

Name of Submission:

FlexAEAD - A Lightweight Cipher with Integrated

Authentication

 Name of Submitters:

Eduardo Marsola do Nascimento

1
, José Antônio Moreira Xexéo

2

(1)

 edunasci@yahoo.com, +55(21)990357336, Petrobras Petróleo Brasileiro S.A.

Av. Dr. Altino Arantes, 895 – apt 102 – Vila Clementino

São Paulo – SP – 04042-034 – Brazil

(2)

 xexeo@ime.eb.br, +55(21)25467092, Instituto Militar de Engenharia

Praça General Tibúrcio, 80 – Praia Vermelha – Urca

Rio de Janeiro – RJ – 22290-270 – Brazil

Abstract. This paper describes a symmetrical block cipher family – FlexAEAD. It was

engineered to be lightweight, consuming less computational resources than other

ciphers and to work with different block and key sizes. Other important characteristic is

to integrate the authentication on its basic algorithm. This approach is helps to reduce

the resource needs. The algorithm capacity to resist against linear and different

cryptanalysis attacks was evaluated. This algorithm is a variation of the FlexAE

algorithm presented at IEEE ICC2017 (Paris – France) and SBSEG2018 (Natal –

Brazil). The FlexAEAD also supports the authentication of the Associated Data (AD).

1. Algorithm Description

The FleaxAEAD algorithm uses as a main component a key dependable permutation

function . On this function, the block is XORed with a key at the beginning and

with a key at the end of the process. This function is invertible , so
the process can be reversed.

Figure 1. The permutation function diagram

On the , after the XOR with , the block is transformed by shuffle layer, where

a bytes input is divided in blocks () and reordered

as (.

Figure 2. The BlockShuffle Layer

After the shuffle, the block is divided into two parts (. The right part suffers a
non-linear transformation using a SBox Layer where each byte is translated by the AES

SBox table generating . The left part and are XORed resulting in . The

 is applied to a SBox Layer generating . The and are XORed together

generating which is applied to the SBox Layer to generate . The pair

 are combined together . Although this construction resembles a Feistel

network, it needs the SBox Layer to be reversible. The main reason for this construction

is to improve the resistance to cryptanalysis attacks by forcing the combination of two

input bytes to be applied to an active SBox.

The SBox Layer can be inverted using the reverse AES SBox. On the appendices the

AES SBox direct and reverse tables can be found.

Figure 3. The SBox Layer

The number of rounds on this construction is , where =block size
in bytes. This number of rounds is the minimum to assure that any bit change on the

input the block will affect all bits on the output. The number of rounds grows

logarithmic with the block size, keeping the number of cpu cycles needed to process

small even if working with bigger block sizes.

The key dependable permutation function and its inverse can also be described on the

pseudo code on the Figure 4.

Figure 4. The key dependable permutation function and its inverse

The FlexAEAD cipher uses four subkeys (). They are created from a bit
sequence generated by applying the permutation function three times using the main key

for (i =1 to log(nb)+2]
 state = ShuffleLayer(state)

end for

for (i =1 to log(nb)+2]
 state = ShuffleLayer(state)

end for

 () until have enough bits for all subkeys. The initial value is a sequence of zeros

). Each subkey () size is , which is double the block size in

bytes (or in bits). The main key size is . The

maximum size of the main key is two times the blocksize. This limit was imposed to

force each subkey to be composed by a sequence that went by the process at least twice.

The number of times the permutation function is applied has been chosen to have the

similar resistance to linear and differential cryptanalysis attacks on the subkey

generation as on encrypting a block.

The FlexAEAD also uses a sequence of bits (). This sequence is the same

size of the associated data plus the message to be sent. It is generate by applying
over the NONCE to generate a base counter. The counter is divided in 32 bits chunks of

data. Each chunk is treated as an unsigned number (little-endian) that is incremented for

every block of the sequence by the function INC32. If the counter for a 64 bit block has

the following bytes , after the INC32 function,

the result is .

The sequence will be unique for every NONCE. The chance of occurring overlapping

sequences for two different NONCE is nonsignificant. Considering the maximum sie of

the sequence is , for a 64 bits NONCE, there are non-overlapping sequences, so

the probability of choosing two NONCEs with overlapping sequences is

(). For a 128 bits NONCE, there are non-

overlapping sequences, so the probability is .

