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Introducঞon

The present document proposes Qameleon, a new Authenࢼcated Encrypࢼon with Associated Data (AEAD)
design based on well-understood technologies. Parameters sets and variants are suggested that can use
different key and tweak sizes, and for each of them specific security levels are claimed.

Qameleon targets low-latency scenarios, such as memory encrypঞon. This suggests that the scheme is
“perfectly” parallelisable, i.e., as parallelisable as possible on a single task. In parঞcular, we support de-
crypঞon of any block (while authenঞcaঞon is sঞll taking place). Moreover, as our main focus is memory
encrypঞon, we mostly target scenarios in which the nonce are not repeated.

Qameleon is a clean design composed of amode of operaঞon calledPANORAmA, which can be used together
with any compaঞble Tweakable Block Cipher (TBC), and the TBC QARMA [Ava17]. PANORAmA is a subset of the
tweaked Offset CodeBook mode (OCB) mode ΘCB, with an addiঞonal provision for extending the length of
messages. Some simplificaঞons, such as the direct encrypঞon of fracঞonal blocks, makes implementaঞons
less error-prone (and may offer reduced IP restricঞons). It can also be seen as a special instanঞaঞon of the
Authenࢼcated Encrypࢼon Mode (AEM) [Rog04].

This choice of design has essenঞally no set-up ঞme, is highly parallelisable, and can be effecঞvely pipelined,
in order to keep up also with extreme bandwidth requirements.

The block cipher QARMA that is used with this mode of operaঞon has been actually designed for such
uses. Indeed, while the development of the 64-bit version of QARMAwas moঞvated by the requirements of
Pointer Authenঞcaঞon for hardware assisted prevenঞon of so[ware exploitaঞon [AKT14, ARM16,QPS17],
the general design was intended to meet the needs of addiঞonal specific use cases such as memory en-
crypঞon and the construcঞon of keyed hash funcঞons. At the same ঞme the cipher has a conservaঞve
design and excellent performance.

Qameleon is performant enough to be used as a general purpose cipher, but it is especially opঞmised
for memory encrypঞon, and this is reflected in its name: QARMA plus Authenࢼcaࢼon for MEmories that Let
ExfiltraࢼON. We recall that QARMA itself is an acronym that means Qualcomm and ARM Authenࢼcator be-
cause of the first intended applicaঞon of its 64-bit version.

For Random Access Memory (RAM) encrypঞon a pure Authenࢼcated Encrypࢼon (AE)mode would suffice, but
sincewe encompass also export of pages or areas ofmemory from secure process domains (a.k.a. “enclaves,”
“realms,” or “Secure Parঞঞons”) to insecure mass storage, the definiঞon of a general-purpose mode with
associated data is desirable. A few variants are included, addressing various use cases. The AEAD variants
of Qameleon provides full 128-bit or 256-bit security for plaintext confidenঞality, whereas integrity and
authenঞcity are limited by the tag size, which can be of 64 or 128 bits.

Qameleon performs very well in hardware, being significantly faster, smaller, and requiring far less energy
than the most important alternaঞves with similar requisites.

Organizaঞon of this document In Chapter 1 on page 7 we specify the mode of operaঞon used by the
Qameleon family. Chapter 2 on page 13 contains the specificaঞons of tweakable block cipher QARMA. The
proposed parameter sets and some variants are the subject ma�er of Chapter 3 on page 19. Their claimed
security is also given there. In Chapter 4 on page 25 we explain the design raঞonale of our algorithms.
Security arguments are presented in Chapter 5 on page 29. Chapter 6 on page 41 is where we report on
our implementaঞons. A feature summary, acknowledgements, lyrics for the official Qameleon song, and a
bibliography round off the submission.
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1 Specificaঞon of the Mode of Operaঞon PANORAmA

This chapter contains the full specificaঞon of the mode of operaঞon used by Qameleon, which is itself
called PANORAmA: PArallelisable NOnce Rotaࢼng Authenࢼcated Encrypࢼon cum Associated Data.

PANORAmA is similar to Deoxys-I by Jean, Nikolić, Peyrin, and Seurin [JNPS16], which is itself closely based
onΘBC [KR11], a variant ofOffset CodeBookmode (OCB) [RBBK01], also known as Tweakable Authenࢼcated
Encrypࢼon (TAE) [LRW02, LRW11]. The differences between PANORAmA and these modes are:

1. The last block of the message, if fracঞonal, is processed by padding and encrypঞng it, instead of
XORing it with an encrypঞon of zero and truncaঞng the output. The differenঞaঞon between the
cases of a full last block ending with 1‖08 (t−1)+7 and a fracঞonal last block defecঞve of t bytes,
but otherwise idenঞcal, is done by tweak domain separaঞon based on the message length. The
computaঞon of the Associated Data (AD) authenঞcator is similar.

2. The Naࢼonal Insࢼtute of Standards and Technology (NIST) call [NIS18] asks for the ability to handle
messages up to 250 − 1 bytes. On the other hand, we wanted to instanঞate the main variants of the
cipher using QARMA-128, that has only a 128-bit tweak input. However, for the principal submission
variant, the nonce must be at least 96 bit, and the block counter would be too large to fit in the
remaining bits. Hence we developed a technique to “rotate” the values in the nonce field in a way
that is unpredictable for the a�acker – in parঞcular observing any nonce repeঞঞonwould expectedly
require the processing of significantly more than 250−1 bytes, and even such an event should not be
exploitable. Alternaঞvely, developing an idea sketched in [Ava17, §2.9], we also develop a way to
use longer tweaks while not changing the proven core of the underlying Tweakable Block Cipher (TBC).

With our choices we aim, among other things, at making implementaঞon easier and avoiding potenঞal
pi�alls such as those that affected the OCB2 mode, e.g. [IM18, Poe18, Iwa18].

Regarding a format-preserving processing of the fracঞonal last block: we could re-include it at the NIST’s
bidding (as this is NIST’s right). But we do not feel urged to include it at this stage.

It is possible to define a mode of operaঞon similar to Deoxys-II [JNPS16] as well to address the nonce-
repeaঞng scenario: We leave this open for discussion and may add this to the submission if the selecঞon
commi�ee feels that such a mode of operaঞon is required. Note that Deoxys-II itself is a variant of
Syntheࢼc Counter-in-Tweak (SCT), an inverse-free authenঞcated encrypঞon mode published in [PS16].

1.1 Notaঞon

Wedenote by ETK(P) the ciphering of the n-bit plaintext Pwith the tweakable block cipher QARMA (by default
QARMA-128, but also QARMA-64 could be used) with a 2 n-bit key K and a t-bit tweak T. Usually t = n but if
tweak compression is used t can be larger (as discussed for 2 n- and 3 n-bit tweaks in Chapter 3).

The symbol ‖ denotes the concatenaঞon operaঞon. For any bit string x ∈ {0, 1}∗ let x denote its length.
The symbol ϵ denotes the empty string. The funcঞon pad applies the 10∗ padding on n bits i.e.

pad(X) = {
X if |X| = n ,
X‖1‖0n−|X|−1 if 1 ≤ |X| < n ,
ϵ if X = ϵ .
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We note that pad(⋅) does not offer prefix-free encoding, but the calls to the tweakable block cipher QARMA
enjoy domain separaঞonwhich ensure that for twodifferentmessagesm1,m2 such that pad(m1) = pad(m2),
the sequence of calls to the QARMA differ.

For any number i in an algorithm, we denote by ⌊i⌋p its truncaঞon to p bits, taking the p least significant bits
of i. If i is shorter than p bits, then its upper bits are padded with zeros. Similarly, ⌈i⌉p is the truncaঞon of i
to its p most significant bits, zero filled in the least significant bits if necessary.

1.2 Algorithms

The Authenࢼcated Encrypࢼon with Associated Data (AEAD) mode PANORAmA is composed of an encrypঞon
algorithm and a verificaঞon/decrypঞon algorithm. It is for nonce-respecঞng users.

We describe it in detail the 128-bit version first, and then menࢼon the differences for the 64-bit case.

1.2.1 Encrypঞon and tag generaঞon

The encrypঞon algorithm ℰ takes as input a variable-length plaintext byte-string M (with m = |M|/8), a
variable-length associated-data byte-string A (with a = |A|/8), a nonce N, and a 256-bit key K (since the
key used in the mode of operaঞon and the key actually used in all instances of the underlying TBC are
the same, we use the same le�er for both of them). The algorithm outputs: an m′-byte ciphertext C (with
m′ = 16 ⋅ ⌈ m16⌉ for the 128-bit ciphers, replacing 16 by 8 for the 64-bit versions), and a 64 or 128-bit tag,
i.e. (C, tag) = ℰM

K (A,M). This algorithm is given in the form of pseudocode as Algorithm 1.1 on page 11.

In the tweak inputs, the value N is encoded on 96 bits, i and λ are encoded on 124 bits, and j, ℓ, m are
encoded on 28 bits. Since the actual variables j, ℓ, and m are longer than 28 bits, when inserted in the
tweak they are truncated to the 28 least significant bits.

Graphically, AD processing is represented in Figure 1.1 on the next page and message processing in Fig-
ure 1.2 on the following page, where the pictures are simplified by showing the algorithms for messages of
less than 228 blocks. (In Figure 1.3 on the next page we describe a different way to compute the final tag
to encourage its study. It is not part of the submi�ed variants of Qameleon.)

Note that the NIST requirements ask “The family shall include one primary member that has [...] a nonce length
of at least 96 bits, [...]. The limits on the input sizes [...] for this member shall not be smaller than 250 − 1 bytes.”
Block counters for 250 −1 bytes occupy 43 bits and therefore nonce and counter cannot be packed in 128
bits! Our soluঞon is to replace the nonce every 228 blocks as described in the next subsecঞon.

1.2.2 Nonce rotaঞon

We describe how the nonce is rotated – i.e. replaced with a mathemaঞcally unpredictable value a[er a
certain amount of text is processed.

Let ν be the original nonce passed as a parameter to the algorithm. This nonce is used to encrypt the first
228 blocks, i.e. the first chunk: A chunk is understood to be each segment of up to 228 texts encrypted with
a given nonce ν. A[er that, new nonces are derived from ν using the formula N = E1111‖ν‖0K ( j ≫ 28) where
j is the zero-based index of the message block, and since N is computed before the counter overflows into
the 29-th bit, j ≫ 28 is the zero-based index of the chunk of 228 message blocks, minus 1.

Note that all chunks beside possibly the last one are full chunks.
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E2‖1
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Aλ−2
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K

pad(Aλ−1)

E3‖a
K

……
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Figure 1.1: Processing of the AD

Here a is the byte length of A and λ the total number of blocks in which A is segmented. These blocks are all non-empty and
the last one may be full or fracࢼonal. If the last block is fracࢼonal, it shall be padded before use.

M0

E0‖ν‖0
K

C0

M1

E0‖ν‖1
K

C1

……

Mℓ−2

E0‖ν‖ℓ−2
K

Cℓ−2

pad(Mℓ−1)

E1‖ν‖m
K

Cℓ−1

Σ

E4‖ν‖0
K

tag
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Figure 1.2: Message processing and tag computaঞon

Here m is the byte length of M and ℓ is the number of blocks in which M is segmented: These blocks are all non-empty and
the last one may be full or fracࢼonal. If the last block is fracࢼonal, it shall be padded before use.

M0

E0‖ν‖0
K

C0

M1

E0‖ν‖1
K

C1

……

Mℓ−2

E0‖ν‖ℓ−2
K

Cℓ−2

pad(Mℓ−1)

E1‖ν‖m
K

Cℓ−1

Auth

E4‖ν‖0
K

tag

Σ

Figure 1.3: Alternaঞve message processing and tag computaঞon

This is a different approach to the computaࢼon of the final tag, whereby theAD authenࢼcatorAuth is added to the plaintext
checksum Σ before the la�er is encrypted. This is not part of our submission and we share for only for possible study. It
inherits all security proofs of OCB/ΘCB and the parࢼcular combinaࢼon of the authenࢼcator with the plaintext checksum
seems different from the techniques considered by Rogaway. The downside of this variant is that parallelisaࢼon is reduced,
and the final tag will have an added block cipher invocaࢼon in the criࢼcal path. This is not criࢼcal in all applicaࢼons we
considered so far.
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Tweak domain separaঞon between the first and the subsequent chunks is guaranteed by flipping the most
significant bit of the tweak a[er the first chunk.

In environments where the nonce is assured to be unique, in place of this soluঞon the nonce can be directly
updated, e.g. by using an untamperable counter. While such a scenario is discussed in Chapter 5 on page 29,
the nonce rotaঞon is mostly useful for systems which pick the nonce at random (and thus a 96-bit nonce
offers good protecঞon against nonce collisions, unঞl about 248 different nonces are used).

1.2.3 Decrypঞon and tag verificaঞon

The verificaঞon/decrypঞon algorithm 𝒟 takes as input a variable-length ciphertext byte-string C (with
m′ = |C|/8), a variable-length AD byte-string A (with a = |A|/8), a tag tag, a nonce N, and a 2 n-bit key K.
Note that the receivermust know the correct plaintext lengthm, wherem′ = 2 μ⋅⌈ m2μ⌉ holds. This algorithm
outputs either an error string⊥ to signify that the verificaঞon failed or anm′-byte stringM = 𝒟N

K (A,C, tag)
when the tag tag is valid. The firstm bytes of them′-byte stringM are the original plaintext. This algorithm
is given in the form of pseudocode as Algorithm 1.2 on page 12.

1.2.4 Tag length truncaঞon

PANORAmA can output 64- or 128-bit tags. In the following the tag length shall be denoted by t.

In the case where a cipher with 128-bit blocks is used, we need to define how to choose the 64 bits for the
tag. We have defined truncaঞon as taking the least significant bits, however for an “orderless” field such
as the internal state of a cipher that does not use addiঞons this must be explicitly defined.

Now, in agreement to what we shall define for the internal state of the cipher QARMA in (2.1), the 128-
bit registers where Auth and Σ are accumulated, and finally tag is computed are divided in 8-bit cells
indexed the same way the cipher state is parঞঞoned (since it is a sum of final cipher states), e.g. tag =
t0‖t1‖ ⋯ ‖t14‖t15. Then, the 64-bit tag is defined as ⌊tag ⌋64 = t0‖t1‖ ⋯ ‖t6‖t7.

