorption is different for the AEAD and the
hash. From the functional point of view, the main design components remain same.

7

Chapter 4

Security

The security claims for PHOTON-Beetle-AEAD and PHOTON-Beetle-Hash is given in Table 4.1 and 4.2 respectively.
To achieve these bounds, we assume all the nonces used in the encryption are distinct. A sketch of the security
proof for the Beetle mode is given in Sect. 4.1 and 4.2.

Table 4.1: Security of Authenticated Encryption Family.

Mode Security
Model

Data complexity
security (in bits)

Time complexity
security (in bits)

PHOTON-Beetle-AEAD[128] IND-CPA 121 121
PHOTON-Beetle-AEAD[128] INT-CTXT 121 121
PHOTON-Beetle-AEAD[32] IND-CPA 128 128
PHOTON-Beetle-AEAD[32] INT-CTXT 128 128

Table 4.2: Security of Hash Function Family.

Mode Security Time complexity security (in bits)
PHOTON-Beetle-Hash[32] Collision 112 (Query Complexity: 2111.5)
PHOTON-Beetle-Hash[32] Pre-image 128

Third Party Analyses:

We would like to mention two third party analyses on PHOTON-Beetle-AEAD. The first one has been done on
PHOTON-Beetle-AEAD[128] by Dobraunig and Mennink [1]. The paper remarked that when one performs a
generic key recovery attack, the constant factors lead to a key recovery attack in encryption query complexity
(data) 2122.8 and offline query complexity (time) of 2124. Thus, as advised by the authors of [1], we have
updated our security claims accordingly in Table 4.1. We can also insist on the fact that the authors actually
said in their message that “We point out that our observation does not seriously threaten PHOTON-Beetle
and that the problem is easily resolved by updating the security claims.”

The second analysis by Mege [1], depicts that a collision can be obtained for PHOTON-Beetle-Hash[32] with
2111.5 query complexity due to an 1-bit constant addition (for domain separation) in the capacity part.

4.1 IND-CPA Security of PHOTON-Beetle-AEAD[r]

To attack against the privacy of PHOTON-Beetle-AEAD, we assume that an adversary makes at most q encryp-
tion queries (also known as on-line queries) (Ni, Ai,Mi)i=1..q to PHOTON-Beetle-AEAD[r] with an aggregate of
total σ many blocks and qp many off-line or direct permutation queries (Qi)i=1..qp to PHOTON256 or PHOTON−1

256.
The adversary can distinguish the construction from a random function with the same domain and range if
it finds a state collision (i) among the internal states of two on-line queries or (ii) among one online query
internal state and an offline query output. As the adversary uses distinct nonces for each encryption, this

8

is a possible way to mount a distinguishing attack. It is easy to see that the probability of a collision for
σ2 case (i) can be bounded by 2256 . For case (ii), there are two sub-cases: (a) the initial state of an on-line

query collides with the input of an offline query and (b) an intermediate state for an on-line query collides
σwith the output of an off-line query. The first sub-case can occur with the probability at most as2256−r

having such a collision implies guessing the key. As different nonces are used for the on-line queries, an
adversary can not control the rate part of any intermediate states of the on-line queries one can bound the
probability of a collision between the internal state of one encryption query and input (or output) of an

qpσ rqp rqpoff-line query to + 2128 . The term appears when there is no r-multicollision in the 128-bit rate part 2256 2128

of the internal states in the encryption queries. Now, one can easily bound the probability of r-multicollision
(σe

σr)rein the upper 128-bit of the internal states by = (σe is the total number of blocks in th
2128(r−1) 2128.(r−1)

encryption queries). Hence, the privacy or IND-CPA advantage of PHOTON-Beetle-AEAD [r] can be bounded
σr qp q.qp rqp eby O(σ

2
+ + 2256 + +).2256 2256−r 2128 2128(r−1)

4.2 INT-CTXT Security of PHOTON-Beetle-AEAD[r]

On the other hand, to attack against the integrity of PHOTON-Beetle-AEAD, assume that an adversary makes
at most q encryption queries (also known as on-line queries) (Ni, Ai,Mi)i=1..q to PHOTON-Beetle-AEAD[r] with
an aggregate of total σ many blocks and qp many off-line queries (Qi)i=1..qf to PHOTON256 or PHOTON−1 and256