Another important characteristic is the fact that the sequence generation can run in

parallel for every block. The function INC32 can add an arbitrary number to the base

counter. On a multi-thread environment, the can be generate adding 1 to the base

counter and in a parallel thread the can be generate adding 11 to the base counter.

Allow the cipher all available hardware. The sequence can be generated during the

process of hashing the associate data or encrypting a data block, avoiding unnecessary

memory allocation.

Figure 5. The K0,K1,K2 and S0S1…Sm generation processes

To hash the associate data, first the associated data is divided in n blocks

 . The final block is padded with 0 bits. Each block (is XORed

with the correspondent block and it is submitted to to generate a intermediate

state block . The process that each associated data block goes though is

 .

To cipher the plain text message, it is broken into plaintext blocks . The

last block is padded with , where is the number of padding bits to complete
the block.

Each block (is XORed with the correspondent block and it is submitted to

 to generate a intermediate state block . The state is submitted to ,

XORed again with and finally submitted to to generate a ciphertext block

 . The process that each plaintext block goes though is (
 . It is important to observe that if the plaintext
or associate data blocks are swapped in position, the generated checksum will be

modified. This characteristic prevents reordering data attacks.

All intermediate state blocks are XORed together to generate a checksum. If the last

message block was padded, the checksum is XORed with the bit sequence .

If there was no padding it is XORed with the bit sequence . After it the

result is submitted to function to generate the TAG used for authentication. The

TAG length can be smaller than the block size, if it is adequate to the

application. This is done by truncating the TAG on its more significant bits

 .

Figure 6. The FlexAEAD encryption diagram

For decryption, first the Associated Data is submitted to the same process as in

encryption . The Ciphertext is broken into blocks
and the TAG is separated (as its size is known, the last part of the ciphertext is the

TAG). The cipher text blocks are submitted to a reverse process (
). During the process all are

XORed together. This checksum is XORed with bit sequence then

submitted to to generate a TAG’. If the TAG’ is equal to the received TAG, the

message is valid and the original plaintext was not padded. If it is different the

checksum is XORed with bit sequence then submitted to to

generate a TAG’’. If the TAG’’ is equal to the received TAG, the message is valid and

the original plaintext was padded. If neither calculated TAGs are equal to the received

TAG, the message is invalid and it is discarded.

Figure 7. The FlexAEAD decryption diagram

2. Key and Block Size Selection

Although the FlexAEAD algorithm family allows several block and key size. A few

variant were selected as concrete examples for this contest.

The family also allows the user to select the tag, used to validate the message, and

nonce size. For this contest they will be the maximum allowed, depending on the

variant. The maximum for them is the same as the block size for each variant.

The chosen variants are:

FlexAEAD128b064 – 128 bits key, 64 bits block, 64 bits nonce and 64 bits tag sizes

FlexAEAD128b128 – 128 bits key, 128 bits block, 128 bits nonce and 128 bits tag sizes

FlexAEAD256b256 – 256 bits key, 256 bits block, 256 bits nonce and 256 bits tag

sizes

These variants were implemented and the NIST test vectors were successfully generated

for them.

3. Differential Cryptanalysis

The differential cryptanalysis (BIHAM and SHAMIR, 1991) technique consists on

analyzing of the probabilities of the differences on the cipher SBoxes inputs and

outputs.

The differential and the linear cryptanalysis are almost the same as performed for the

algorithm FlexAE (NASCIMENTO and XEXEO, 2018). The difference is the number

of rounds that were incremented for better security.

The difference distribution table for AES SBox shows that the maximum probability for

any pair is

 .

To encrypt each ciphertext block the is executed at least 3 times
 . The number of rounds depends on

the block size in bytes (. The total of rounds for block sizes of 64, 128
and 256 bits are respectively 15, 18 and 21.

Due to the cipher architecture, the minimum number of active SBoxes in each round on

the function is 2. The maximum probability can be calculated by

 and the difficult of an attack based on differential cryptanalysis is

 (Heys, 2001).

Table 1. Difficult to perform a differential cryptanalysis attack

Block Size Rounds (r-1)
Active

SBoxes

64 14 28

128 17 34

256 20 40

An attack based on a differential cryptanalysis is more difficult than a brute force attack

when the cipher uses a 64 bit block size / 128 key size or 128 bit block size / 128 key

size.