1.2.5 64-bit version

The version of PANORAmA for tweakable block ciphers with 64-bit blocks and tweaks is mostly idenঞcal
with the 128-bit version just described, the biggest differences being that: The nonce length and the size
of the nonce field in the tweak is now 44 bits; the counter field is 16 bits. The masks and shi[s are thus
adjusted accordingly, as well as the computaঞon of m′ from m.

If the tweakable block cipher has 64-bit blocks but it accepts 128-bit tweaks, no change to the nonce
length is necessary and the fields are as in the 128-bit version.

Since QARMA-64 has 64-bit nonces, in Secঞon 3.3 on page 22 we explain how to modify the algorithm in
order to double or triple the tweak length. A technique for doing so was suggested in [Ava17, Secঞon 2.9],
but the method presented here requires less resources and is more secure.

1.2.6 An implementaঞon note

Some variants of the submission append the original plaintext length to the ciphertext, in order to recover
it in an unambiguous way. The raঞonale for this choice is explained in Secঞon 6.1 on page 41.
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Algorithm 1.1: The PANORAmA encrypঞon algorithm ℰ ν
K(A,M)

Input: A variable-length plaintext byte-stringM, with m = |M|/8, a variable-length associated-data
byte-string A, a 96-bit nonce ν, a 256-bit key K, and the tag length t

Output: A pair (C, tag) consisঞng of: a m′-byte ciphertext C, with m′ = 16 ⋅ ⌈ m16⌉; and tag tag

// Initialisation
1 N ← ν
2 b ← 0

// Processing the associated data
3 Auth ← 0
4 if A ≠ ϵ then

5 a ← |A|
8

(byte length of A)

6 A0‖A1‖ ⋯ ‖Aλ−1 ← A where each |Ai| = 128 for 0 ≤ i < λ − 1 and 0 < |Aλ−1| ≤ 128
7 for i ← 0 to λ − 2 do
8 Auth ← Auth ⊕ E0010‖⌊i⌋124K (Ai)

9 Auth ← Auth ⊕ E0011‖⌊a⌋124K (pad(Aλ−1))

// Processing the message
10 Σ ← 0
11 ifM ≠ ϵ then
12 M0‖M1‖ ⋯ ‖Mℓ−1 ← M where each |Mi| = 128 for 0 ≤ i < ℓ − 1 and 0 < |Mℓ−1| ≤ 128
13 for j ← 0 to ℓ − 2 do
14 Σ ← Σ⊕Mj
15 Cj ← Eb000‖N‖⌊j⌋28

K (Mj)
16 if ( j ∧ 0x0fffffff = 0x0fffffff) then
17 N ← ⌈E1111‖ν‖028K ( j ≫ 28)⌉

96
18 b ← 1

19 tmp ← pad(Mℓ−1)
20 Σ ← Σ⊕ tmp
21 Cℓ−1 ← Eb001‖N‖⌊m⌋28

K (tmp)

// Tag generation and return
22 tag ← ⌊Eb100‖ν‖0K (Σ)⊕ Auth⌋t
23 return (C0‖ … ‖Cℓ−1, tag)
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Algorithm 1.2: The PANORAmA decrypঞon algorithm𝒟 ν
K(A,M)

Input: A variable-length byte-string C, a variable-length associated-data byte-string A, a tag tag
of length t, a 96-bit nonce ν, a 256-bit key K, the plaintext byte length m = |M|/8

Output: Either an error string ⊥ to signify that the verificaঞon failed or a m-byte string
M = 𝒟N

K (A,C, tag) when the tag tag is valid.

// Initialisation
1 N ← ν
2 b ← 0

3 m′ ← |C|
8

(length in bytes)

4 if 16 ∤ m′ orm′ ≠ 16 ⋅ ⌈ m
16

⌉ then
5 return (⊥)

// Processing the associated data
6 Auth ← 0
7 if A ≠ ϵ then

8 a ← |A|
8

(byte length of A)

9 A0‖A1‖ ⋯ ‖Aλ−1 ← A where each |Ai| = 128 for 0 ≤ i < λ − 1 and 0 < |Aλ−1| ≤ 128
10 for i ← 0 to λ − 2 do
11 Auth ← Auth ⊕ E0010‖⌊i⌋124K (Ai)

12 Auth ← Auth ⊕ E0011‖⌊a⌋124K (pad(Aλ−1))

// Processing the ciphertext
13 Σ ← 0
14 if C ≠ ϵ then
15 C0‖C1‖ ⋯ ‖Cℓ−1 ← C where each |Ci| = 128
16 for j ← 0 to ℓ − 2 do
17 Mj ← Db000‖N‖⌊j⌋28

K (Cj)
18 Σ ← Σ⊕Mj
19 if ( j ∧ 0x0fffffff = 0x0fffffff) then
20 N ← ⌈E1111‖ν‖028K ( j ≫ 28)⌉

96
21 b ← 1

22 Mℓ−1 ← Db001‖N‖⌊m⌋28
K (Cℓ−1)

23 Σ ← Σ⊕Mℓ−1
24 TruncateMℓ−1 to m mod 16 bytes

// Tag verification and return
25 tag′ ← ⌊Eb100‖ν‖0K (Σ)⊕ Auth⌋t
26 if tag′ ≠ tag then
27 return (⊥)
28 else
29 return (M0‖ … ‖Mℓ−1)
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2 Specificaঞon of the Tweakable Block Cipher QARMA

This chapter is mostly an abridged version of [Ava17, Secঞon 2].

2.1 General definiঞons and notaঞon

The overall scheme of the TBC QARMA is depicted in Figure 2.1 on the following page. There, and through-
out this document, a bar over a funcঞon – e.g. F – denotes its inverse.

QARMA is a three-round Even-Mansour construcঞon where the permutaঞons are parameterized by a core
key. The key mixings between rounds are derived from a whitening key. The first and third permutaঞons
are funcঞonally the inverse of each other and are further parameterised by a tweak, a concept related to
reflecঞon ciphers [BCG+12a]. The central permutaঞon is designed to be easily inverted by means of a
simple transformaঞon of its round key.

The cipher is depicted in more detail in Figure 2.2 on the next page.

The keys k0, k1, w0, and w1 are derived from a master key K via a simple key specialisaࢼon. The le�ers P,
C and T denote the plaintext, the ciphertext and the tweak, respecঞvely; S represents a layer of sixteen
μ-bit S-Boxes, h and τ are permutaঞons, M is an involutory MixColumns-like operaঞon. and ω is a Linear
Feedback Shi[ Register (LFSR).

Ley n = 16 μ with μ = 4 or 8. All n-bit values are represented as arrays of sixteen μ-bit cells, which is also
viewed as a 4 × 4 matrix. For instance, the internal state admits representaঞons

IS = s0‖s1‖ ⋯ ‖s14‖s15 = (

s0 s1 s2 s3
s4 s5 s6 s7
s8 s9 s10 s11
s12 s13 s14 s15

) , (2.1)

so that 4× 4 matrices operate column-wise on these values by le[ mulঞplicaঞon. The bits of the state are
stored li�le endian, for instance, for QARMA-64, bit 63 of the state is the most significant bit and bit 0 is the
least significant one. For the storage of the bits in the cells we use the same numbering convenঞon used
for memory, intended as the ubiquitous li�le-endian (and used in MANTIS’ definiঞon), in other words the
zeroth cell contains the most significant bits of the state. The plaintext is given as P = p0‖p1‖ ⋯ ‖p14‖p15,
the tweak as T = t0‖t1‖ ⋯ ‖t14‖t15.
Throughout this chapter we use the symbol “+” to denote addiঞon in all algebraic structures. In parঞcular it
denotes the exclusive or in the QARMA ciphers, which do not use modular addiঞon. The symbol tk denotes
a (round) tweakey, i.e. a value derived only from the key, the tweak, and the round constants.

2.2 Key specialisaঞon

The 2 n = 32 μ-bit key K is split as w0‖k0 where w0 and k0, the whitening and core keys, are 16 μ bits each.
For encrypঞon, put w1 = 𝒪(w0) and k1 = k0, where the orthomorphism 𝒪(⋅) is defined as

𝒪(x) ∶= (x ⋙ 1) + (x ≫ (16 μ − 1)) ,
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Figure 2.1: The Overall Scheme
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Figure 2.2: The Structure of QARMAr

where≫ denotes register shi[ to the right, and⋙ circular rotaঞon of the register’s bits to the right.

Since the first r rounds of the cipher (ignoring iniঞal whitening) differ from the last r rounds solely by the
addiঞon of a non-zero constant α, QARMA possesses a property very similar to PRINCE’s α-reflecঞon: The
encrypঞon circuit can be used for decrypঞon when k0 + α is used as the core key, the whitening keys w0
with w1 are swapped, and k1 = M ⋅ k0.

2.3 The forward round funcঞon

The Forward Round Funcࢼon ℛ(IS; tk) is composed by four operaঞons, performed in the following order:

1. AddRoundTweakey. The round tweakey tk defined in § 2.10 on page 17 is XORed to IS.

2. ShuffleCells. (τ(IS))i = sτ(i) for 0 ≤ i ≤ 15, where τ is the MIDORI cell permutaঞon, i.e.

τ = [ 0, 11, 6, 13, 10, 1, 12, 7, 5, 14, 3, 8, 15, 4, 9, 2 ] .

3. MixColumns. Each column of the cipher internal state array is mulঞplied by the involutory matrix
M defined in Secঞon 2.9 on page 16, i.e. IS = M ⋅ IS.

4. SubCells. For the chosen S-Box σ, the S layer acts on the state as follows: si ↤ σ(si) for 0 ≤ i ≤ 15.
The S-Boxes are defined in §§ 2.7 and 2.8 on page 16.

A short version of the forward round funcঞon exists which omits the ShuffleCells and MixColumns
operaঞons, similarly to the AES final round.

A[er AddRoundTweakey the tweak T is updated by the funcঞon described next.
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2.4 The tweak update funcঞon

First, the cells of the tweak are permuted as h(T) = th(0)‖ ⋯ ‖th(15), where h is the same permutaঞon

h = [ 6, 5, 14, 15, 0, 1, 2, 3, 7, 12, 13, 4, 8, 9, 10, 11 ]

used in MANTIS. Then, the LFSR ω updates the tweak cells with indexes 0, 1, 3, 4, 8, 11, and 13. For μ = 4,
ω is a maximal period LFSR that maps cell (b3, b2, b1, b0) to (b0 + b1, b3, b2, b1). For μ = 8, it maps cell
(b7, b6, … , b0) to (b0 + b2, b7, b6, … , b1), and its cycles on the non-zero values have all length 15 or 30.

2.5 The backward round funcঞon

The Backward Round Funcࢼon ℛ(IS; tk) is the inverse of the forward round funcঞonℛ.

Its short form omits ShuffleCells and MixColumns.

The inverse tweak update using the inverse LFSR ω and the inverse permutaঞon hmust be applied before
AddRoundTweakey.

2.6 The central construcঞon and the pseudo-reflector

Two central rounds – a forward and a backward one – that use the whitening key instead of the core key,
bracket the cipher’s Pseudo-Reflector 𝒫 (IS; tk), which is essenঞally just a key addiঞon and a matrix mulঞ-
plicaঞon of the internal state. In more detail, this central construcঞon is defined as follows:

1. A forward roundℛ.

2. The pseudo-reflector 𝒫 (IS; tk) i.e.

(a) ShuffleCells.

(b) Mulঞplicaঞon of the state by the involutory matrixM defined in Secঞon 2.9 on the next page.

(c) AddRoundTweakey. The round tweakey tk is XORed to the state.

(d) Inverse ShuffleCells.

3. A backward roundℛ.

Clearly, if steps (b) and (c) were swapped, then tkwould have to be replaced withM ⋅ tk to obtain the same
funcঞon. Because of this, if tk is the tweakey used during encrypঞon,M ⋅ tk is used instead for decrypঞon.

2.7 The 4-bit S-Box

With respect to [Ava17] here we restrict the choice of the S-Box to the one called there σ1. Therefore, σ
will be used as the 4-Bit S-Box. Its value table is:

σ1 ∶= [ 10, 13, 14, 6, 15, 7, 3, 5, 9, 8, 0, 12, 11, 1, 2, 4 ] .
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Figure 2.3: The Construcঞon of the 8-bit S-Box Σ of QARMA-128
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Figure 2.4: Alignment of Output and Input Bits of Consecuঞve Instances of the 8-bit Composite S-Box

2.8 The 8-bit S-Box

As in MIDORI-128 we construct an 8-bit S-Box Σ by placing two instances of a single 4-bit S-Box in parallel.
However, we wire the input and output bits in a single and simpler, but asymmetric way, as shown in
Figure 2.3. The S-Box σ is the default S-Box σ = σ1 described in § 2.7 on the previous page. If we write a
8-bit cell of the state as (x7, x6, x5, x4, x3, x2, x1, x0), σ is applied to (x7, x6, x5, x4) producing the output bits
(x′
7, x′

5, x′
3, x′

1), and to (x3, x2, x1, x0) producing the output bits (x′
6, x′

4, x′
2, x′

0), and the output of the combined
8-bit S-Box is (x′

7, x′
6, x′

5, x′
4, x′

3, x′
2, x′

1, x′
0). Since the construcঞon is not symmetric, the opposite wiringmust

be implemented for Σ.

A three-round full diffusion property as in MIDORI-128 (Theorem 1 in [BBI+15]) holds, namely any input bit
nonlinearly affects all 128 bits of the state a[er 3 full rounds (i.e. not short rounds).

2.9 The diffusion matrices

QARMA’s diffusion layer is composed of a cell permutaঞon and of a matrix mulঞplicaঞon.

The chosen matrices are 4× 4 Almost-Minimum-Distance Separable (MDS)matrices. Almost-MDS matrices
are matrices whose branch number [DR02] is not opঞmal by 1, i.e. in this case they have a branch number
of 4. This allows us to choose matrices whose implementaঞon is much lighter than usual MDS matrices.

Let Rμ be the quoঞent ring Rμ = 𝔽2[X]/(Xμ + 1), and ρ be the image of X in the ring Rμ. We see that ρμ = 1,
and thus such that {1, ρ, ρ2, … , ρμ−1} is a basis for Rμ as a 𝔽2-algebra. The mulঞplicaঞon by ρ is thus just a
simple circular rotaঞon of the bits (to the le[), with only signal propagaঞon latency. Matrices over Rμ allow
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us to easily include rotaঞons in the diffusion layer.