′ ′ ′attempt to forge with (Ni , A ′ i, Ci, Ti)i..q′ with an aggregate of σ ′ blocks. The trivial solution for forging is

to guess the key or the tag which can be bounded by q+q ′

. Also, if an adversary can obtain a state collision 2128

among the input/output of a permutation query with the state of an encryption query or decryption query,
it can use the fact to mount an forgery attack. The probability of having such a collision can be bounded by
qp(q+q) rqp(

′

+). Another possible (non-trivial) direction for the adversary is to construct an off-line query 2256 2128

chain (X1, C2, . . . , Ck, T) such that ∃Z1, . . . , Zk and c ∈ {1, . . . , 6} with

f(X1∥Z1) = Y1∥Z2, Shuffle(Y1) ⊕ C2 = X2,

f(X2∥Z2) = Y2∥Z3, Shuffle(Y2) ⊕ C3 = X3,
. . .

f(Xk−1∥Zk−1) = Yk−1∥Zk, Shuffle(Yk−1) ⊕ Ck = Xk,

f(Xk∥(Zk ⊕ c)) = T ∥⋆

and use this chain for forging. Here we claim that, if no r-multicollision occurs in the upper 128-bit outputs
of the off-line queries, then the number of Z1 for which this offline chain occurs can be at most (ℓ + 1).r
and the probability of forging in this case can be bounded by rσ ′ . This is due to the properties of the2c

ρ function. Now, one can easily bound the probability of r-multicollision in the upper 128-bit outputs by

2128

(q
.
r
(

p

r

)
−1) . Combining everything together, we claim that the INT-CTXT advantage of PHOTON-Beetle-AEAD

qp (q+q) rqp qp rσ ′ [r] can be bounded by O(
′

+ 2128 +
r

+ 2256−r). Details of the security claim can be found in 2256 2128.(r−1)

[3].

4.3 Collision Security of PHOTON-Beetle-Hash[r]
To mount a collision attack on PHOTON-Beetle-Hash [r], suppose an adversary can make q many permutation
calls. Suppose all the states reachable from the initial state (we define the initial state as 0256) using the
permutation calls are called reachable states. The adversary can set up the queries in an adaptive way to
make all the query inputs (and hence query outputs) reachable states. Now, if there is a collision in the
capacity part of the output of two permutation calls, it can adjust the message in the rate part to force a
state collision, which in turn can be used to make a collision in the hash. The probability of this event can

qbe bounded by
2

(1-bit extra due to the constant addition in the capacity part). 2256−r−1

9

4.4 Preimage Security of PHOTON-Beetle-Hash[r]
In PHOTON-Beetle-Hash[r] we set the tag size as 256 bits and the tag squeeze rate as 128 bits. Now, to find a
pre-image of a hash value say T1∥T2, an adversary needs to find a Z such that PHOTON256(T1∥Z1) = T2∥⋆ or

−1 qPHOTON256(T2∥Z) = T1. It is easy to see that the probability of this event can be bounded by 2128 .

4.5 Security of PHOTON256 and Existing Analysis

The basic security analysis for PHOTON256 has been provided explicitly in the original paper [6]. It has been
there for several years now (ISO standard as well) and still remains with a comfortable security margin. Here
we briefly discuss all the existing analysis on PHOTON256. In [6], the authors mentioned a rebound-like attack
that allows one to distinguish 8 rounds of PHOTON256 from an ideal permutation of the same size with time
complexity 216 and memory complexity of 28. Later, [8] extended the previous result to further decrease the
time complexity from 216 to 210.8. In [7] Jean et al. presented a distinguisher for 9 round PHOTON256 with time
complexity of 2184 and memory complexity of 232. In 2017, [5] presented a statistical Integral distinguisher
that mounts an attack on 10 round PHOTON256 with time complexity of 296.59 and data complexity of 270.46.
Recently, Wang et al. [10] presented the first full round distinguishers on PHOTON256 based on zero-sum
partitions of size 2184. We believe these distinguishers have no impact on the security of PHOTON-Beetle as
these attacks are much more costlier than the security target we are aiming, and these attacks are basically
unusable in the mode.