For the 256 bit block size / 256 key size the attack is easier than a brute force attack

although it is not feasible.

4. Linear Cryptanalysis

The linear cryptanalysis (MATSUI, 1993) technique consists in evaluating the cipher

using linear expressions to approximate the cipher results and calculating their biases of

being true or false. The higher the bias, the easier is to uncover the key bits.

For AES SBox there are a total of 65025 possible linear expressions. The maximum

bias on these expression is

 .

After calculating the bias for every SBox, the next step is to verify the cipher structure

effect and determine the best linear expressions for each round. In this stage it is easier

to represent the linear expressions in graphic way. The following has a graphical

representation of a linear approximation for all 5 rounds of the using 64 bits block
size.

Figure 8. The linear expression graphical representation for FlexAEAD

The complexity of an attack is determined by the number of chosen plaintext pair

 which can be calculate from the bias

 (HEYS, 2001). On the linear

cryptanalysis, if the number of active SBox is known , the bias can be

determined subtracting from the probability calculated using the Piling-up

Lemma

 (MATSUI,1993): .

Table 2. Difficult to perform a linear cryptanalysis attack

Block Size Rounds (r) Active SBox Maximum Bias

64 15 45

128 18 54

256 21 63

An attack based on a linear cryptanalysis is more difficult than a brute force attack

making it impractical.

5. Using the cipher to generate a pseudorandom sequence

The cipher was used to encrypted a block full of zeros again and again with the same

key. The resulted were submitted to the dieharder toll. The sequence passed on all tests

except on a few that it randomly presented as “WEAK”. If the NONCE or the KEY is

changed or only that test is repeated, the test returned PASSED. This indicates that it is

not possible to infer any pattern from the generated sequence. The test was performed

on all four variants of the cipher presented on this document (FlexAEAD128b064,

FlexAEAD128b128 and FlexAEAD256b256). The testing results example and the code

used to generate the sequence for the dieharder tool are on the appendices.

6. Cipher family performance

The FlexAEAD family has inherited several functions from the FlexAE family, which

presented good time performance in CPU cycles and RAM (NASCIMENTO and

XEXEO,2017), when compared to other cipher. Although it is expected the FlexAEAD

performance won’t be as good as to FlexAE, new tests will be necessary to evaluate the

new family performance.

The main reason for the difference was the inclusion of a second XOR of the encrypting

block with the and another execution of the function. These modifications were

necessary to avoid a reordering data attack.

The FlexAEAD cipher family uses only simple function like XOR, lookup table, for

SBox Layer, or bits reorganization, for block shuffle layer. The block shuffle layer is

simple to be implemented in hardware and it is expected to have a great performance

(basically only wires changing the bits positions). The function in software is not

optimized for large word processors like 64 bits. But these high end processors normally

have multiples cores that can be used in parallel due to the cipher characteristics,

compensating the deficiency.

For the FlexAE, the FELICS framework from CRYPTOLUX research group were used,

but it was compared to non-authenticated block ciphers like AES. This time the

SUPERCOP tool (BERNSTEIN and LANGE) was used and the FlexAEAD

implementations were compared to the following CAESAR (BERNSTEIN) finalist

implementations that were available at the SUPERCOP package: ascon128v11

(ASCON cipher), acorn128v3 (ACORN cipher), aegis128l (AEGIS-128 cipher) and
deoxysi128v141 (Deoxys-II cipher).

To perform the tests, a Linux Ubuntu 18.04.2 LTS machine with the processor Intel(R)

Core(TM) i5-5200U CPU @ 2.20GHz were used. The results have shown that the

actual FlexAEAD implementation uses more CPU cycles than the other ciphers.

6. Conclusion and future works

This paper describes the FlexAEAD cipher family. This cipher was tailored to be

lightweight and flexible. Its security was analyzed for three variants with concrete

values against linear and differential cryptanalysis attacks. The result is summarized on

Table 3. Their capacity to generate a pseudorandom sequence was also confirmed.

Table 3. Variant parameters and cryptanalysis difficulty

Variant
Parameters sizes (in bits) Cryptanalysis difficulty

Key Block Nonce Tag Linear Differential

FlexAEAD128b064 128 64 64 64

FlexAEAD128b128 128 128 128 128

FlexAEAD256b256 256 256 256 256

An optimized version of the cipher will be implemented to compare its performance

against the other participants. One performance advantage is its capacity to allow

parallel computing, each block can be calculated by a different thread in any order. This

characteristic is an advantage when using multicore processors.