We can find Almost-MDS matrices over Rμ for μ = 4, resp. μ = 8 (for QARMA-64, resp. QARMA-128). Since
Rμ contains zero divisors (for μ ≥ 2), care is to be taken when construcঞng inverঞble matrices. Theorem 1
of [Ava17] classifies which of the circulants of the form

M = circ(0, ρa, ρb, ρc) = (

0 ρa ρb ρc

ρc 0 ρa ρb

ρb ρc 0 ρa

ρa ρb ρc 0

) (2.2)

are Almost-MDS, those with an Almost-MDS inverse of the same form, and the involutory ones. According
to mathemaঞcal and heurisঞc criteria, in [Ava17] the following involutory matrices are selected:

1. For QARMA-64 (μ = 4) the chosen matrix is:

M4,2 ∶= circ(0, ρ, ρ2, ρ) .

2. For QARMA-128 (μ = 8) the chosen matrix is:

M8,2 ∶= circ(0, ρ, ρ4, ρ5) .

2.10 The encrypঞon and decrypঞon algorithm

The encrypঞon algorithm of QARMAr is given in Figure 2.1 on the following page. QARMAr has 2 r+2 rounds.

The round constants are derived from the expansion of the constant π. For the 64-bit version of QARMA
we replace the first block of sixteen digits of the fracঞonal part with zeros and select the seventh block as
the α constant, as shown in Table 2.1 on the next page – as a hommage to PRINCE. For the 128-bit cipher,
instead, we just take the first block of 128 bits in the fracঞonal part of π as the α constant, set 𝔠0 = 0, and
then each 𝔠i is a successive block 128 bits of π, as shown in Table 2.2 on the following page.

Note the constant α is always added to the last r backward rounds. This and the pseudo-reflector design
prevent perfect symmetry in the data obfuscaঞon path.
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Algorithm 2.1: The QARMA Algorithm
Input: A n = 64 or 128 bit block P, a 2 n-bit key K, a n-bit tweak T, a flag f that can take the values

encrypting or decrypting
Output: A n-bit block C

// Key specialisation
1 w0‖k0 ← K
2 if (f = encrypting) then
3 w1 ← 𝒪(w0), k1 ← k0
4 else

// f = decrypting
5 w1 ← w0, w0 ← 𝒪(w0), k1 ← M ⋅ k0, k0 ← k0 + α

// Forward rounds
6 IS ← P + w0
7 for i ← 0 to r − 1 do
8 IS ← ℛ(IS, k0 + T + 𝔠i) (short round for i = 0)
9 T ← ω ∘ h(T)

// Central construction
10 IS ← ℛ(IS,w1 + T)
11 IS ← 𝒫 (IS, k1)
12 IS ← ℛ(IS,w0 + T)

// Backward rounds
13 for i ← r − 1 down to 0 do
14 T ← h ∘ ω(T)
15 IS ← ℛ(IS, k0 + T + 𝔠i + α) (short round for i = 0)
16 C ↤ IS + w1
17 return (C)

Table 2.1: The Round Constants for the 64-bit Ciphers

α = C0AC29B7C97C50DD 𝔠0 = 0000000000000000 𝔠1 = 13198A2E03707344
𝔠2 = A4093822299F31D0 𝔠3 = 082EFA98EC4E6C89 𝔠4 = 452821E638D01377
𝔠5 = BE5466CF34E90C6C 𝔠6 = 3F84D5B5B5470917 𝔠7 = 9216D5D98979FB1B
𝔠8 = D1310BA698DFB5AC 𝔠9 = 2FFD72DBD01ADFB7 𝔠10 = B8E1AFED6A267E96

Table 2.2: The Round Constants for the 128-bit Ciphers

α = 243F6A8885A308D3 13198A2E03707344 𝔠0 = 0000000000000000 0000000000000000
𝔠1 = A4093822299F31D0 082EFA98EC4E6C89 𝔠2 = 452821E638D01377 BE5466CF34E90C6C
𝔠3 = C0AC29B7C97C50DD 3F84D5B5B5470917 𝔠4 = 9216D5D98979FB1B D1310BA698DFB5AC
𝔠5 = 2FFD72DBD01ADFB7 B8E1AFED6A267E96 𝔠6 = BA7C9045F12C7F99 24A19947B3916CF7
𝔠7 = 0801F2E2858EFC16 636920D871574E69 𝔠8 = A458FEA3F4933D7E 0D95748F728EB658
𝔠9 = 718BCD5882154AEE 7B54A41DC25A59B5 𝔠10 = 9C30D5392AF26013 C5D1B023286085F0
𝔠11 = CA417918B8DB38EF 8E79DCB0603A180E 𝔠12 = 6C9E0E8BB01E8A3E D71577C1BD314B27
𝔠13 = 78AF2FDA55605C60 E65525F3AA55AB94 𝔠14 = 5748986263E81440 55CA396A2AAB10B6
𝔠15 = B4CC5C341141E8CE A15486AF7C72E993 𝔠16 = B3EE1411636FBC2A 2BA9C55D741831F6
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3 Parameter Sets and Variants, and Security Claims

3.1 Parameter sets and variants

The following parameter sets and variants are part of the submission. The names follow the following
convenঞon:

qameleon‖blocksize‖taglength‖noncelength‖purpose‖version

where the purpose field can be gp for “general purpose” or me for “memory encrypঞon,” and the nonce
length can be nn if no nonce input is available (“no nonce”) and tc is added if tweak compression is used.

(A) qameleon12812896gpv1
Qameleon instanঞated with QARMA-12814 with a 128-bit tag.
This is the primary member of the submission.

(B) qameleon128128128tcgpv1
Qameleon instanঞated with QARMA-12811 using tweak compression, a 128-bit tag, 128-bit nonces
and no nonce rotaঞon.

The tweak is a 256-bit long-tweak and it is compressed to 128 bit as described in Secঞon 3.3, and
in parঞcular in Secঞon 3.3.3 on page 24, before being used in the data obfuscaঞon path.

128 bits of the long-tweak field are the nonce and they are processed through g0(⋅). The 4 most
significant bits of the other half of the long-tweak, which is processed through g1(⋅), serve the tweak
domain separaঞon, and the remaining 120 bits offer plenty of room for the block counters.

(C) qameleon12812864gpv1
Qameleon instanঞated with QARMA-12814 with a 128-bit tag, modified with 64-bit nonces and 60-
bit counters in the field of the tweak input, and no nonce rotaঞon mechanism.

The ordering for the tweak fields is typefield4‖counter60‖nonce64.

(D) qameleon1286464mev1
Qameleon instanঞated with QARMA-12811 with a 64-bit tag for Random Access Memory (RAM) en-
crypঞon applicaঞons.

This mode is simplified by removing the processing of AD and using fixed length messages cor-
responding to Memory Granules (MGs), which in turn correspond to one or more last level Cache
Lines (CLs). Typical lengths for a MG are 64 or 128 bytes, rarely 256 bytes.

In the PANORAmA mode of operaঞons this variant employs tweak fields of 64 bits for the nonce
(ideally a counter) and a 60 bit field for a Physical Address (PA); Since the addresses are the bases
of the locaঞon of 16-byte aligned blocks in the memory, 60 bits suffice to cover even a flat 64-bit
address space.

(E) qameleon6464tcmev1
Qameleon instanঞated with QARMA-647, using a 64-bit tag, for memory encrypঞon applicaঞons.
This mode is simplified by removing the processing of AD and using fixed length messages corre-
sponding to MGs, as in Parameter Set (D).

In PANORAmA this variant employs a long-tweak of 128 bits, with fields of 64 bits for the nonce
(ideally a counter), a 4-bit tweak domain separaঞon field, and a 60-bit field for a PA; In this case the

19



PA field can cover a flat address space of up to 63 bits.

This long-tweak input for QARMA-64 is compressed from 128 to 64 bits as described in Secঞon 3.3,
and in parঞcular in § 3.3.3 on page 24, before being used in the data obfuscaঞon path. The nonce
is processed through g0(⋅). The 4 most significant bits of the other half of the long-tweak, which is
processed through g1(⋅), serve the tweak domain separaঞon, and the remaining 60 bits contain the
physical address.

(F) qameleon6464nnmev1
Qameleon-64 with QARMA-649 and 64-bit tag, for memory encrypঞon applicaঞons in the case the
memory is on the same die or on the same package with tampering detecঞon capabiliঞes.

This mode is simplified by removing the processing of AD and using fixed length messages corre-
sponding to memory granules, as in Parameter Sets (D) and (E).

The user may choose to ignore the authenঞcaঞon tag to obtain a pure confidenঞality method, or
store the tag in memory in order to defend against Rowhammer a�acks [KDK+14, SD16] that can
circumvent ECC protecঞon [CRGB19].

We shall argue in Chapter 5 on page 29 that these parameters offer sufficient security margins.

3.2 Security claims

3.2.1 Security goals

The authenঞcated cipher is designed to protect confidenঞality of plaintexts (under adapঞve chosen-plain-
text a�acks) and integrity of ciphertexts (under adapঞve forgery a�empts).

See Secঞon 3.2.3 for quanঞtaঞve goals for specific parameter sets.

3.2.2 Expected strength in general

Each 128-bit cipher call is assumed to handle at most 250 bytes of plaintext or AD. Each key is assumed to
be used to process at most 250 bytes. For 64-bit cipher calls these bounds are lowered to 240.

The legiঞmate key holder must not use the same nonce to encrypt two different (plaintext,AD) pairs under
the same key. The cipher may lose integrity and confidenঞality if this rule is violated. Therefore all security
claims below are in the nonce-respecঞng seমng.

Keys are assumed to be chosen independently and uniformly at random.

Qameleon is designed to protect confidenঞality of plaintexts (under adapঞve chosen-plaintext a�acks) and
integrity of ciphertexts (under adapঞve forgery a�empts). Quanঞtaঞve goals for specific parameter sets
are given in the next subsecঞon.

Following [JNPS16], we claim that for any of the proposed variants, given a k-bit key, n-bit block, and t-
bit tweak, the security offered against nonce-respecঞng adversary is: n-bit1 against confidenঞality of the
plaintext; and n-bit security for the integriঞes of both the plaintext and the associated data. With respect
to key recovery a�acks, following the analysis of Secঞon 5.2:

• A�acks using 250 bytes of data would require more than 2224 computaঞons to break the plaintext
confidenঞality of QARMA-128; and

1We note that actually, the correct bound is min(n, k), but for our purposes, k > n, and thus, the bound holds.
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• A�acks using 240 bytes of data would require more than 2112 computaঞons to break the plaintext
confidenঞality of QARMA-64.

3.2.3 Expected strength for each parameter set

(A) qameleon12812896gpv1
Following the use of the PANORAmA mode of operaঞon: the confidenঞality of the plaintext is guar-
anteed against any nonce respecঞng adversary that saঞsfies the amount of data queries allowed.
Moreover, any a�ack on the confidenঞality by such an adversary by recovering the key would take
more than 2224 ঞme.

We note that integrity a�acks would also have a success rate of 2−128 (as long as the key was not
recovered).

These claims are the outcome of [KR11, Lemma 2].

(B) qameleon128128128tcgpv1
If the adversary probe mulঞple tweaks, and no two different tweaks collide, then the same security
claims hold as for Parameter Set (A).

As the analysis of Secঞon 5.4 suggests that tweak collisions happen with (close) to the random prob-
ability. Thus, before using about 264 different tweaks, we do not expect any security degradaঞon.

To conclude, the security claims for this set are equal to that of Set (A) with probability O(t2/2128).
We note that Secঞon 5.4.2 on page 38 discusses the impact of such collisions and shows that they do
not impact the security (besides a very limited forgery a�ack, which requires more data than allowed
for a single-key).

(C) qameleon12812864gpv1
Same as for Parameter Set (A).

(D) qameleon1286464mev1
Confidenঞality is guaranteed independently of the number of blocks of data in encrypঞon/decrypঞon
queries made by an adversary.

The success probability of single-key a�acks against integrity is at most 2−256.

For memory encrypঞon applicaঞons, where the nonce is a counter or a split counter set (cf. Sec-
ঞon 5.1.2 on page 30) that is not under adversarial control (but can be observed), forgery and in-
tegrity violaঞons have a likelihood of 2−64.

(E) qameleon6464tcmev1
Confidenঞality is guaranteed independently of the number of blocks of data in encrypঞon/decrypঞon
queries made by an adversary.

The success probability of single-key a�acks against integrity is at most 2−128.

For memory encrypঞon applicaঞons, where the nonce is a counter or a split counter set (cf. Sec-
ঞon 5.1.2 on page 30) that is not under adversarial control (but can be observed), forgery and in-
tegrity violaঞons have a likelihood of 2−64.

(F) qameleon6464nnmev1
In the intended scenario integrity and forgery are out of scope.

We claim that this variant offers full security against adversaries that can observe 240 bytes of ci-
phertexts, which may be the encrypঞons of chosen plaintexts, where each 8-byte block has been
encrypted using a different tweak (the PA of the block). In this case confidenঞality is guaranteed,
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and any a�ack will require at least the computaঞonal effort of 2112 encrypঞons.

3.3 Long tweak support

In some cases, one may be interested in having a longer tweak than n bits. We offer support for such
long tweaks by relying on the exisঞng QARMA-n instance which accepts n-bit tweaks. Hence, our soluঞon
is based on first compressing the long tweak Tℓ into an n-bit tweak Teffecঞve. In this proposal we discuss
2 n-bit tweaks and 3 n-bit tweaks, but one can use similar methodology to define support for t n-bit tweaks
for any integer t > 1.

We shall treat Tℓ as composed of two (or three) n-bit words, i.e., Tℓ = T1‖T0 for 2n-bit tweaks or Tℓ =
T2‖T1‖T0. Now, as we compress the tweak into n-bit one, we expect collisions to exist. A few requirements
of the tweak compression process are self-explanatory. Most notably, we wish for collisions to exist with
their natural probability and that such collisions will not yield meaningful informaঞon about the key. In
parঞcular, disঞnguishability should not be affected by tweak compression.

3.3.1 Specificaঞon of the tweak compression funcঞon

The compression of the long tweak into a shorter one is done by keyed funcঞons.

For n = 64 we define g0(⋅), g1(⋅) and g2(⋅) to be 4-round (forward full rounds only) QARMA-64, i.e.,ℛ4 with
key K1 and round constants listed in Table 3.1. For n = 128, g0(⋅) and g1(⋅) are defined as 5-round (forward
full rounds only) QARMA-128. In Table 3.2 on the next page we give the corresponding round constants. In
§ 4.2.4 on page 28 we describe how these constants were chosen.