10

Chapter 5

Design Rationale

5.1 Choice of Beetle

Sponge is a well-known mode of operations typically used for light-weight applications. The main novelty
behind Beetle sponge mode (the generic mode) is the combined feedback of the permutation output and the
ciphertext block to generate the next permutation input. Recall that, in the simple Duplex Sponge [2], the
ciphertext block itself is used as the rate part of the next permutation input. This technique actually resists
the attacker to control the input block and the next blockcipher input simultaneously. This in turn uplifts the
security level and helps us to reduce the state size and eventually come up with a low state implementation.
In fact, this security upgrade ensures that we meet the security requirements of NIST even with a state size
of 256 bits only.

5.2 Choice of ρ

Recall the definition of ρ(S, U) := (S ← S ⊕ U, Y ← Shuffle(S) ⊕ U). We need the ρ function such that,
S → Shuffle(S) should have full rank. Moreover, the rank of S → Shuffle(S) ⊕ S must be almost full. The ρ
function ensures rank r and (r − 1) for the above two cases respectively. It is easy to see that our choice of
Shuffle function only requires 1-bit right rotation of a string of r/2 bits, which is even cheaper than an xor
operation of r/2 bits (as was used in the original Beetle). Moreover, the choice of ρ ensures uniform state
update for associated data and message and identical to the state update of the duplex sponge.

5.3 Choice of PHOTON

Given that we have a good light-weight AEAD and hash mode based on public permutation, we now need
a light-weight permutation with 256-bit state. Among the existing 256-bit permutations, PHOTON256 [6] is
considered as one of the lightest design in the literature. It can be implemented with a very low number of
GE because all its components have been chosen with low-area in mind. In particular, the diffusion matrix is
very lightweight in the sense that it can be serialised very easily and efficiently. Additionally, the constants
are also chosen in such a manner that they can be generated on the fly with a very lightweight LFSR, without
killing the performance. PHOTON promises much increased efficiency (both lighter and faster) over most of
the existing designs and it has been well studied and well analysized. PHOTON is also a part of ISO-IEC:
29192-5 standard, which deal specifically with light-weight cryptography. Finally, PHOTON is not only of the
smallest hash function (mainly due to the underlying permutation), it also achieves excellent area/throughput
trade-offs and it even achieves very acceptable performances with simple software implementations.
Overall, a combination of PHOTON and Beetle can be considered as one of the best AEAD design in terms of
state size and hardware area. We would like to point out that this design also deals with empty associated
data and/or empty messages, which was missing in the original paper [4]. We employ the constant addition
strategy for the domain separation. Also, we increase the size of the tag and the number of the tag bits
squeezed per permutation call. This is to reduce the number of permutation invocations to make it more
enegy efficient.

11

Chapter 6

Performance and Implementation
Costs

6.1 Hardware Implementations

An advantage of PHOTON-Beetle is that the area of the hardware implementations of its members can be
very small. The mode Beetle costs little on top of the costs of the underlying permutation PHOTON256. The
underlying permutation PHOTON256 is one of the most compact among primitives with the same dimension.
It can be implemented with a very low number of GE because all its components have been chosen with
low-area in mind. In particular, the diffusion matrix is lightweight in the sense that it can be serialized very
easily and efficiently.

Concretely, the area of the hardware implementations of all members in PHOTON-Beetle can be estimated
using that of the hash function PHOTON-224/32/32, which also uses PHOTON256 as its underlying permutation.
PHOTON-224/32/32 adopts Sponge construction with in-/output bit-rate 32/32. Considering that the Sponge
construction also costs little on top of the costs of the underlying permutation, it is reasonable to use the area
of the hardware implementation of PHOTON-224/32/32 to estimate that of PHOTON-Beetle. According to [6], as
for serial ASIC implementation of PHOTON-224/32/32 using the standard cell library UMCL18G212T3 (with
data path s = 4, which is the size of cells in the state), when target at minimizing area, it costs 1736 GEs
and the latency of the underlying permutation is 1716 clock cycles; when target at minimizing latency, it
costs 2786 GEs and the latency of the underlying permutation is 204 clock cycles.

Comparing implementations of the members of PHOTON-Beetle with that of PHOTON-224/32/32, additional
costs of area may comes from the storage for key, nonce and larger message block (and the XOR gates for
larger bit-rate). However, since key bits and nonce bits are used to initialize the state without schedule and
will not be used after the initialization, such local storage can be reused and thus costs no additional area
on top of the underlying permutation. In serial implementations with data path s = 4, larger bit-rate do not
cause additional XOR gates because the XOR-ings are serialized. Hence, we estimate that for all members
of PHOTON-Beetle, the area cost will be close to that cost by PHOTON-224/32/32.