References

BERNSTEIN, D. J.; LANGE, T. eds. eBACS: ECRYPT Benchmarking of

Cryptographic Systems. URL: <https://bench.cr.yp.to> Access Date: Feb 28
th

 2019.

BERNSTEIN, D. J. Cryptographic competitions. URL: < https://competitions.cr.yp.to>

Access Date: Feb 28
th

 2019.

BIHAM, E.; SHAMIR, A. Differential cryptanalysis of DES-like cryptosystems.

Journal of CRYPTOLOGY, 4, n. 1, 1991. 3-72.

CRYPTOLUX RESEARCH GROUP - UNIVERSITY OF LUXEMBOURG.

Lightweight Block Ciphers, 2016. URL:

<https://www.cryptolux.org/index.php/Lightweight_Block_Ciphers>. Access Date:

Feb 28
th

 2019.

DAEMEN, J.; RIJMEN, V. Specification for the advanced encryption standard (AES).

Federal Information Processing Standards Publication, 2001.

DINU, D. et al. FELICS – Fair Evaluation of Lightweight Cryptographic Systems, jul.

2015. URL: <http://csrc.nist.gov/groups/ST/lwc-workshop2015/papers/session7-

dinu-paper.pdf>. Access Date: Feb 28
th

 2019.

EVEN, S.; MANSOUR, Y. A construction of a cipher from a single pseudorandom

permutation. Journal of Cryptology, 10, 1997. 151-161.

JUTLA, C. S. Encryption modes with almost free message integrity. International

Conference on the Theory and Applications of Cryptographic Techniques, 2001.

529-544.

MATSUI, M. Linear cryptanalysis method for DES cipher. Workshop on the Theory

and Application of of Cryptographic Techniques, 1993. 386-397.

NASCIMENTO, E. M.; XEXÉO, J.A.M. "A flexible authenticated lightweight cipher

using Even-Mansour construction". 2017 IEEE International Conference on

Communications (ICC), Paris, 2017, pp. 1-6. (doi: 10.1109/ICC.2017.7996734). URL:

<http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7996734&isnumber=79

96317>. Access Date: Feb 28
th

 2019.

NASCIMENTO, E. M. “Algoritmo de Criptografia Leve com Utilização de

Autenticação”. 2017. 113p. Dissertação (mestrado) - Instituto Militar de Engenharia,

Rio de Janeiro, 2017. URL:

<http://www.comp.ime.eb.br/pos/arquivos/publicacoes/dissertacoes/2017/2017-

Eduardo.pdf>. Access Date: Feb 28
th

 2019.

NASCIMENTO, E. M.; XEXÉO, J.A.M. A Lightweight Cipher with Integrated

Authentication. In: CONCURSO DE TESES E DISSERTAÇÕES - SIMPÓSIO

BRASILEIRO EM SEGURANÇA DA INFORMAÇÃO E DE SISTEMAS

COMPUTACIONAIS (SBSEG), 18., 2018, 1. Anais Estendidos do XVIII Simpósio

Brasileiro em Segurança da Informação e de Sistemas Computacionais. Porto Alegre:

Sociedade Brasileira de Computação, oct. 2018 . p. 25 - 32.

APPENDICE A – Direct and Inverse AES SBox

Table 3. Direct AES SBox

 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

0x0 0x63 0x7C 0x77 0x7B 0xF2 0x6B 0x6F 0xC5 0x30 0x01 0x67 0x2B 0xFE 0xD7 0xAB 0x76

0x1 0xCA 0x82 0xC9 0x7D 0xFA 0x59 0x47 0xF0 0xAD 0xD4 0xA2 0xAF 0x9C 0xA4 0x72 0xC0

0x2 0xB7 0xFD 0x93 0x26 0x36 0x3F 0xF7 0xCC 0x34 0xA5 0xE5 0xF1 0x71 0xD8 0x31 0x15

0x3 0x04 0xC7 0x23 0xC3 0x18 0x96 0x05 0x9A 0x07 0x12 0x80 0xE2 0xEB 0x27 0xB2 0x75