For 2 n-bit tweaks, we compute Teffecঞve as follows:

Teffecঞve = g0(T0 ⊕ K0)⊕ g1(T1 ⊕ K0) ,

where the 2 n-bit key K is considered as two n-bit words, i.e., K = K1‖K0.
For 3 n-bit tweaks, compute Teffecঞve as follows:

Teffecঞve = g0(T0 ⊕ K0)⊕ g1(T1 ⊕ K0)⊕ g2(T2 ⊕ K0) .

The formal definiঞon of gi is given in Algorithm 3.1 on the next page.

3.3.2 Usage of the tweak compression funcঞon

Not only the tweak compression funcঞon is used to provide a longer tweak to the QARMA encrypঞon func-
ঞon, but the summands it returns are added to the plaintexts and ciphertextes as well to further differen-
ঞate the encrypঞon funcঞons in case different long tweaks are mapped onto the same short value.

In the case of of 2 n-bit long tweaks, a new algorithm QARMAℓ is defined an as extension of Algorithm 2.1
as follows: encrypঞon is defined as

P ↦ ETeffecঞveK (P⊕ 𝒪2(g0(T0 ⊕ K0))) (3.1)

and accordingly, decrypঞon as

C ↦ DTeffecঞveK (C)⊕ 𝒪2(g0(T0 ⊕ K0)) . (3.2)
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Algorithm 3.1: Tweak Compression Algorithm
Input: A 2 n- or a 3 n-bit tweak T, a 2 n-bit key K
Output: The summands of n-bit effecঞve tweak Teffecঞve, given as (γ1, γ1) or (γ0, γ1, γ2)

1 K1‖K0 ← K
2 s ← 3 or 4 depending on whether n = 64 or 128
3 if |T| = 2 n then
4 T1‖T0 ← T
5 else
6 T2‖T1‖T0 ← T

// First branch (g0(⋅))
7 γ0 ← T0 ⊕ K0
8 for i ← 0 to s do
9 γ0 ← ℛ(γ0,K1 + ρ0i )

// Second branch (g1(⋅))
10 γ1 ← T1 ⊕ K0
11 for i ← 0 to s do
12 γ1 ← ℛ(γ1,K1 + ρ1i )

// Third branch (g2(⋅))
13 if |T| = 3 n then
14 γ2 ← T2 ⊕ K0
15 for i ← 0 to s do
16 γ2 ← ℛ(γ2,K1 + ρ2i )

17 if |T| = 2 n then
18 return (γ0, γ1)
19 else
20 return (γ0, γ1, γ2)

Table 3.1: Round constants used in the tweak compression of 2 n-bit and 3 n-bit tweaks for n = 64
ρ00 = 0000000000000000 ρ10 = 2B9BA3E381D6DB63 ρ20 = 96E5805273530DCD
ρ01 = 5CA791F11E2F4F7F ρ11 = EA115044D015CC95 ρ21 = 84876D4BF872E9C7
ρ02 = C9BDB65CF6E990C3 ρ12 = 87E51BB37364EAC6 ρ22 = 6C6255510F188A26
ρ03 = B4001C30BE9DE6F1 ρ13 = ED24D4F5E058BB1C ρ23 = 5C80839058071EA3

Table 3.2: Round constants used in the tweak compression of 2 n-bit tweaks for n = 128
ρ00 = 0000000000000000 0000000000000000 ρ10 = B8D1D517B635D231 A1C53B7F11F69713
ρ01 = 5CA791F11E2F4F7F C9BDB65CF6E990C3 ρ11 = C9000CCDDE4DE79C FB224FF9C51E4E18
ρ02 = B4001C30BE9DE6F1 2B9BA3E381D6DB63 ρ12 = 58B7ADDCE9450428 635BAAF34C104AD0
ρ03 = 96E5805273530DCD E0FE5C2707D8E275 ρ13 = D2EB1B1F7E5C9F00 5376A18E922FC57B
ρ04 = 2A76024E015E6630 5A501202D8CD0F57 ρ14 = FE93002568C93BA5 529F4E65C7740E17
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In the case of of 3 n-bit long tweaks, the extension QARMAℓ is as follows: encrypঞon is defined as

P ↦ ETeffecঞveK (P⊕ 𝒪2(g0(T0 ⊕ K0)))⊕ 𝒪2(g1(T1 ⊕ K0)) (3.3)

and accordingly, decrypঞon as

C ↦ DTeffecঞveK (C⊕ 𝒪2(g1(T1 ⊕ K0)))⊕ 𝒪2(g0(T0 ⊕ K0)) . (3.4)

Note that if 𝒪(⋅) is an orthomorphism, then 𝒪2(⋅) is an orthomorphism as well2. We use this simple fact to
use a different orthomorphism in the tweak compression funcঞon than in the TBC proper.

The security analysis of this construcঞon is given in Secঞon 5.4.

3.3.3 Usage of the tweak compression funcঞon in Parameter Sets (B) and (E)

The PA and the tweak differenঞaঞon fields should be packed together, thus consঞtuঞng a 64 bit field or
a 128 bit field, that is to be processed by the tweak compression funcঞon g0(⋅). The nonce (which is itself
a counter or a set of counters coming from the integrity structures – not to be confused with the “block
index” counter of the other variants), which is constant for an enঞre MG, is then processed by g1(⋅) only
once per MG update, providing further power savings.

2First, note that 𝒪2(⋅) is clearly a bijecঞve linear map. Then x ↦ y ∶= x + 𝒪(x) ↦ y + 𝒪(y) = x + 𝒪(x) + 𝒪(x) + 𝒪2(x) = x + 𝒪2(x)
as a composiঞon of bijecঞons is a bijecঞon. This proves 𝒪2(⋅) is an orthomorphism.
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4 Design Raঞonale

NIST’s call for AES submissions idenঞfied “the extent to which the algorithm output is indisࢼnguishable from
[the output of] a [uniform] random permutaࢼon” as one of the “most important” factors in evaluaঞng candi-
dates. This factor has been amply studied for wide-trail ciphers, and QARMA follows the state of the art on
the construcঞon of this type of block ciphers. So we can safely presume that QARMA-n outputs for disঞnct
inputs are indisঞnguishable from independent uniform random strings when the number of inputs does
not approach 2n/2 – for a single key and tweak.

For the 128-bit version of the cipher, with the recommended 12-byte nonces (or even for shorter 8-byte
nonces) and lengths of up to 250 blocks, the outputs are thus indisঞnguishable from independent uniform
random strings, and in fact the bounds for indisঞnguishability are higher (this includes the use of nonce
rotaঞon, since and rotated nonce collision requires more than 228+48 = 276 blocks to be processed – more
analysis in given in Secঞon 5.4). The encrypঞon of P into C is thus indisঞnguishable from a one-ঞme pad,
and the tag is indisঞnguishable from an independent one-ঞme polynomial authenঞcator of C.

4.1 High level choices

Themain applicaঞon forwhichQARMA,Qameleon and their variants have been architected is the encrypঞon
of memory contents for both live memory (i.e. stored in RAM), where latency is criঞcal and affects overall
performance directly, or memory contents at rest. The la�er may soon include very low latency Storage
Class Memory (SCM) and therefore the speed of the ciphering algorithm ma�ers also in that case (note
however that exporঞng to memory may require longer hashes than 64- or 128-bit tags).

In this context the given architecture is usually implemented in a fully unrolled and pipelined way, where,
once an iniࢼal latency corresponding to the design’s criঞcal path has passed, the design can produce new
ciphertext conঞnuously keeping up with the memory’s bandwidth. What we found is that the resulࢼng per-
formance penalty is only correlated to the iniࢼal latency, and this relaࢼon is mostly linear.

Therefore our first priority is the reducঞon of the criঞcal path for themessage encrypঞon part in a hardware
implementaঞon, followed by energy consumpঞon, and only then we consider area, SW performance and
code size.

The other main priority is to have a design that allows also for great parallelism. For memory encrypঞon in
theory there is o[en no need to have as many cipher blocks as they fit in a cache line, provided that the
cipher can keep up with the memory bandwidth in a pipelined implementaঞon, but there are at least two
situaঞons where this can be very useful:

(i) When the memory interface is parঞcularly fast (for instance in some High-Performance Compuࢼng
(HPC) or enterprise server applicaঞons); and

(ii) When the constraints required by a fine grained pipelined implementaঞon end up increasing the
iniঞal latency too much. In this case it may then be advisable to opt for a more monolithic, or less
pipelined, and opঞmised implementaঞon – which can require a lower clocking speed of the circuit.
Then we fall in the previous case and this must compensated with parallelism in order to get the
required throughput.

Algorithms that produce a pad stream that is then XORed to the plaintext have the advantage of very low
latency, but they require either a long iniঞalisaঞon phase and an excellent source of randomness to be
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secure. When they are based on stream cipher construcঞons they are also cumbersome to make them
parallelisable.

Therefore we prefer methods that, while having higher latency, place the data obfuscaঞon path though the
cryptographic primiঞve itself, also guaranteeing in-block diffusion, which is o[en explicitly requested by
industrial partners (the same type of requirements led for instance to the design of PRINCE, together with
the ability to use it without temporal uniqueness).

For the purpose of architecঞng a secure soluঞon for memory encrypঞon we have considered various ap-
proaches, but since block ciphers are, arguably, sঞll the best understood cryptographic primiঞves, we have
decided to follow the classical approach of a mode of operaঞon together with a self contained block cipher.

We have then reviewed the various suitable modes of operaঞon and found most of the modes based on
classical (i.e. non-tweakable) block ciphers be inefficient, as they put two instances of the block cipher
in the criঞcal path, at least for the first block in a message. On the other hand, research on tweakable
block ciphers [LRW02] has been moঞvated to solve exactly this problem for specific applicaঞons, such as
disk [Mar10] and memory encrypঞon [HT13].

Therefore we decided to have a “tweaked electronic codebook” mode as our starঞng point. Under this as-
sumpঞonQARMAwas developed and presented in [Ava17], and the associatedmode of operaঞonPANORAmA
has been “assembled” from established construcঞons to be used with it.

Despite the original moঞvaঞons, Qameleon is a general purpose AEAD algorithm and can be used for
any other applicaঞon. Its low iniঞal latency, absence of iniঞalisaঞon phase that thus maintains a high
performance also for small inputs, and high parallelism make it suitable for most applicaঞons.

4.2 Low level choices

For both QARMA and Qameleon, our main concern was that of taking conservaঞve steps along established
design methodologies. So, we never decided to take shortcuts and we o[en accepted “subopঞmal” per-
formance by choosing components that are, or have proven, to be stronger over smaller or more efficient
ones. We did not aim at breaking world records in implementaঞon compactness, latency, code size, or
power consumpঞon. In fact, it could be claimed that some of the outstanding performance indicators in
Chapter 6 on page 41 are achieved despite the conservaঞveness of our choices. Whenever possible, we
also have made choices that would make implementaঞons less error prone.

4.2.1 Low level choices for QARMA

(i) Be�er S-Box and diffusion layer than in MIDORI and MANTIS. The S-Box has been chosen exclusively
for its cryptographic properঞes, andwe did notmake any a�empt at relaxing them in order to balance
this later with the choice of diffusion layers. The search process for the S-Box has been sketched
in [Ava17], but we decided to describe it thoroughly in the next subsecঞon providing many details
missing in the original QARMA paper. The quality of the S-Box has been validated independently by
the analysis made by Eichlseder in her Ph.D. Thesis [Eic18].

(ii) Be�er central construcঞon than the reflector in PRINCE or MANTIS.

(iii) W.r.t. MANTIS an LFSR ω is added to the tweak schedule to further disrupt characterisঞcs.

(iv) The round constants in QARMA have been chosen as “noঞng upmy sleeve” numbers. They are derived
from the binary expansion of π. For QARMA-64 we used the same ordering as in PRINCE. For the
QARMA-128 we have taken the blocks in the same order as they are found in the expansion of π.
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4.2.2 The selecঞon of the QARMA S-Box

With respect to [Ava17] we provide here addiঞonal informaঞon about the selecঞon of the S-Box σ1. We
reconstructed the selecঞon process, including details which were omi�ed in the original paper:

1. We generate all fixed-point free involuঞons on the set [0..15] using Prisse�e’s algorithm [Pri10].

2. For each such involuঞon, we check whether it saঞsfies certain cryptographic properঞes.
In parঞcular we require that:

(a) The maximal bias of a linear approximaঞon (over 𝔽24 ) shall be minimal (1/4) and the number of
linear approximaঞons with this bias shall be smallest (30).

(b) The maximal probability of a differenঞal characterisঞc shall be minimal (1/4) and the number
of differenঞal characterisঞcs with this likelihood shall be smallest (15).

(c) Each input bit of the S-Box shall influence each output bit non-linearly.

(d) Algebraic immunity shall be 2.

(e) Each of the 15 non-zero component funcঞons shall have algebraic degree 3.

(f) We compute the Sum of Products (SOP) and NOT-SOP of each output bit using the Quine-
McCluskey algorithm [Qui52, McC56]. We shall consider only those S-Boxes whose output
bits can be all expressed as sums of at most four products, each one having at most weight
three – for both the SOP and the NOT-SOP. This is done in order to favour those that can be
implemented with minimal length criঞcal path.

(g) Addiঞonally, we minimise both the sum of the degrees and of the weights in the SOP (and of
the NOT-SOP), subject to all above constraints. These minima are 10 and 16 respecঞvely.

(h) At this point we are le[ with 332 S-Boxes. We further reduce the size of the resulঞng set by
minimising the maximal likelihood for an arithmeࢼc differenঞal (i.e. over ℤ/16ℤ) as well.

3. By doing this, we reduced the set to 60 choices. These 60 S-Boxes are all affine equivalent to each other
– in fact, this is true of all 332 S-Boxes found without restricঞon (h). We have re-verified this for the
present submission using the tool sboxU by Perrin [Per19] running under SageMath 8.6 [Sage19].

4. We picked the second S-Box of the resulঞng list because, synthesising the full QARMA-64 with the
first few S-Boxes in the list, it resulted in a minimally smaller area. This was done using the synthesis
tools which were available to us at the ঞme when QARMAwas first developed. We do no longer have
access to those tools, but since all the S-Boxes are affine equivalent to each other, we believe the
actual choice is not a concern.

With respect to the classificaঞon of opঞmal 4-bit S-Boxes in linear equivalence classes from [LP07, Table 6],
our S-Boxes are linearly equivalent to G4. These S-Boxes all have boomerang uniformity [CHP

+18] equal
to 10 which, while not opঞmal [BC18], is a reasonable value for a 4-bit S-Box.