6.2 Software Implementations

PHOTON-Beetle is primarily targeted for the constrained devices, and we mainly focus on the software imple-
mentation and performance of PHOTON-Beetle on micro-controllers.

6.2.1 Software Implementations on 8-bit AVR

Members of PHOTON-Beetle have small code size (ROM) and low RAM requirement when being implemented
in bit-sliced way on 8-bit AVR microcontrollers. To show the speed and the possible trade-off between
memory and speed, we present performance of two sets of our implementations in Table 6.1, one is targeted
at optimizing ROM (avr8_lowrom), and the other is targeted at improving speed (avr8_speed). The cores of
the implementations are all written in assembly; the main authenticated encryption, decryption, and hash
functions have C APIs (we extended our previous pure assembly implementations to be compliant with the

12

Table 6.1: Performances of implementations on 8-bit AVR MCU

PHOTON-Beetle Pairs Functionality
avr8_lowrom avr8_speed

RAM ROM Speed RAM ROM Speed

PHOTON-Beetle-AEAD[128] +
PHOTON-Beetle-Hash[32]

AEAD 86 2136 8128.03 86 4084 4835.35

Hash 54 1034 6566.27 54 2982 3860.66

AEAD+Hash 86 2416 - 86 4364 -

PHOTON-Beetle-AEAD[32] +
PHOTON-Beetle-Hash[32]

AEAD 74 2134 19789.79 74 4082 11596.39

Hash 54 1034 6566.27 54 2982 3860.66

AEAD+Hash 86 2414 - 86 4362 -
- RAM is in bytes, and is measured excluding those used for storing test vectors (including plaintexts, associated data, master
key, ciphertexts, tags, nonce, etc.). ROM is in bytes, and is measured excluding the codes for generating test vectors and
looping of calling the functions.
- Speed in cycles per byte, and is measured by using the total cycles divided by the total bytes of data (length of associated
data is from 0 to 32 bytes, length of plaintexts is from 0 to 32 bytes.) So, for AEAD, the total data length is 34848 bytes;
For Hash, the total data length is 528. For AEAD, the total cycles includes that takes both by ‘crypto_aead_encrypt’ and
‘crypto_aead_decrypt’. Thus, for AEAD, the speed is cycles per ‘encrypting’ and ‘decrypting’ one byte. This measurement is
in line with that of https://lwc.las3.de/.
- We extended our previous pure assembly implementations to be compliant with the SUPERCOP API of AEAD and hash. Due
to this change, the updated ROM and RAM requirements are larger than that reported in our previous submitted document.

SUPERCOP API of AEAD and hash). The implementations were compiled using AVR8/GNU C Compiler
5.4.0 in Atmel Studio 7.0. The specific targeted device is AVR ATmega328P. The code sizes, RAM usage,
and cycles are also measured using components of Atmel Studio 7.0.

From Table 6.1, when targeting at optimizing ROM (avr8_lowrom), PHOTON-Beetle-AEAD can be imple-
mented with code size less than 2200 bytes, and PHOTON-Beetle-Hash can be implemented with code size less
than 1100 bytes. Supporting hashing on top of AEAD costs very limited additional resources (less than
300 bytes of ROM); Supporting full functionality (authenticated encryption, authenticated decryption, and
hashing), all PHOTON-Beetle-Pairs requires less than 2500 bytes of ROM, less than 100 bytes of RAM. For the
primary pair, PHOTON-Beetle-AEAD[128] runs (executing both authenticated encryption and decryption) at
an average speed faster than 8200 cycles per byte; PHOTON-Beetle-Hash[32] runs at an average speed faster
than 6600 cycles per byte.

When targeting at improving speed (avr8_speed), PHOTON-Beetle-AEAD can be implemented with code
size less than 4100 bytes, and PHOTON-Beetle-Hash can be implemented with code size less than 3000 bytes.
Supporting hashing on top of AEAD costs very limited additional resources (less than 300 bytes of ROM);
Supporting full functionality (authenticated encryption, authenticated decryption, and hashing), all PHOTON-
Beetle-Pairs requires less than 4100 bytes of ROM, less than 100 bytes of RAM. Specifically, for the primary
pair, PHOTON-Beetle-AEAD[128] runs (executing both authenticated encryption and decryption) at an average
speed faster than 4900 cycles per byte; PHOTON-Beetle-Hash[32] runs at an average speed faster than 3900
cycles per byte.