0x4 0x09 0x83 0x2C 0x1A 0x1B 0x6E 0x5A 0xA0 0x52 0x3B 0xD6 0xB3 0x29 0xE3 0x2F 0x84

0x5 0x53 0xD1 0x00 0xED 0x20 0xFC 0xB1 0x5B 0x6A 0xCB 0xBE 0x39 0x4A 0x4C 0x58 0xCF

0x6 0xD0 0xEF 0xAA 0xFB 0x43 0x4D 0x33 0x85 0x45 0xF9 0x02 0x7F 0x50 0x3C 0x9F 0xA8

0x7 0x51 0xA3 0x40 0x8F 0x92 0x9D 0x38 0xF5 0xBC 0xB6 0xDA 0x21 0x10 0xFF 0xF3 0xD2

0x8 0xCD 0x0C 0x13 0xEC 0x5F 0x97 0x44 0x17 0xC4 0xA7 0x7E 0x3D 0x64 0x5D 0x19 0x73

0x9 0x60 0x81 0x4F 0xDC 0x22 0x2A 0x90 0x88 0x46 0xEE 0xB8 0x14 0xDE 0x5E 0x0B 0xDB

0xA 0xE0 0x32 0x3A 0x0A 0x49 0x06 0x24 0x5C 0xC2 0xD3 0xAC 0x62 0x91 0x95 0xE4 0x79

0xB 0xE7 0xC8 0x37 0x6D 0x8D 0xD5 0x4E 0xA9 0x6C 0x56 0xF4 0xEA 0x65 0x7A 0xAE 0x08

0xC 0xBA 0x78 0x25 0x2E 0x1C 0xA6 0xB4 0xC6 0xE8 0xDD 0x74 0x1F 0x4B 0xBD 0x8B 0x8A

0xD 0x70 0x3E 0xB5 0x66 0x48 0x03 0xF6 0x0E 0x61 0x35 0x57 0xB9 0x86 0xC1 0x1D 0x9E

0xE 0xE1 0xF8 0x98 0x11 0x69 0xD9 0x8E 0x94 0x9B 0x1E 0x87 0xE9 0xCE 0x55 0x28 0xDF

0xF 0x8C 0xA1 0x89 0x0D 0xBF 0xE6 0x42 0x68 0x41 0x99 0x2D 0x0F 0xB0 0x54 0xBB 0x16

Table 4. Reverse AES SBox

 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

0x0 0x52 0x09 0x6A 0xD5 0x30 0x36 0xA5 0x38 0xBF 0x40 0xA3 0x9E 0x81 0xF3 0xD7 0xFB

0x1 0x7C 0xE3 0x39 0x82 0x9B 0x2F 0xFF 0x87 0x34 0x8E 0x43 0x44 0xC4 0xDE 0xE9 0xCB

0x2 0x54 0x7B 0x94 0x32 0xA6 0xC2 0x23 0x3D 0xEE 0x4C 0x95 0x0B 0x42 0xFA 0xC3 0x4E

0x3 0x08 0x2E 0xA1 0x66 0x28 0xD9 0x24 0xB2 0x76 0x5B 0xA2 0x49 0x6D 0x8B 0xD1 0x25

0x4 0x72 0xF8 0xF6 0x64 0x86 0x68 0x98 0x16 0xD4 0xA4 0x5C 0xCC 0x5D 0x65 0xB6 0x92

0x5 0x6C 0x70 0x48 0x50 0xFD 0xED 0xB9 0xDA 0x5E 0x15 0x46 0x57 0xA7 0x8D 0x9D 0x84

0x6 0x90 0xD8 0xAB 0x00 0x8C 0xBC 0xD3 0x0A 0xF7 0xE4 0x58 0x05 0xB8 0xB3 0x45 0x06

0x7 0xD0 0x2C 0x1E 0x8F 0xCA 0x3F 0x0F 0x02 0xC1 0xAF 0xBD 0x03 0x01 0x13 0x8A 0x6B

0x8 0x3A 0x91 0x11 0x41 0x4F 0x67 0xDC 0xEA 0x97 0xF2 0xCF 0xCE 0xF0 0xB4 0xE6 0x73

0x9 0x96 0xAC 0x74 0x22 0xE7 0xAD 0x35 0x85 0xE2 0xF9 0x37 0xE8 0x1C 0x75 0xDF 0x6E