The small C program that generates the 60 S-Boxes accompanies the submission.

4.2.3 Low level choices for the PANORAmA mode of operaঞon

(i) We do not handle the encrypঞon of a final fracঞonal block by adding it to a pad and then truncaঞng
the result. This simplifies implementaঞon and removes one criঞcal component that has o[en, in
many a design, led to weaknesses. The resulঞng increase of ciphertext size, esp. for small message,
is in our opinion, a small price to pay.
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(ii) We systemaঞcally applied tweak separaঞon through a bit field for all components of the algorithm.

(iii) The use of nonce rotaঞon can be viewed as controversial, esp. since there are established alterna-
ঞves, such as hashing the public value and truncaঞng the result before using it, as in GCM [MV04].
Another alternaঞve, used in Deoxys-II [JNPS16] when a nonce (public value) is longer than 120
bits and up to 128 bits, consists in encrypঞng the nonce and then truncate the resulঞng ciphertext
to 120 bits to be used as the actual nonce. This is significantly faster than a full hash because it
adds only one encrypঞon to the criঞcal path. Similarly, we could have used a round of encrypঞon
to compress a 96-bit or longer nonce to a shorter field, but the resulঞng addiঞonal latency increase
would have been unacceptable for the intended applicaঞons. The chosen approach adds a single
encrypঞon only a[er a significant amount of data has been processed, does not increase iniঞal la-
tency, does not cause accidental nonce collisions at the beginning, and allows the processing of 276

(expected) blocks before a collision may occur, which is way beyond the NIST minimal requirements.
Furthermore, those collisions do not seem exploitable to compromise confidenঞality or integrity, but
only to establish disঞnguishability from a random output.

In essence, PANORAmA is a subset of the OCB/ΘCB modes, therefore inheriঞng their security proofs.

4.2.4 Low level choices for the tweak compression

The round constants for the tweak compression algorithm have been selected as follows:

(i) First, we generated a pseudorandom sequence of 64-bit values using the ISAAC-64 random gen-
erator [Jen93, Jen96]. We used the parameter RANDSIZL = 8 and iniঞalised the randrsl buffer
with the first 2048 characters of the introducঞon of the NIST all [NIS18], including (single) spacing
and punctuaঞon: “The deployment of small compuࢼng devices such as RFID tags, industrial controllers,
sensor nodes and […].”

(ii) Since we only need to determine the XOR differences of the round constants for g1(⋅) and g2(⋅)with
respect to the constants of g0(⋅), and the constants for the first round can be chosen arbitrarily, suc-
cessive groups of 3 (resp. 8) constants are picked from the resulঞng stream produced by ISAAC-64.

(iii) A bit-wiseMixed Integer-Linear Programming (MILP) program is used to count the acঞve S-Boxes.

(iv) For the 128-bit wide tweak compression, the smaller 4-bit S-Boxes are counted, and not the larger
composite 8-Bit S-Boxes, in order to get a more precise esঞmate for the linear and differenঞal biases.

(v) In the 64-bit case, the constants for g1(⋅) come from posiঞons 3 ⋅ 213 to 3 ⋅ 213 + 2 in the pseudo-
random stream, and the constants for g2(⋅) come from posiঞons 3 ⋅ 307 to 3 ⋅ 307 + 2. These are
the lowest indices that gave us the desired number of acঞve S-boxes, which is 31 between g0(⋅) and
g1(⋅) and at least 28 in the other two combinaঞons.

(vi) For the 128-bit case we were lucky with the first 4 constants (the first 8 words in the stream). Be-
tween g0(⋅) and g1(⋅) we get at least 59 acঞve S-Boxes.

(vii) Note that the constants for the first round can be chosen arbitrarily. We set the first one, ρ00, to zero
and the other ones, i.e. ρi0 for i > 0 together with the constants ρ0j , j > 0 as described next.

(viii) Similarly, the differences of the constants starঞng from the second round count, not the constants
themselves. This means that the constants for g0(⋅) can be chosen arbitrarily. Instead of seমng
them to zero, we have picked other constants from the 314th posiঞon in the sequence generated
by ISAAC-64 in order to differenঞate the rounds, first ρ0j , j > 0, then ρi0 for i > 0.
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5 Security Analysis

5.1 On the threat models

Qameleon targets low-latency scenarios, such as memory encrypঞon. In many of these scenarios, the
operaঞng system (or the trusted hardware environment) that decrypts the memory is trusted (as it knows
the encrypঞon key). In other words, we target scenarios in which the tweak and the nonce can be observed
by the adversary (or have some limited control over it), but not full control over them – for instance the
adversary may ask for the decrypঞon of messages with an arbitrarily set nonce and a guessed tag, but not
force the use a given nonce for encrypঞon. Hence, one can assume nonce-respecঞng adversaries.

5.1.1 General usage

For the general usage we have carefully considered the NIST requirements. For simplicity, let us assume an
encrypঞon scheme similar to ours, i.e. we have a block-wise mode of operaঞon using a 128-bit tweakable
block cipher. The nonce will be the shortest size required of a primary submission member, i.e. 96 bits.

We believe that for general purpose usage, with nonce-respecঞng users, two cases must be disঞnguished:

(a) The user/target device is capable of maintaining an internal state, also across reboots, including
those caused by accidental or intenঞonal power disconnecঞons.

For instance, this is the case if the device has a small internal flash memory, which is on the same die
or in the same package as the cryptographic engine, offering tampering detecঞon, and the nonce is
incremented and stored before being used.

In this case, the unit can store a counter for the nonces and we argue that there is no need for 96-bit
nonces. Even changing nonces one billion ঞmes a second (assuming the device has enough com-
putaঞonal power and communicaঞon bandwidth to work under these assumpঞons), nonces would
overflow in more than 2500 billion years! 80-bit nonces would overflow in 38 million years, 72-bit
nonces would overflow in 150 millennia, 64-bit nonces would overflow in 580 years.

Because of this, we argue that the NIST requirements are overkill in this case.

Therefore the nonces in this case should be required to be progressive message counters, and there
is room for a block index within the message of 60 bits. In this case there is no need for nonce
rotaঞon: Algorithm 1.1 on page 11 resp. Algorithm 1.2 on page 12 would have a 60-bit field for the
index, a 64-bit field for the nonce, Lines 16–18, resp. 19–21, could be removed.

(b) The user/target device does not have an internal state that survives reboots, except for the encryp-
ঞon key.

In this case, nonces have to be generated at random and the only non-repeঞঞon guarantee is offered
by the randomness. We first note that the NIST call requires the ability of encrypঞng 250 − 1 bytes,
which in the worst case (from number of involved tweaks) means 250 − 1 different tweaks. While
the birthday paradox suggests repeated nonces (with good probability), we note that their existence
is similar to that of a “regular” random encrypঞon process. Moreover, to truly exploit such nonce
repeঞঞons, a�ack using five message blocks (i.e., 80-byte message) are needed: asking for the en-
crypঞon of (X, Yi, Yi, Yi, Yi) for a shared block X for all messages (used to detect the nonce collision in
the first ciphertext block), and four equal consecuঞve blocks, allowing to forge a message,tag pair of
the form (X, Yi, Yi, Yj, Yj). As this a�ack assumes 80-byte messages (that can be reduced to 65-byte
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message by picking Yi to be a padded block of a single byte of informaঞon), it allows the use of about
244 different tweaks. One can see that the success rate of this a�ack is about 2−9, and even then,
its impact is very limited.

Considering now PANORAmA with nonce rotaঞon, as we shall see in Secঞon 5.3 on page 36, a first
detectable collision between first rotated nonces will occur with likelihood about 1/2 a[er ≈ 271.23

bytes. Therefore we do believe using nonce rotated is not a security concern in this context. (More
in Secঞon 5.3 on page 36.)

The above consideraঞons have led us to define the parameter sets (A) and (C) on page 19.

5.1.2 Memory encrypঞon

First of all, there are three types of a�acks to memory contents:

(i) Violate the confidenঞality of memory contents.

(ii) Replay memory contents.

(iii) Forge memory contents.

Furthermore, there are two different contexts:

(a) The memory is external to the Central Processing Unit (CPU) die, and it is accessed by the la�er via
a memory interface and through a memory bus. A snapshot of the memory can be obtained by
pla�orm reset a�acks [CPGR05] and via cold-boot a�acks [Pet07, HSH+08] which exploit memory
content retenঞon [And01, p. 281] at low temperatures [LM79, Sko02]. Even worse, the memory
interface can be inexpensively and effecঞvely interposed [KSP05, Win09, Pac18].

(b) The memory device is on the same die as the CPU, or in the same package offering tampering detec-
ঞon. We shall call this case, with some abuse of language, the case of internal memory. Conঞnuous
memory eavesdropping or even memory manipulaঞon would be therefore extremely difficult, but
pla�orm reset a�acks a�acks and some form of cold-boot a�ack could sঞll be possible.

Before discussing the security parameters for the case of external, interposable memory, we shall review
the schemes that are used to guarantee the integrity of memory contents, as these will determine minimal
requirements on the size of nonces.

We assume that we need to guarantee spaࢼal uniqueness to a flat 64-bit memory space (i.e. every memory
locaঞon has its own set of permutaঞons applied to it), therefore requiring 60 bits for the encoding of the
base address of a cipher block. The available space for the nonce is thus at most 64 bits.

5.1.2.1 The case of external, interposable memory

We are going to assume that risks (i) and (iii) are addressed by the robustness of the encrypঞon algorithm.
It is also usually required that a memory encrypঞon system offers both spaঞal and temporal uniqueness.

A review of memory integrity mechanisms In what follows a memory granule is the smallest unit that is
encrypted and integrity protected. It usually coincides with a cache line, but can also be a mulঞple thereof.

We consider the issue of a�ackers that a�empt to replay older contents onto a memory granule.

In early memory integrity systems such as XOM [MVS00], Merkle Trees [Mer82] have been used to guar-
antee memory integrity. However, Merkle Trees suffer from two problems: updaঞng the structure is in-
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herently not parallelisable, and they require large hashes to guarantee security, because of the birthday
paradox – in a real world scenario 128 bits are necessary. This leads to large memory overheads (about
33% for 4-ary trees, for instance with 64-byte memory granules and 16-byte hashes) and significant per-
formance penalঞes.

An alternaঞve toMerkle Trees in order to gain the ability to parallelise the update of the integrity structure is
offered byCounter Trees. The first such structure in the scienঞfic literaturewasHall and Jutla’sParallelisable
Authenࢼcaࢼon Tree (PAT) [HJ02, HJ05, HJ08] a tree whose nodes are pairs (ν, h) consisঞng of a nonce ν and
a hash h. This has been followed by the Tamper-Evident Counter (TEC) Tree [ECL+07], and by the 8-ary
counter tree with embedded tags used in intel’s SGX [Gue16]. These structures can be updated in parallel,
but they do not reduce memory overhead significantly.

A further technique to reduce the memory overhead induced by counters and tags is the use of Split Coun-
ters [YEP+06] in the context of Bonsai Trees [RCPS07]. Split Counters use a single major counter for a
conঞguous range of memory granules, and a minor counter for each memory granule in that range. For
instance, in a 512-bit memory granule one could store 64 7-bit minor counters, a 56-bit major counter and
reserve 8 bits for metadata. Therefore a memory granule worth of counter informaঞon would cover 64
memory granules, resulঞng in a very high arity of 64 and in a much shallower integrity tree than with mono-
lithic counters. When the memory contents of a memory granule are updated, the corresponding minor
counter is increased – when the minor counter overflows, the major counter is increased as well, which
means that the integrity informaঞon for all the sibling memory granules must be updated as well (and in
most schemes, they must be also re-encrypted). The nonce informaঞon for the integrity (and confidenঞal-
ity) algorithms for a given memory granule is the concatenaঞon of the corresponding major and the minor
counters, i.e. 63 bits worth of informaঞon. By means of this strategy the memory overhead can be pushed
to about 15% and less. These structures and some variaঞons, such as Morphable Counters [SNR+18] are
the current state of the art.

Note that integrity structures need only be updated when data is actually wri�en to external memory. In a
modern systemwith mulঞple levels of cache, this means evicঞon of a cache line from the last level of cache
inside the security perimeter of the die containing the computaঞonal cores and the encrypঞon engine.

Therefore in what follows we shall assume that the memory contents are protected by including counters in the
computaࢼon of the ciphertext and tag, that the counters are protected by some form of counter tree, and that
counters and tags are stored in memory in a reserved, but not hardened, area of the RAM.

The a�acks In order to replay a memory granule an a�acker has to observe the repeঞঞon of a (possibly
split) counter for a given granule and the replace the memory granule together with its integrity tag. This
will happen, in the above examples, a[er at least 263 writes (cache evicঞons).

The lowest complexity a�ack, i.e. replay any content to the same locaঞon, takes ঞme 263 writes to memory.
Note that the a�acker needs to evict both the text and the the cache line containing the tag value. Since the
whole cache line containing the tag must be evicted even if the tag is only 64 bits, we have 264 evicঞons.

The ঞme needed for 264 cache evicঞons is therefore a measure of the complexity of an a�ack. Very high
performance servers can have an aggregated sustained memory bandwidth of up to ≈ 230 GB/s using 32
channels (we are going for the most pessimisঞc esঞmates even if usually only one channel can be used to
access a given memory locaঞon). Now, since we are looking at a POWER8, we assume a 128-byte cache
line. 264 cache line evicঞons correspond to 271 bytes of traffic which, at the quoted bandwidth, would
take at least 233.15 seconds, i.e. 303 years. (Had we considered a recent Xeon with its buffered memory
interface and 64-byte cache lines, the results would have been similar.)

This does not take into account other memory traffic (that may share the same channels, such as the other
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nodes of the integrity tree), including the traffic for the hashes and the fact that the a�acker needs ঞme
between cache evicঞons to “harvest” the data from memory reliably with a high-performance interposer –
this will at least halve the bandwidth useable for the a�ack, bringing the ঞme to over 600 years.

Including the address in the hash computaঞon will force the a�acker to use just one memory channel, de
facto reducing the available bandwidth by a factor of 8 (in the POWER8 case) and thus mulঞplying the ঞme
required for the a�ack by the same factor (to almost five millennia).

Note that the above complexity esঞmaঞon does not disঞnguish between keyed and unkeyed tags/hashes.