To see how the speeds vary with length of short messages, we present detailed speed for the primary pair
in Table 6.2. Compared with the performance of implementations of AES-GCM in [9], the speed is slower
but acceptable, the ROM and RAM requirements are much less.

The implementations on 8-bit AVR are available via https://github.com/PHOTON-Beetle/Software.

Performance on Benchmarking Project. The platform established by Sebastian Renner, Enrico Poz-
zobon, and Jürgen Mottok (introduced in https://lwc.las3.de/), provides benchmarks of software imple-
mentations of AEAD of the second-round candidates. This platform also provided benchmarks of our submit-
ted two sets of AVR implementations of PHOTON-Beetle. From the result about time and ROM on Arduino Uno
R3 (MCU board based on the 8 bit ATmega328P MCU) presented in https://lwc.las3.de/table.php, the
primary member PHOTON-Beetle-AEAD[128] have remarkable low ROM requirement1. Within a reasonable
increase on the ROM (but is still relatively small), it can achieve moderate speed.

1In the presented result in https://lwc.las3.de/table.php, the ROM requirement includes that used to generate and check
the test vectors. Thus, there is an obvious deviation between the ROM requirement presented in Table 6.1 and that presented
in https://lwc.las3.de/table.php.

13

https://lwc.las3.de/table.php
https://lwc.las3.de/table.php
https://lwc.las3.de/table.php
https://lwc.las3.de
https://github.com/PHOTON-Beetle/Software
https://lwc.las3.de

Table 6.2: Detailed speed of the primary pair of PHOTON-Beetle on AVR 8-bit MCU (length of AD = 16 bytes)

Algorithms Func. ROM RAMPackage Length mlen [B]
8 16 32 64 128

PHOTON-Beetle-AEAD[128] 4084 86
Enc 2476.38 1858.72 1652.56 1487.50 1377.38

Dec 2483.00 1863.41 1655.48 1489.14 1378.24

Enc+Dec 4959.38 3722.13 3308.04 2976.64 2755.63

2982 54PHOTON-Beetle-Hash[32] Hash 4880.13 2433.06 3568.50 4135.70 4419.27

Denote the length of the message package by mlen, and the length of associated data by adlen that equals 16, the speeds of
AEAD are measured by using cycles divided by (mlen+adlen).

Table 6.3: Speed of bitslice-based implementations of PHOTON-Beetle on PC

PHOTON-Beetle-AEAD[128] authenticated encryption (cycles/byte)

mlen/adlen 0 16 32 64 128 256 512 1024

0 - 209.40 155.70 129.70 116.40 109.60 104.40 104.00
16 214.20 160.50 141.30 126.40 116.40 111.00 108.20 104.80
32 163.60 143.80 133.70 123.30 115.60 110.10 106.50 104.00
64 135.90 129.30 124.80 117.60 111.40 109.40 106.70 104.70
128 120.40 117.90 118.00 115.60 112.50 108.50 106.80 105.50
256 112.60 114.10 113.50 112.50 111.20 109.00 107.50 105.40
512 111.60 111.40 111.00 110.50 109.70 108.20 106.40 105.60
1024 109.50 108.50 109.30 108.60 108.80 108.20 106.90 105.50

PHOTON-Beetle-AEAD[32] authenticated encryption (cycles/byte)

mlen/adlen 0 16 32 64 128 256 512 1024

0 - 767.40 682.40 460.50 434.80 425.90 421.60 420.10
16 530.50 474.10 463.00 442.10 434.40 426.60 422.20 420.20
32 477.10 464.50 447.60 438.10 434.30 426.70 422.90 421.40
64 466.60 492.30 458.70 453.20 437.30 434.00 425.10 420.20
128 435.30 433.80 432.60 430.50 427.50 424.20 421.10 420.30
256 432.20 427.70 427.90 425.70 422.70 425.40 421.40 419.90
512 423.40 422.90 421.50 422.10 421.50 421.40 421.20 420.20
1024 421.20 424.60 421.00 424.00 420.70 421.60 420.50 418.90

PHOTON-Beetle-Hash[32] hashing (cycles/byte)

mlen 0 16 32 64 128 256 512 1024

- 201.50 307.80 363.40 387.50 398.90 403.40 406.30
mlen: length of messages in Bytes, adlen: length of AD in Bytes.
The programs are compiled using GNU gcc 7.5.0. The processor is Intel(R) Core(TM) i7-8565U CPU (Whiskey Lake). The
CPU frequency scaling were disabled and the system was set to be performance during timing. The timing method used was
that in http://github.com/BrianGladman/AES.