0xA 0x47 0xF1 0x1A 0x71 0x1D 0x29 0xC5 0x89 0x6F 0xB7 0x62 0x0E 0xAA 0x18 0xBE 0x1B

0xB 0xFC 0x56 0x3E 0x4B 0xC6 0xD2 0x79 0x20 0x9A 0xDB 0xC0 0xFE 0x78 0xCD 0x5A 0xF4

0xC 0x1F 0xDD 0xA8 0x33 0x88 0x07 0xC7 0x31 0xB1 0x12 0x10 0x59 0x27 0x80 0xEC 0x5F

0xD 0x60 0x51 0x7F 0xA9 0x19 0xB5 0x4A 0x0D 0x2D 0xE5 0x7A 0x9F 0x93 0xC9 0x9C 0xEF

0xE 0xA0 0xE0 0x3B 0x4D 0xAE 0x2A 0xF5 0xB0 0xC8 0xEB 0xBB 0x3C 0x83 0x53 0x99 0x61

0xF 0x17 0x2B 0x04 0x7E 0xBA 0x77 0xD6 0x26 0xE1 0x69 0x14 0x63 0x55 0x21 0x0C 0x7D

APPENDICE B – encrypt-dieharder.c code to generate pseudorandom sequence

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "encript.c"

int main () {

 unsigned char *npub;

 unsigned char *k;

 unsigned char *state;

 struct FlexAEADv1 flexaeadv1;

 k = malloc(KEYSIZE);

 memset(k, 0x00, KEYSIZE);

 npub = malloc(BLOCKSIZE);

 memset(npub, 0x00, BLOCKSIZE);

 FlexAEADv1_init(&flexaeadv1, k);

 fprintf(stderr, "FlexAEADv1 ZERO %d %d\n", BLOCKSIZE*8, KEYSIZE*8);

 // ### reset the counter and checksum

 memcpy(flexaeadv1.counter, npub, NONCESIZE);

 dirPFK(flexaeadv1.counter, flexaeadv1.nBytes, (flexaeadv1.subkeys +
(4*flexaeadv1.nBytes)), flexaeadv1.nRounds, flexaeadv1.state);

 state = malloc(BLOCKSIZE);

 while(1)

 {

 memset(state, 0x00, BLOCKSIZE);

 inc32(flexaeadv1.counter, flexaeadv1.nBytes, 1);

 encryptBlock(&flexaeadv1, state);

 fwrite(state, 1, flexaeadv1.nBytes, stdout);

 }

 free(state);

}

// execution example: ./encrypt-dieharder | dieharder -a -g 200

APPENDICE C – dieharder tool results example for FlexAEADv256b256
#===#
dieharder version 3.31.1 Copyright 2003 Robert G. Brown #
#===#
 rng_name |rands/second| Seed |
stdin_input_raw| 5.91e+05 |3518119865|
#===#
 test_name |ntup| tsamples |psamples| p-value |Assessment
#===#
 diehard_birthdays| 0| 100| 100|0.53243263| PASSED
 diehard_operm5| 0| 1000000| 100|0.92541253| PASSED
 diehard_rank_32x32| 0| 40000| 100|0.15594265| PASSED
 diehard_rank_6x8| 0| 100000| 100|0.97400698| PASSED
 diehard_bitstream| 0| 2097152| 100|0.34139275| PASSED
 diehard_opso| 0| 2097152| 100|0.32834173| PASSED
 diehard_oqso| 0| 2097152| 100|0.91056284| PASSED
 diehard_dna| 0| 2097152| 100|0.38464814| PASSED
diehard_count_1s_str| 0| 256000| 100|0.34100720| PASSED
diehard_count_1s_byt| 0| 256000| 100|0.96884054| PASSED
 diehard_parking_lot| 0| 12000| 100|0.96913730| PASSED
 diehard_2dsphere| 2| 8000| 100|0.20717814| PASSED
 diehard_3dsphere| 3| 4000| 100|0.09572503| PASSED