Furthermore, if the cache line containing the tags is integrity protected itself, even if by just an addiঞonal
level of hashing, then either the tag of the targeted line must match as well, or the whole line has to be
replaced, increasing significantly the complexity of the a�ack.

We claim that in this case having 64-bit nonces and 64-bit tags makes the scheme secure. Regarding plaintext
confidenࢼality, we believe that memory contents should not be protected with a significantly weaker algorithm
than data at rest. The current trend is to move to 256-bit keys for data at rest, so we recommend the use of
256-bit keys. This leads us to the choice of Qameleon instanࢼated with QARMA-128, and thus to Parameter
Set (D). Only if power consumpࢼon or area are criࢼcal concerns, the use ofQARMA-64with the tweak compression
described in Secࢼon 3.3 – or some other lightweight pseudorandom funcࢼon to compress the tweaks – can be
recommended, leading to a jusࢼficaࢼon for Parameter Set (E). The key used in the tweak compression scheme
can be the same as the main encrypࢼon key or a different one to possibly obtain stronger security.

5.1.2.2 The case of internal memory

In this case, risks (ii) and (iii) are out of scope.

Also, the a�acker cannot observe several different encrypঞons to the same locaঞon. In fact, the best a�ack
in this situaঞon, ignoring power and Electro-Magneࢼc (EM) side channels, seems to be variant of the cold
boot a�ack: cryogenically freeze the package, decap it while keeping it at low temperature, and extract the
RAM module to a�ach it to a reading device. Against such a�acks memory encrypঞon is sঞll advisable,
but the a�acker will observe, for a single key, a single ciphertext per locaঞon, with the physical address
entering the tweak input. She may be helped in her cryptanalyঞc efforts by the use of a limited amount of
chosen plaintext (for instance, while passing some chosen input to the device, that will then copy it into
the protected memory).

For this purpose, it is unrealisঞc to obtain more than 240 bytes of ciphertexts (this would be 1 TB of RAM),
only a small porঞon ofwhichwill correspond to chosen plaintexts. It is to expected that a lot of errorswill be
introduced by the process of extracঞng the memory module as well, further complicaঞng the cryptanalysis

We claim that in this case 128-bit keys offer sufficient protecࢼon, and there is no need to have temporal unique-
ness of ciphertexts, but only spaࢼal. This leads to Parameter Set (F).

5.1.2.3 Addiঞonal security targets

In addiঞon to the discussion above, we do not claim addiঞonal security targets. Most notably, in the context
of memory encrypঞon, the noঞon of Releasing Unverified Plaintext (RUP) [ABL+14], is irrelevant. Consider
a memory-encrypঞon mechanism which is asked to decrypt a cache line. In such a�ack scenario, the
adversary is allowed to choose arbitrary ciphertexts to the decrypঞon oracle, and obtain the corresponding
plaintexts (even if the adversary has no legiঞmate tag for it).

Obviously, an adversary with the capabiliঞes of offering raw data for the decrypঞon (and observing the
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plaintext) is quite strong. In the internal memory scenario, this a�ack requires the ability to control inputs
to the decrypঞon process, and obtain the intermediate values1 (all found inside the cryptographic engine).
Such an adversary can easily ask for the decrypঞon of real messages, and thus, break their confidenঞality
immediately.

The case for external memory is slightly more delicate, but maintains the same seমngs: the cryptographic
engine may decrypt the cache line, pass it on to the CPU, which in turn act upon its contents, possibly
waiঞng for a Flush instrucঞon from the cryptographic engine in case of a failed authenঞcaঞon. This gives
rise to issues related to speculaঞve execuঞon (e.g. [KGG+18, LSG+18]) or by adversaries capable of reading
the decrypted memory before it is cleared (similarly to the case of internal memory). While the discussion
of the la�er problem is similar to the case of internal memory, the discussion of the first problem suggests
that the device outside the cryptographic engine should be wary of such speculaঞve execuঞon. Given the
impact of Spectre and Meltdown and the amount of work done to miঞgate them, we believe that this is a
legiঞmate assumpঞon.

5.2 On the security of QARMA

QARMA has not yet withstood the same intense scruঞny as other ciphers menঞoned in this document such
as, for instance PRINCE, not to speak of the AES.

However, the closely related cipher MANTIS [BJK+16] has been under intense scruঞny and QARMA has
been designed to resist the a�acks that have been mounted on reduced round versions of MANTIS as well
as most a�ack methodologies that have been mounted on reduced round versions of PRINCE. Its design
is based on decades of research into overall structure, lightweight diffusion layer construcঞon, and S-Box
selecঞon since the design of the AES, with the purpose to make the cipher lightweight but at the same
ঞme building hedges against a variety of a�acks.

For instance, while essenঞally inheriঞng the round structure of MIDORI [BBI+15] through its MANTIS her-
itage, it modifies the components – both the S-box layer and the diffusion matrix – to resist the a�acks
that affect MIDORI-64 [GJN+17, TLS16]. Similarly, these choices, as well as the eliminaঞon of the central
SuperBox make the a�acks mounted so far on reduced-round MANTIS ineffecঞve: Indeed, as discussed by
Eichlseder in her Ph.D. Thesis [Eic18], the key-recovery a�ack on MANTIS-5 described in [DEKM17] does
not seem to carry over. In [Eic18, § 3.5.3] the applicability of the techniques used to mount the successful
a�acks on MANTIS to QARMA is discussed, finding that “The QARMA design fixes several of the issues that we
exploited for the a�ack on MANTIS-5: The strengthened inner round permits no Superbox property, and the new
S-box, MixColumns matrix and tweak schedule do not display the same differenࢼal fixed points. This means that
neither the simple opࢼmal differenࢼal characterisࢼc, nor the clustering effects observed in Secࢼon 3.3.3 seem
applicable.” One of the weaknesses exploited in MANTIS are the structural properঞes of its S-box, which
are in part shared by QARMA’s σ0 – and this is the reason we dropped that S-Box in this submission. We
remind the reader that in Secঞon 4.2.2 on page 27 we described how σ1 was chosen.

Eichlseder also comments “While the building blocks appear stronger than those of MANTIS, they also have
their downsides: The MixColumns matrix of QARMA permits related-tweak truncated-differenࢼal characterisࢼcs
with fewer acࢼve S-boxes than thematrix of MANTIS, with only 30 (instead of 34 for the MANTISmatrix in either
the MANTIS or [...]) acࢼve S-boxes for 5 rounds, and 48 (instead of 52) for the full 7 rounds.” We are aware of
this – indeed we accepted this compromise as part of the original QARMA design – but we also observe

1For internal memory devices this means that the adversary was capable to read the internal memory of the cryptographic
engine, e.g. by performing a cold boot a�ack. This allows the adversary to mount only a single round of the a�ack and to ঞme
the freezing of the device to the exact moment in ঞme where the decrypted values are stored, but not yet discarded due to failed
decrypঞon.
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that these related-tweak truncated-differenঞal characterisঞcs do not seem to be exploitable – not only for
the parঞcular use cases of memory encrypঞon, where tweaks are not under adversarial control (and may
even be parঞally encrypted themselves in RAM), or when using long tweaks, but in general. Furthermore,
some resistance against truncated differenঞal cryptanalysis is provided: using the methods from [SLG+16],
in [Ava17] is proved that truncated impossible differenঞal cryptanalysis is not feasible for the full ciphers.

Indeed, Eichlseder and Kales [EK18] successfully break the security claims of MANTIS-6, but their methods
(as menঞoned by Kales at the QA session a[er his presentaঞon at FSE 2019), applied to QARMA, breaks at
most QARMA-4.

We start reviewing the analysis performed (or recycled from other designs) during QARMA’s design. Then
we shall review third party cryptanalysis and observaঞons. Finally we will review our analysis on the use
of the Even-Mansour design and review the corresponding security claims from [Ava17].

5.2.1 Design cryptanalysis

As reported in [Ava17], the cipher QARMA has been designed to withstand several a�acks:

(i) Linear and differenঞal cryptanalysis in the single-key, single-tweak model (MILP models, following
the techniques described in Beierle’s PhD Thesis [Bei18, Secঞon 5.4.5]);

(ii) Differenঞal cryptanalysis under a single-key, related-tweak model (MILP models, following Beierle);

(iii) Reflecঞon A�acks (resistance follows from structure);

(iv) Generic a�acks on Even-Mansour schemes (resistance follows from structure, see Secঞon 5.2.3);

(v) Slide a�acks (follows from round heterogeneity);

(vi) Meet-in-the-middle a�acks (follows from MIDORI’s resistance because of round similarity);

(vii) Invariant subspace a�acks (new heurisঞc arguments presented in the paper);

(viii) Algebraic cryptanalysis (by counঞng equaঞons and variables);

(ix) Impossible (truncated) differenঞal and zero correlaঞon linear cryptanalysis (using the method from
Sun et al. [SLG+16]); and

(x) Higher order differenঞal cryptanalysis (follows from MIDORI’s resistance because of round similarity).

5.2.2 Disclosed cryptanalysis

Complexity details for all the following result are given in Table 5.1.

Regarding further cryptanalysis, the very first third party result we are aware of is a Meet-in-the-Middle
(MITM) key recovery a�ack against 10-roundQARMA-64 and 10-roundQARMA-128, without outerwhitening.
The a�ack does not seem to be extendable further. This seems to confirm the designer’s analysis thatMITM
a�acks to 11 or more rounds should not be feasible.

Yang, Qi, and Chen [YQC18] generalise truncated differences and them in an impossible differenঞal a�ack
on 11-round QARMA-64.

Zong, Dong,Wang [ZDW18] derive related-tweakey/key impossible differenঞals from single-key ones, and
presents also a tool for construcঞng those characterisঞcs. Both QARMA-64 and Joltik-128 are studied.
Again, this a�ack reaches 11-round QARMA-64.

Li and Jin [LJ18] mount meet-in-the-middle a�acks to QARMA-64 and QARMA-128 including the outer
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Table 5.1: Cryptanalysis of QARMA – Selected Published Results

Cipher
Rounds Short Outer/Inner A�ack Complexity

Technique Reference
A�acked Rounds? Whitening? Time Data Memory

64 4 + 6 Y N/Y 2116 + 270.1 253 CP 2116 MITM [ZD16]
64 4 + 4 Y Y/Y 233 + 290 216 CP 290 MITM [LJ18]
64 4 + 5 Y Y/Y 248 + 289 216 CP 289 MITM [LJ18]
64 4 + 6 Y Y/Y 272 261 CP 278.2 bits trunc. imp. diff. [YQC18]
64 4 + 6 Y Y/Y 259 259 KP 229.6 bits rel-tweak stat. sat. [LHW19]
64 4 + 7 Y Y/Y 2120.4 261 CP 2116 trunc. imp. diff. [YQC18]
64 3 + 8 Y Y/Y 264.4 + 280 261 CP 261 imp. diff. [ZDW18]
64 4 + 8 Y Y/Y 266.2 248.4 CP 253.70 zero corr./Integral [ADG+19]

128 4 + 6 Y N/Y 2232 + 2141.7 2105 CP 2232 MITM [ZD16]
128 5 + 5 Y Y/Y 2156 288 CP 2152 bits MITM [LJ18]
128∗ 4 + 6 Y Y/Y 2237.3 2122 CP 2144 trunc. imp. diff. [YQC18]
128∗ 4 + 7 Y Y/Y 2241.8 2122 CP 2232 trunc. imp. diff. [YQC18]
128 4 + 7 Y Y/Y 2126.1 2126.1 KP 271 bits rel-tweak stat. sat. [LHW19]

The number of analyzed rounds is wri�en as x + y, where x is the number of S-Box layers before the Pseudo-
Reflector and y is the number of S-Box layers a[er it.
A Y under “Short Rounds” means that the first and last rounds of the analysed cipher are short and not full.
A Y or a N under “Outer/Inner Whitening?” denotes whether the addiঞons of the Outer/Inner whitening keys
are included in the cryptanalysed cipher or not.
The label 128∗ means that in [YQC18] a superseded set of matrices is used for QARMA-128, that has been later
replaced in the final published version.

whitening key addiঞons. The authors a�ack 8 and 9 rounds of QARMA-64 and 10 of QARMA-128.

Li, Hu and Wang [LHW19] have constructed Related-Tweak Staঞsঞcal Saturaঞon a�acks, and mounted
such an a�ack to 10-round QARMA-64 with outer whitening key and an 11-round a�ack on QARMA-128.

Ankele, Dobraunig, Guo, Lambooij, Leander, and Todo [ADG+19] present an a�ack on 12-round QARMA
with four forward and eight backward rounds (counted as S-Box layers). This a�ack is very important
because it suggests that the QARMA-645 might be breakable.

Some of these a�acks break the T ⋅M, T ⋅D ≤ 2n−ϵ barrier for the reduced round versions of the cipher but
the remaining security margin is sঞll quite ample, at least 4 rounds for QARMA-647, 8 rounds for QARMA-649,
and upwards of 13 rounds for QARMA-128.

5.2.3 On the security of the Even-Mansour construcঞon

Recall that the whitening key derivaঞon funcঞon 𝒪(⋅) is an orthomorphism. If orthomorphisms are used to
create a key schedule, the complexity of the a�acks usually increases and approaches that of schemes with
independent keys or using independent permutaঞons (see [CLL+14] for the two-round case). Of course,
QARMA is not composed of three ideal permutaঞons, but we can gain some insight from the consideraঞon
of the a�acks on Even-Mansour schemes.

An analogue of the cryptanalysis described in [DDKS13] seems unlikely to be applied directly: The a�ack
on single-key three-round designs with an involutory round is the one that seems closer to our design. It
can be adapted at once observing that, for each fixed core key, themapping x ↦ Δ assumes only 2n/2 values
which occur 2n/2 ঞmes each (with respect to the notaঞon in [DDKS13], this is in-degree t). This leads to
a ঞme/data/memory (T/D/M) tradeoff of TD = 23n/2, where the data consists of known texts and memory
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is online storage. The a�ack has to be repeated for each candidate core key in order to determine the
whitening key as well, so we obtain T = 27n/4, D = 23n/4 and M = D. Since evaluaঞons of the sub-ciphers
can be done for pairs of core keys (k0, k0 + α), the memory usage can be halved. For QARMA-64 this turns
into an a�ack with 2112 ঞme and 247 blocks of data, i.e. 250 bytes, for QARMA-128 we can get a tradeoff of
2224 ঞme and 295 blocks of data, i.e. 299 bytes, or a different tradeoff of, say, 2255 operaঞons with 264 data
or 2272 operaঞons with 247 data, and in this case the lower requisite of 2224 operaঞons with 246 16-byte
blocks of data is most likely met. In fact, for this mode we could even claim security up to 256 16-byte
blocks, or 260 bytes, processed.