6.2.2 Software Implementations on General-Purpose Computers

For general-purpose computers, table-based and bit-slicing-based implementations were evaluated.
For table-based way, the performances of different implementations of combining different numbers of

4-bit S-boxes to create lookup tables of different sizes were tested. The implementation of combining two or
three S-boxes performs faster than the implementation without combining or combining four S-boxes on a
personal computer.

For bit-slicing-based way, the performances of different implementations of performing 8 S-boxes, 32 S-
boxes, or 64 S-boxes in a sequence of logical instructions using 8-bit, 32-bit, or 64-bit registers, respectively,
were evaluated.

The bit-slicing-based implementations performing 64 S-boxes in a sequence of logical instructions achieve
the best performances among all table-based and bit-slicing-based implementations on a personal computer
(equipped with Intel(R) Core(TM) i7 CPU), which are summarized in Table 6.3. The other implementations
might be of interest to fitting low-end processors.

Implementations of PHOTON-Beetle in various ways and the source codes for timing can be found via
https://github.com/PHOTON-Beetle/Software.

14

https://github.com/PHOTON-Beetle/Software
http://github.com/BrianGladman/AES

Bibliography

[1] Round 2 Official Comments - PHOTON-Beetle. https://csrc.nist.gov/CSRC/
media/Projects/lightweight-cryptography/documents/round-2/official-comments/
photon-beetle-round2-official-comment.pdf.

[2] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing the sponge: single-pass
authenticated encryption and other applications. IACR Cryptology ePrint Archive, 2011:499, 2011.

[3] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle family of lightweight and
secure authenticated encryption ciphers. IACR Cryptology ePrint Archive, 2018:805, 2018.

[4] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle family of lightweight and
secure authenticated encryption ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):218–241,
2018.

[5] Tingting Cui, Ling Sun, Huaifeng Chen, and Meiqin Wang. Statistical integral distinguisher with
multi-structure and its application on AES. In Information Security and Privacy - 22nd Australasian
Conference, ACISP 2017, Auckland, New Zealand, July 3-5, 2017, Proceedings, Part I, pages 402–420,
2017.

[6] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family of lightweight hash functions. In
Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer
Science, pages 222–239. Springer, 2011.

[7] Jérémy Jean, María Naya-Plasencia, and Thomas Peyrin. Improved rebound attack on the finalist
grøstl. In Anne Canteaut, editor, Fast Software Encryption - 19th International Workshop, FSE 2012,
Washington, DC, USA, March 19-21, 2012. Revised Selected Papers, volume 7549 of LNCS, pages
110–126. Springer, 2012.

[8] Jérémy Jean, María Naya-Plasencia, and Thomas Peyrin. Multiple limited-birthday distinguishers and
applications. In Selected Areas in Cryptography - SAC 2013 - 20th International Conference, Burnaby,
BC, Canada, August 14-16, 2013, Revised Selected Papers, pages 533–550, 2013.

[9] Yaroslav Sovyn, Volodymyr Khoma, and Michal Podpora. Comparison of three cpu-core families for iot
applications in terms of security and performance of AES-GCM. IEEE Internet Things J., 7(1):339–348,
2020.

[10] Qingju Wang, Lorenzo Grassi, and Christian Rechberger. Zero-sum partitions of PHOTON permuta-
tions. In Topics in Cryptology - CT-RSA 2018 - The Cryptographers’ Track at the RSA Conference
2018, San Francisco, CA, USA, April 16-20, 2018, Proceedings, pages 279–299, 2018.

15

https://csrc.nist.gov/CSRC

Changelog

• Updated IND-CPA bounds for PHOTON-Beetle-AEAD[128], INT-CTXT bound for PHOTON-Beetle-AEAD[32]
in Table 4.1 and added the query complexity for Collision attack against PHOTON-Beetle-Hash[32] in Ta-
ble 4.2 in Chapter 4.

• Updated software implementations on general-purpose computers in Chapter 6.2.

16