 diehard_squeeze| 0| 100000| 100|0.49830589| PASSED
 diehard_sums| 0| 100| 100|0.42558220| PASSED
 diehard_runs| 0| 100000| 100|0.03886906| PASSED
 diehard_runs| 0| 100000| 100|0.38309375| PASSED
 diehard_craps| 0| 200000| 100|0.11990794| PASSED
 diehard_craps| 0| 200000| 100|0.71676496| PASSED
 marsaglia_tsang_gcd| 0| 10000000| 100|0.54813906| PASSED
 marsaglia_tsang_gcd| 0| 10000000| 100|0.96626464| PASSED
 sts_monobit| 1| 100000| 100|0.99996188| WEAK
 sts_runs| 2| 100000| 100|0.24298167| PASSED
 sts_serial| 1| 100000| 100|0.77122722| PASSED
 sts_serial| 2| 100000| 100|0.98176924| PASSED
 sts_serial| 3| 100000| 100|0.69443393| PASSED
 sts_serial| 3| 100000| 100|0.26827062| PASSED
 sts_serial| 4| 100000| 100|0.68843008| PASSED
 sts_serial| 4| 100000| 100|0.43152701| PASSED
 sts_serial| 5| 100000| 100|0.70013670| PASSED
 sts_serial| 5| 100000| 100|0.92175886| PASSED
 sts_serial| 6| 100000| 100|0.63596468| PASSED
 sts_serial| 6| 100000| 100|0.63897130| PASSED
 sts_serial| 7| 100000| 100|0.36519471| PASSED
 sts_serial| 7| 100000| 100|0.87776520| PASSED
 sts_serial| 8| 100000| 100|0.78504105| PASSED
 sts_serial| 8| 100000| 100|0.68670977| PASSED
 sts_serial| 9| 100000| 100|0.53458473| PASSED
 sts_serial| 9| 100000| 100|0.96686776| PASSED
 sts_serial| 10| 100000| 100|0.93208301| PASSED
 sts_serial| 10| 100000| 100|0.41830759| PASSED
 sts_serial| 11| 100000| 100|0.44154753| PASSED
 sts_serial| 11| 100000| 100|0.04949517| PASSED
 sts_serial| 12| 100000| 100|0.50092968| PASSED
 sts_serial| 12| 100000| 100|0.19714967| PASSED
 sts_serial| 13| 100000| 100|0.69263841| PASSED
 sts_serial| 13| 100000| 100|0.84095563| PASSED
 sts_serial| 14| 100000| 100|0.24424891| PASSED
 sts_serial| 14| 100000| 100|0.88271258| PASSED
 sts_serial| 15| 100000| 100|0.38119541| PASSED
 sts_serial| 15| 100000| 100|0.66073910| PASSED
 sts_serial| 16| 100000| 100|0.68054873| PASSED
 sts_serial| 16| 100000| 100|0.75566807| PASSED
 rgb_bitdist| 1| 100000| 100|0.06100868| PASSED
 rgb_bitdist| 2| 100000| 100|0.33521314| PASSED
 rgb_bitdist| 3| 100000| 100|0.96149073| PASSED
 rgb_bitdist| 4| 100000| 100|0.52070848| PASSED
 rgb_bitdist| 5| 100000| 100|0.98851270| PASSED
 rgb_bitdist| 6| 100000| 100|0.13418091| PASSED
 rgb_bitdist| 7| 100000| 100|0.13906705| PASSED
 rgb_bitdist| 8| 100000| 100|0.51265948| PASSED
 rgb_bitdist| 9| 100000| 100|0.73103752| PASSED
 rgb_bitdist| 10| 100000| 100|0.57102500| PASSED
 rgb_bitdist| 11| 100000| 100|0.56515679| PASSED
 rgb_bitdist| 12| 100000| 100|0.99917966| WEAK
rgb_minimum_distance| 2| 10000| 1000|0.53587905| PASSED
rgb_minimum_distance| 3| 10000| 1000|0.34210762| PASSED
rgb_minimum_distance| 4| 10000| 1000|0.58613763| PASSED
rgb_minimum_distance| 5| 10000| 1000|0.19434753| PASSED
 rgb_permutations| 2| 100000| 100|0.68699976| PASSED
 rgb_permutations| 3| 100000| 100|0.17402171| PASSED
 rgb_permutations| 4| 100000| 100|0.38105709| PASSED
 rgb_permutations| 5| 100000| 100|0.93408952| PASSED
 rgb_lagged_sum| 0| 1000000| 100|0.71633791| PASSED
 rgb_lagged_sum| 1| 1000000| 100|0.82789524| PASSED
 rgb_lagged_sum| 2| 1000000| 100|0.82437890| PASSED
 rgb_lagged_sum| 3| 1000000| 100|0.80529476| PASSED
 rgb_lagged_sum| 4| 1000000| 100|0.21479258| PASSED
 rgb_lagged_sum| 5| 1000000| 100|0.02661369| PASSED
 rgb_lagged_sum| 6| 1000000| 100|0.63510522| PASSED
 rgb_lagged_sum| 7| 1000000| 100|0.51597148| PASSED
 rgb_lagged_sum| 8| 1000000| 100|0.67268338| PASSED
 rgb_lagged_sum| 9| 1000000| 100|0.29814160| PASSED
 rgb_lagged_sum| 10| 1000000| 100|0.73545520| PASSED
 rgb_lagged_sum| 11| 1000000| 100|0.94261731| PASSED
 rgb_lagged_sum| 12| 1000000| 100|0.56493673| PASSED
 rgb_lagged_sum| 13| 1000000| 100|0.32623547| PASSED
 rgb_lagged_sum| 14| 1000000| 100|0.86849070| PASSED
 rgb_lagged_sum| 15| 1000000| 100|0.20498726| PASSED
 rgb_lagged_sum| 16| 1000000| 100|0.71300651| PASSED
 rgb_lagged_sum| 17| 1000000| 100|0.10728202| PASSED
 rgb_lagged_sum| 18| 1000000| 100|0.66967662| PASSED
 rgb_lagged_sum| 19| 1000000| 100|0.87808186| PASSED
 rgb_lagged_sum| 20| 1000000| 100|0.01152262| PASSED
 rgb_lagged_sum| 21| 1000000| 100|0.53744897| PASSED
 rgb_lagged_sum| 22| 1000000| 100|0.41257966| PASSED