The single-key two-round a�ack can be applied, under the assumpঞon that for, a known core key, a certain
difference Δ at the sides of the central construcঞon will occur with likelihood 2−n/2 (but choosing the
plaintext does not seem to give control on this event).

In this case the cipher collapses into a single-key two-round Even-Mansour construcঞon, not a single round
EM, because 𝒪(⋅) is an orthomorphism and thus the sum of the two whitening keys w0 and w1 = 𝒪(w1) is
a value 1-1 with w0. For each core key, ঞme complexity is slightly smaller than 2

n, data (known texts) is
slightly smaller than 23n/4, and memory is around 2n/4. The ঞme complexity must be mulঞplied by 2n to
cover all core keys, and the data by 2n/2 because of the usable proporঞon, whereas online memory usage
stay the same. We do get an a�ack with T slightly be�er than brute force, but TD ∼ 214n/4. For instance,
with n = 128 we have T = 2256 with D = 2192 and with n = 64 we have T = 2128 with D = 296.

Also in this case the NIST requirements (and recommendaঞons) as well as our increased bounds above
would be saঞsfied.

Similarly, for the a�acks in [DDKS15], with the same likelihoods for a known central difference Δ for a
certain core key (resp. class of keys), the equaঞons to solve for thewhitening key (and possibly the remaining
bits of the core key) would sঞll correspond to the whole cipher minus the central construcঞon, so we do
not expect it to be significantly easier than a�empঞng to exploit reflecঞon characterisঞcs.

Finally, a three-round, two-key Even-Mansour scheme, according to [DDKS14] is a�ackedwith a ঞme/data
tradeoff of TD = 22n where M = D, for unkeyed permutaঞons – so the complexity must be increased to
take guesses of the core key into account as above. It is an open quesঞon whether our scheme, with a
second key derived from the first by means of an orthomorphism offers the same security bound.

We consider now the adopঞon of the PRINCE-like lower esঞmates for the security of QARMA on the basis
of exisঞng analysis of Even-Mansour construcঞons to have been excessively conservaঞve. We are thus
claiming that:

• A�acks using 250 bytes of data would require more than 2224 computaঞons to break the plaintext
confidenঞality of QARMA-128; and

• A�acks using 240 bytes of data would require more than 2112 computaঞons to break the plaintext
confidenঞality of QARMA-64.

5.3 On the security of PANORAmA

For simplicity let us consider here the case of 128-bit blocks and tweaks.

Without the nonce rotaঞon, and assuming counters of unlimited magnitude, we can bound the security
using, any security proof for the Beyond the Birthday Bound (BBB) security of ΘCB3. For instance one can
easily adapt the security proof of the TAE mode of operaঞon by Liskov, Rivest, Wagner [LRW02, LRW11].
In other words, the in the nonce-respecঞng seমng; more precisely, confidenঞality is perfectly guaranteed
and the forgery probability is 2−τ, independently of the number of blocks of data in encrypঞon/decrypঞon

36



queries made by the adversary, where τ is the tag length.

However, for PANORAmA there is an addiঞonal case where disঞnguishability can gowrong: if nonce rotaঞon
is implemented, repeated tweaks could be detected. In the single-key, nonce-respecঞng seমng, we note
that this occurs only if there is first a collision between rotated nonces, as the original nonces cannot collide
before they are all used up, and the separaঞon of tweaks in the highest bit guarantees that only tweaks
a[er the first 228 blocks can collide. Assuming that the tweakable block cipher is ideal, the a�acker may,
for instance, ask for the encrypঞon of several all-zero plaintexts, and check whether some blocks collide.
Another opঞon to exploit a colliding rotated tweak is to apply the a�ack of Secঞon 5.1.1 on page 29
(scenario B).

The case of a rotated nonce collision happens with probability of about 1/2 a[er √2 ln 2 ⋅ 248 rotated
nonces are computed. As each rotated nonce happens a[er 228 message blocks are processed, a rotated
nonce collisions are expected only a[er about 276 blocks (i.e., 280 bytes). Obviously, this is beyond the
data limit for a single key.

5.4 On the security of long tweak compression

The need to support long tweaks without altering the design led us to offer a method to transform a long
tweak (in this proposal, of 2 n or 3 n bits) into a standard-length tweak of n bits. Moreover, we aim to do
so in an way that does not increase the latency by much, while maintaining the security level.

5.4.1 Tweak collisions

Hence, we need a funcঞon f(⋅) that accepts 2 n- or 3 n-bit tweak and produces an n-bit one. This funcঞon
should saঞsfy two main goals: It should be hard to find collisions in f(⋅), as such collisions result in the same
effecঞve tweak, which in turn can be easily idenঞfied, and it should be hard to exploit random collisions
to extract keying material. The reason one should key the funcঞon f(⋅) is to avoid a huge precomputaঞon
that affects all the instanঞaঞons, and thus, as collisions exist, we should not be able to exploit them for
key-recovery.

Let us introduce some notaঞon. Let T be a 2 n- or 3 n-bit value. We split it into 2 resp. 3 equal segments
as T1||T0 ← T or T2||T1||T0 ← T. A key K is split as K1||K0 ← K.

For the case of 2 n-bit tweaks, one can think of the following condiঞons:

• fk(T0, ⋅) ∶ {0, 1}n → {0, 1}n should be a permutaঞon,

• fk(⋅, T1) ∶ {0, 1}n → {0, 1}n should be a permutaঞon,

• It is computaঞonally infeasible to deduce informaঞon about the key K given a collision fK(T0, T1) =
fK(T′

0, T′
1).

The first two condiঞons ensure that a tweak collision must involve a difference in both tweaks. Moreover,
these condiঞons guarantee that in the context of a single process, one cannot find a collision between
two different instances of fk(⋅). Similarly, for 3 n-bit tweaks, we demand that fk(T0, T1, ⋅), fk(T0, ⋅, T2), and
fk(⋅, T1, T2) are all permutaঞons.

Our proposal for fk(⋅) is based on the well established technique of XORing Pseudo-Random Permutaࢼons
(PRPs) to generate a Pseudo-Random Funcࢼon (PRF) [Luc00, Pat08, Pat13, CLP14, MP15]. Namely, we pro-
pose to use:

fk(T0, T1) = g0(T0 ⊕ K0)⊕ g1(T1 ⊕ K0)
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and
fk(T0, T1, T2) = g0(T0 ⊕ K0)⊕ g1(T1 ⊕ K0)⊕ g2(T2 ⊕ K0) .

It is easy to see that assuming gi(⋅) to be PRPs (and they are as we pick them as four, resp. five full rounds
of QARMA-64, resp. -128, keyed with K1 and different round constants for each gi(⋅)), then the condiঞon on
the permutaঞon is immediately saঞsfied.

A tweak collision occurs when
fk(T0, T1) = fk(T′

0, T′
1)

for double tweak lengths, and
fk(T0, T1, T2) = fk(T′

0, T′
1, T′

2)

for triple tweak lengths. The fact that the adversary must have (at least) two acঞve tweak words for a
tweak collision to occur suggests that in the memory space of a single process there are indeed no such
tweak collisions.

Sঞll, we may be interested in what informaঞon can be deduced once a tweak collision is detected (and at
what computaঞonal cost). We note that a tweak collision suggests:

g0(T0 ⊕ K0)⊕ g1(T1 ⊕ K0) = g0(T′
0 ⊕ K0)⊕ g1(T′

1 ⊕ K0)

(a similar equaঞon holds for the 3 n-bit case). We first note that as we observe only the impact of the same
tweak (as we discuss shortly), we do not obtain the actual value of g0(T0 ⊕ K0) ⊕ g1(T1 ⊕ K0). Hence, an
adversary needs to guess both K0 and K1 to check whether the above condiঞon holds. This of course takes
ঞme O(22n), which is equivalent to exhausঞve search.

A different approach is to try and apply a differenঞal a�ack, as we know that the output differences of g0(⋅)
and g1(⋅) are the same. However, g0(⋅) and g1(⋅) use different sets of constants, making the analysis of the
differenঞal properঞes hard. The constants selected for g0(⋅) and g1(⋅) were selected to offer a number of
acঞve S-boxes which is as large as possible as we could find within the ঞme constraints for this search.

In order to solve this issue we have used a bit-wiseMILP-model: for 64-bit funcঞons, the resulঞng program
showed that there are at least 30 acঞve S-boxes for the two branch case ending in a collision, and as each
has probability of at most 2−2, we obtain that the probability of a collision is upper bounded by 2−60. For
the 3-branch case, we picked the differences between the round constants of g0(⋅), g1(⋅) and g2(⋅) such
that every pair (gi(⋅), gj(⋅)) also has a large number of acঞve S-boxes. The MILP program processing this
problem suggests 31 acঞve S-boxes for the pair (g0(⋅), g1(⋅)), and at least 28 each for the pairs (g0(⋅), g2(⋅))
and (g1(⋅), g2(⋅)).

For 128-bit funcঞons and tweak doubling, hence the pair (g0(⋅), g1(⋅)), we get 60 acঞve S-Boxes, i.e., a
probability of 2−120. For 128-bit tweak doubling, hence with the pair (g0(⋅), g1(⋅)), we get at least 59 acঞve
S-Boxes.

Hence, even if the adversary can control the difference between the tweaks (e.g., by starঞng and termi-
naঞng the process to obtain a process id that fits the tweak difference), the chances that a tweak collision
happens is very close to the random case. To conlcude, the analysis suggests that the “best” approach for
generaঞng tweak collisions is by a random chance, which is inevitable (but as we now show of li�le impact).

5.4.2 Impact of tweak collisions on Qameleon

We now turn our a�enঞon to what happens (and how the adversary can exploit) tweak collisions. We
first discuss whether the collision can be detected when using Qameleon (and at what cost) and then we
discuss whether these detected collisions can be used for a�acks (and at what cost).
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5.4.2.1 Detecঞng tweak collisions

Assume that the proposed encrypঞon scheme was without the orthomorphism, i.e., if P ↦ ETeffecঞveK (P).
Obviously, this is a very simple case to detect tweak collisions, as a[er 2n/2 pairs of tweaks we expect such
a collision, and asking for the encrypঞon of two plaintexts P0 and P1 under all these tweaks, allows for an
immediate idenঞficaঞon of the colliding tweaks (as the corresponding ciphertexts will be the same).

In the 2 n-bit case, the addiঞon of the orthomorphism breaks this property immediately, as for the two
colliding tweaks T, T′, the corresponding g0 and g

′
0 are different. For the 3 n-bit case, at least one of the

pairs (T0, T′
0), (T1, T′

1) must be different, again breaking the property.

At the same ঞme, we note that for a given (key,tweak) combinaঞon, the addiঞon of g0 (and of g1) is the
same for all plaintexts. Hence, if we consider a 2 n-bit tweak collision, if by any chance P⊕ g0 (encrypted
with T) is equal to P′ ⊕ g′

0 (encrypted with T
′), then their ciphertext will be the same. Actually, whenever

the ciphertexts are the same, than necessarily, the plaintexts difference is g0 ⊕ g′
0. This gives rise to a

simple a�ack — pick about 2n/2 pairs (or triplets) of tweaks, and ask for the encrypঞon of about 2n/2+2

plaintexts under each of them. We then look for colliding ciphertexts between different sets (i.e. encrypted
using different tweaks). If all collisions arise from plaintexts with the same difference, then with very good
probability the sets correspond to a tweak collision.

In the 3 n-bit case, a tweak collision and a difference g0 ⊕ g′
0 between the plaintexts ensures a difference

g1⊕g′
1 in the ciphertexts. Hence, one can easily amend the above a�ack to work also for the longer tweaks.

We note that this a�ack requires about 2n plaintexts (and about the same ঞme). Given that a[er 250

plaintexts one should re-key Qameleon, this a�ack is “outside” the security model.

A different approach would actually be to use a chosen ciphertext a�ack scenario. In the 2 n-bit case,
the adversary picks two ciphertexts C0 and C1 and asks for their decrypঞon under all 2

n/2 tweaks. Tweak
collisions could be found if the corresponding plaintexts P0 and P1 have the same difference with P

′
0 and

P′
1. This a�ack requires the ability to decrypt, and thus, we can consider two possible a�ack vectors:

• The case of releasing unverified plaintexts — in this case the adversary just obtains the corresponding
plaintexts corresponding to the ciphertext queries, even if the tag is wrong/non-present. As we
stated before, we do not discuss such RUP adversaries.

• The case of an adversary trying to forge tags (i.e., submit ciphertexts with an a�empt on the tag).
Such adversary needs to submit about 2t pairs of (ciphertext, tag) to succeed in the decrypঞon of
a single ciphertext, where t is the tag length. Hence, for 2n/2 tweaks, we expect a total of 2n/2+t

(chosen ciphertexts,tags) tags. A different approach is to wait for 2n legiঞmate blocks and apply the
a�ack then. We note that the data complexity of both a�acks is larger than the data limit (more than
250 bytes for n = 128, and more than 240 bytes for n = 64 whenever the tag length saঞsfies t > 8).

The adaptaঞon of these a�acks to the case of 3 n-bit tweak is immediate, resulঞng in a similar conclusion.

5.4.2.2 Elevaঞng tweak collisions to a�acks

One can use tweak collision for one of two purposes — either as a tool for disঞnguishing the output of
Qameleon from that of a random funcঞon or for key recovery. As noted in the analysis of tweak collisions,
given a tweak, one cannot extract key informaঞon about it. Thus, we now discuss disঞnguishing a�acks
based on tweak collision.

Once two tweaks collide, they call the underlying block cipher with the same parameters (as nonce-respect-
ing adversaries may use the same nonce for different tweaks). In such a case, the addiঞon of the orthomor-
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phisms is mandatory, as otherwise one could immediately disঞnguish the tweak collision by asking for the
encrypঞon of the same 2-block plaintext under all 2n/2 tweaks. A collision of two ciphertexts happens with
probability 1 if there was indeed a tweak collision, whereas for a random funcঞon repeaঞng two ciphertext
blocks in 2n/2 samples is unlikely.

The addiঞon of the orthomorphism changes this behavior, as even though the invocaঞon of QARMA which
accepts the same key and effecঞve tweak, it is masked from the outside by different values.

5.5 On side-channel resistance

We did not include any specific technology in the design to protect against side-channel a�acks.

QARMA (and thus Qameleon) can resists side-channel a�acks by adopঞng the same techniques as any other
bricklayer block cipher design. The available literature of techniques to provide this type of protecঞon to
QARMA is too large to be meaningfully included here. We observe that the simpler diffusion layer without
finite field mulঞplicaঞons, and the use of 4-bit S-Boxes instead of 8-bit S-Boxes, should make this lighter
than for other ciphers, such as the AES.

For instance, for the implementaঞon of the S-Boxes the techniques from [BNN+12, BGN+14, BNN+15]
could be used. Other techniques include dual-rail logic [TV04, PM05, PM06] or isolaঞon of the power
supply [Sha00, GMOP15] and shielding of the circuit.
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6 Implementaঞons

6.1 So[ware

Qameleon is accompanied by a so[ware package containing a C implementaঞon of each of the proposed
variants. The purpose of the a�ached so[ware implementaঞons is to provide a reference for analysis and
further implementaঞons of the algorithm. The code is designed to be simple to be understood and portable.
For this reason, no opঞmisaঞons or pla�orm specific funcঞons have been used.

The implementaঞon of each variant is in its own subdirectory of crypto_aead following the submission
guidelines and named exactly as in Secঞon 3.1 on page 19. Each variant has been verified using the test
vectors indicated in the submission rules, except for the memory encrypঞon variants which use a smaller
set of test vectors (the program to generate them is always included). The test vector output files for each
variant is provided as well.

Remark In the variants where the message length is not always a mulࢼple of the block length, i.e. Sets (A), (B),
and (C), we append the message length to the ciphertext in a 64-bit field that a[er the authenࢼcaࢼon tag as
a result of the funcࢼon crypto_aead_encrypt. The funcࢼon crypto_aead_decrypt will then use this
piece of informaࢼon to properly decrypt. We do not encrypt this length because it is a public parameter.

This is done only to meet the submission guidelines and the limitaࢼons of SUPERCOP and of, that mandates
“The outputs of crypto_aead_encrypt and crypto_aead_decrypt shall be determined enঞrely by
the inputs listed above (except that the parameter nsec is kept for compaঞbility with SUPERCOP and will
not be used) and shall not be affected by any randomness or other hidden inputs.” This seems to imply that
the length of the plaintext must be recoverable from the ciphertext. In our case this is in theory possible by trying,
for the last block, all possible truncated versions and verifying the padding as well, however this is cumbersome
and introduced a negligible likelihood of incorrect decrypࢼon. Hence, we prefer to append the length. Of course
this makes the output of crypto_aead_encrypt no longer disࢼnguishable from a random string, but this is
easily solvable: For instance, as menࢼoned before, by encrypࢼng the message length as well, but such a choice
belongs in our opinion to the domain of protocols, and not of ciphering primiࢼves.

6.2 Hardware

Qameleonwas designedwith the objecঞve of being efficient formemory encrypঞon. This necessitates that
the underlying block cipher be able to encrypt and decrypt data with minimum delay. PRINCE [BCG+12b,
BCG+12a], was the first block cipher designed explicitly for memory encrypঞon. The cipher when unrolled
in hardware can encrypt data in hardware with very li�le signal delay. Also designing a combined encryp-
ঞon/decrypঞon circuit is very efficient in hardware as it only requires small alteraঞon to the master key.
PRINCE however has only a variant with a block size of only 64 bits that offers a security of 128 bits. It
is also not known how to PRINCE incorporate a tweak in PRINCE. So applying a mode like ΘCB as in the
Deoxys CAESAR submission [JNPS16] to PRINCE is not directly possible.

The QARMA-128 tweakable block cipher family [Ava17], offers us the advantages of of a 128-bit block, 256-
bit security and a 128-bit tweak and hence can be used as the underlying encrypঞon engine in tweakable
modes of operaঞon such as ΘCB. For block ciphers offering 128-bit blocksize QARMA-128r is fast enough
in hardware when compared with other ciphers in literature for 11 ≤ r ≤ 14. In Table 6.1 on the next page
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Block Cipher Area (GE) Power (mW) Energy (nJ) Delay (ns)

1 MIDORI-128 21647 17.60 1.76 18.80

2
AES-128 51126 66.33 6.63 25.10
AES-192 58313 87.47 8.75 28.91
AES-256 71711 133.74 13.37 33.78

3
Deoxys-BC-256 61713 108.83 10.88 34.91
Deoxys-BC-384 74940 145.59 14.56 40.04

4

QARMA-12811 31242 29.05 2.91 17.87
QARMA-12812 33827 41.59 4.16 19.35
QARMA-12813 36412 48.42 4.84 20.83
QARMA-12814 38998 55.78 5.58 22.32

Table 6.1: Implementaঞon results for various block ciphers. (Power reported at 10 MHz)

we report the performance characterisঞcs of some well known block ciphers when implemented using the
standard cell library CORE90GPSVT 2.1.a (STM 90nm). The designs were fully unrolled and exclusively
opঞmized for area. Apart from MIDORI-128 [BBI+15] which was designed for energy efficiency, QARMA-
128r finds itself well placed in terms both area and signal delay to compute an encrypঞon operaঞon.

6.2.1 Qameleon: PANORAmA using QARMA-128 (Circuit details)

The circuit for Qameleon, is shown in Figure 6.1 on the following page. This is the PANORAmA mode of
operaঞon using QARMA-128 as the underlying block cipher, in other words the ΘBC mode with minor
differences related to incomplete block processing and nonce rotaঞon. The 128-bit tweak is generated
by combining the Nonce, current value of the counter and a 4 bit nibble that depends on the size of the
plaintext and AD. The value of this nibble and all other select signals are generated centrally. Note that the
nonce is included in the tweak only during the processing of the message blocks and so it has to filtered
to zero when the AD is being processed. Apart from the block cipher core, the circuit has two 128-bit
registers Σ and Auth to store the running sum of the plaintext blocks, and to store the output of the result
of processing the AD phase.

The tweak arrangement is the most subtle part of the design and is composed thus. We keep the up-
dated value of the nonce in a register, which is refreshed every 228 encrypঞons of message blocks. The
count of the the number of encrypঞons is natuarally kept in a 46 bit counter which is compared with the
0x0fffffff signal to trigger such an update. When such an update is required the input string consisঞng
of the 110 leading zeros and 18 msbs of the counter (CtrMSB ) are encrypted and updated on the register.
Note that the tweak consists of the first 4 leading bits Nib1, a 96 bit field occupied by the original nonce
or the updated value of the nonce and a 28 bit field meant for either the current 28 lsbs of the counter,
the 028 signal, or the 28 lsbs of the bytelength of the AD/message (for the last block processing). Each
takes a parঞcular value depending on the stage of operaঞon of the mode, and all signals to filter these are
generated centrally.

The input to the encrypঞon circuit can be either the plaintext, AD, the 0110||CtrMSB or the contents of the
sum (Σ) register. The output of the encrypঞon engine is output of the ciphertext (CT). The last encrypঞon
pass produces the tag which is obtained by adding the block cipher output to the Auth register.

42



28

LengthPT

Auth register

Σ register⊕

b

⊕

⊕

Counter

Control Signal Generator

b b b

b

b

b

b

b

b

b

b b b b bb

AD

PT

PT

Key

N

4 96

Tweak

128

256
CT

Tag

Sel1

Sel2

Sel3Nib1

QARMA-128r

Comparator

0x 0fff ffff

Nonce register

28

N

Sel4

28

b

CtrMSB

18

0110||CtrMSB

CT

CtrLSB

LengthAD28

Figure 6.1: Hardware circuit for Qameleon
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Figure 6.2: Componentwise area requirements for Qameleon-128 using QARMA-12814
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Variant Block Cipher Opঞmizaঞon Area (GE) Power(mW) Delay(ns)

(A) qameleon12812896gpv1

QARMA-12811
Area 35053 35.0 20.98
Speed 59678 69.4 9.92

QARMA-12812
Area 37637 41.2 22.49
Speed 66987 85.5 10.41

QARMA-12813
Area 40225 46.8 23.93
Speed 73131 99.6 10.87

QARMA-12814
Area 42811 53.9 25.45
Speed 74177 109.8 11.91

(B) qameleon128128128tcgpv1 QARMA-12811
Area 46018 45.8 23.08
Speed 90138 100.3 10.42

(C) qameleon12812864gpv1 QARMA-12814
Area 42379 52.9 24.26
Speed 96708 86.7 9.90

(D) qameleon1286464mev1 QARMA-12811
Area 32457 28.6 18.99
Speed 56873 61.9 9.00

(E) qameleon6464tcmev1 QARMA-647(TC)
Area 15702 9.5 16.38
Speed 19408 16.2 7.90

(F) qameleon6464nnmev1 QARMA-649
Area 13779 9.8 16.38
Speed 22892 19.6 8.00

ΘCB Deoxys-BC-384 Area 77967 112.1 57.68
Speed 99128 178.7 29.91

Table 6.2: Implementaঞon results for Qameleon variants (Power reported at 10 MHz)
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6.2.2 Timing

The QARMA-128r block ciphers are implemented fully unrolled, and hence it takes only 1 cycle to complete
one encrypঞon funcঞon. Thus each block of AD or plaintext is processed in a single cylce. If the number of
blocks of AD and plaintext are na and nm respecঞvely then a total of T = na+nm+1 cycles are required for
a single encrypঞon pass. The additonal cycle is required to execute the final encrypঞon pass that produces
the tag.

6.2.3 Performance

In Table 6.2 on the previous page we present the synthesis results for the designs. The following design
flow was used: first the design was implemented in VHDL. Then, a funcঞonal verificaঞon was first done
using Mentor Graphics Modelsim so[ware. The designs were synthesized using the standard cell library
of the 90nm logic process of STM (CORE90GPHVT v2.1.a) with the Synopsys Design Compiler, with the
compiler being specifically instructed to opঞmize the circuit for area. A ঞming simulaঞon was done on
the synthesized netlist. The switching acঞvity of each gate of the circuit was collected while running post-
synthesis simulaঞon. The average power was obtained using Synopsys Power Compiler, using the back
annotated switching acঞvity.

We implemented Qameleon-128 using two design philosophies: the first opঞmizes area and the sec-
ond speed. Our implementaঞon of Qameleon-128 using QARMA-12814 opঞmized by area/speed occu-
pies 42811/74177 GE repecঞvely. A component-wise breakup of the circuit is givem in Figure 6.2 on
page 43. In Table 6.2 on the previous page we present detailed comparison of Qameleon-128 with ΘCB
using DeoxysBC-384. We measure various performance characterisঞcs for area and speed opঞmized cir-
cuits. It can be seen that in terms of area, power consumpঞon and signal delay Qameleon is be�er placed
in the design space.
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7 Summary of Features

Our summary of features is wri�en in the style of Dutch/Belgian Dissertaঞon Stellingen:

1. Qameleon is an efficient general purpose AEAD cipher.

2. Qameleon is built on known and well established design principles.

3. All design aspects are documented and the origin of all constants is described.

4. Qameleon offers BBB security, because of its instanঞaঞon of PANORAmA (a variant of ΘCB) with a
TBC. This is in stark contrast to OCB, that only provides security up to the birthday bound.

5. The security of Qameleon is lost if nonces are reused.

6. The structure of its underlying TBC QARMA is also very fine grained (i.e. it is based on many very
lightweight rounds, instead of few heavier ones) so that it can be very easily parঞঞoned in various
ways for pipelining, depending on use case constraints.

7. The mode of operaঞon is highly parallelisable.

8. Because of the last two features, the design is ideal for memory encrypঞon applicaঞons, where the
performance impact is mostly determined by the iniঞal latency (i.e. the latency of producing the first
block), provided that the implementaঞon can then keep up with the memory bus bandwidth.

9. Implementaঞons can be tuned tomake energy consumpঞon very low. This makes the cipher suitable
for low power use cases (for instance, Internet of Things (IOT) devices).

10. The lack of set up ঞme, the absence of complex key schedule, and the low iniঞal latency make
Qameleon suitable for the processing of short messages as well.

11. All blocks are processed in the same way – there is no fracঞonal block processing. This makes im-
plementaঞon easier and less error prone.

12. In the ARM ecosystem robust implementaঞons of QARMA are already being used for the purpose
of pointer authenঞcaঞon, which means that the corresponding cryptographic hardware is already
available. It is to be expected that QARMA encrypঞon instrucঞon could be deployed very quickly in
case of standardisaঞon (or de-facto standardisaঞon) of the design.

13. Qameleon comes with two technologies that further increase its versaঞlity.

(a) The first is nonce rotaࢼon, that allows to increase the nonce and block counter spaces without
having to design versions of the underlying TBC that process longer tweaks. We prove that
this does not represent a security risk.

(b) The second technology is tweak compression, for the cases where a larger tweak space is sঞll
needed. As the name suggests, a longer tweak is compressed to a shorter one using a proven
PRF-as-XOR-of-PRPs construcঞon. In order to make collisions between short tweaks non de-
tectable and non useable, masking using the values of the component funcঞons of the PRF
construcঞon, modified with orthomorphisms, is added to the actual “extended tweak” cipher.

14. Qameleon is a cool name.

15. Qameleon has a song (see next chapter).
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Full encryption in your RAM all the way
If I hack onto your bus, would you say:
There's some data with no decryption,
With a tag that doesn't match,
How to sail the contradiction?
Just crypt and go, just crypt and go.

QARMA QARMA QARMA QARMA QARMA Qameleon:
Just crypt and go, just crypt and go.
'crypting would be easy if all ciphers were like my dreams:
With tweak and key, with tweak and key.

Didn't you keep your keys safe every day
And you used to be so careful I heard you say
That your data was your addiction?
When we encrypt, our data is strong,
Erase the key, it's gone forever:
Just crypt and go, just crypt and go.

QARMA QARMA QARMA QARMA QARMA Qameleon:
Just crypt and go, just crypt and go.
'crypting would be easy if all ciphers were like my dreams:
With tweak and key, with tweak and key.

Every bit is like survival,
Choose my cipher, not my rivals'.
Every bit is like survival,
Choose my cipher, not my rivals'.

There's some data with no decryption,
With a tag that doesn't match,
How to sail the contradiction?
Just crypt and go, just crypt and go.

|: QARMA QARMA QARMA QARMA QARMA Qameleon:
Just crypt and go, just crypt and go.
'crypting would be easy if all ciphers were like my dreams:
With tweak and key, with tweak and key. :| [repeat and fade]
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