 rgb_lagged_sum| 23| 1000000| 100|0.57216229| PASSED
 rgb_lagged_sum| 24| 1000000| 100|0.88346704| PASSED
 rgb_lagged_sum| 25| 1000000| 100|0.41339647| PASSED
 rgb_lagged_sum| 26| 1000000| 100|0.71925925| PASSED
 rgb_lagged_sum| 27| 1000000| 100|0.75322746| PASSED
 rgb_lagged_sum| 28| 1000000| 100|0.63884993| PASSED
 rgb_lagged_sum| 29| 1000000| 100|0.98819306| PASSED
 rgb_lagged_sum| 30| 1000000| 100|0.33043748| PASSED
 rgb_lagged_sum| 31| 1000000| 100|0.10463550| PASSED
 rgb_lagged_sum| 32| 1000000| 100|0.46124090| PASSED
 rgb_kstest_test| 0| 10000| 1000|0.18623770| PASSED
 dab_bytedistrib| 0| 51200000| 1|0.71777194| PASSED
 dab_dct| 256| 50000| 1|0.01985939| PASSED
Preparing to run test 207. ntuple = 0
 dab_filltree| 32| 15000000| 1|0.17292794| PASSED
 dab_filltree| 32| 15000000| 1|0.35405515| PASSED
Preparing to run test 208. ntuple = 0
 dab_filltree2| 0| 5000000| 1|0.68458837| PASSED
 dab_filltree2| 1| 5000000| 1|0.04958262| PASSED
Preparing to run test 209. ntuple = 0
 dab_monobit2| 12| 65000000| 1|0.34004526| PASSED

dieharder rerun sts_monobit test

#===#
dieharder version 3.31.1 Copyright 2003 Robert G. Brown #
#===#
 rng_name |rands/second| Seed |
stdin_input_raw| 4.13e+05 |3345856669|
#===#
 test_name |ntup| tsamples |psamples| p-value |Assessment
#===#
 rgb_bitdist| 12| 100000| 100|0.85373615| PASSED

dieharder rerun rgb_bitdist test

#===#
dieharder version 3.31.1 Copyright 2003 Robert G. Brown #
#===#
 rng_name |rands/second| Seed |
stdin_input_raw| 4.15e+05 |3664988861|
#===#
 test_name |ntup| tsamples |psamples| p-value |Assessment
#===#
 sts_monobit| 1| 100000| 100|0.35268451| PASSED

