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Chapter 1 

Specification 

In this document we propose the SIV-Rijndael256 family of AEAD and hash function, which utilizes Rijndael256 
— the predecessor of AES — as the underlying primitive. On top of Rijndael256, SIV-Rijndael256-AEAD uses 
the SIV mode to enjoy the strong security against nonce-misuse and unverified plaintext release, and SIV-
Rijndael256-Hash is based on the Sponge construction with Rijndael256 converted into a permutation by setting 
the master key to the constant 0. While the Rijndael256 primitive withstands long-term security analysis, 
the SIV AEAD mode and Sponge hash function construction come with well accepted security proofs. Due 
to the lightweightness of SIV and Sponge, the performances on both software and hardware enjoys that from 
Rijndael256 directly. 

1.1 Notations and Preliminaries 

1.1.1 Notations 

Let {0, 1}∗ be the set of all finite bit strings, including the empty string ε. For a bit string X ∈ {0, 1}∗ , |X|
is its length in bits, and we have |ε| = 0. For a bit string X ∈ {0, 1}∗ and an integer n ≥ 1, we define a 

nparsing operation. For X ̸ ε, it is defined as (X[1], . . . , X[x]) = n for 1 ≤ i ≤ x − 1,= ← X, where |X[i]|
1 ≤ |X[x]| ≤ n, and X[1]∥ · · · ∥X[x] = X. Here X∥Y is the concatenation of two bit strings X and Y . 

nThe number of blocks, x, is the block length of X. For X = ε, X[1] ← X, where X[1] = ε. Note that 
x = 1 and the block length of X = ε is 1. For a bit string X ∈ {0, 1}∗ and two positive integers n1, n2, we 

n1,n2define a similar parsing operation. If |X| > n1, it is defined as (X[1], . . . , X[x]) ←−−− X, where |X[1]| = n1, 
|X[2]| = · · · = |X[x − 1]| = n2, 1 ≤ |X[x]| ≤ n2, and X[1]∥ · · · ∥X[x] = X. If |X| ≤ n1, including X = ε, 

n1,n2
(X[1], . . . , X[x]) ←−−− X is equivalent to X[1] ← For a bit string X ∈ {0, 1}∗− X and x = 1. and an integer 
ℓ ≤ |X|, msbℓ(X) denotes the first ℓ bits of X and lsbℓ(X) denotes the last ℓ bits of X. 

For X ∈ {0, 1}∗ with |X| ≤ ℓ, we define a padding function as padℓ(X) = X if |X| = ℓ, and padℓ(X) = 
X∥10ℓ−1−(|X| mod ℓ) if 0 ≤ |X| < ℓ. 

1.1.2 Synthetic Initialization Vector Scheme (SIV-scheme) 

SIV scheme [35] combines an encryption scheme E and a pseudorandom function (PRF) F to obtain an 
AEAD scheme. We modify the original scheme in two ways. 

• We modify the PRF so that it explicitly takes a nonce N as a part of the input. 

• The encryption scheme and the PRF share the same key, and we maintain their independence with 
domain separation. 

Fix the key length k and a block length n. The encryption scheme E takes a key K ∈ {0, 1}k, initial value 
(IV) IV ∈ {0, 1}n, and a plaintext M ∈ {0, 1}∗ as input, and returns a ciphertext C ∈ {0, 1}|M |, and we 

= EIV write C (M). The corresponding decryption scheme D takes (K, IV, C) and returns M , and we write K 
= DIV = DIV (EIV M (C). We require, for any K and IV , M (M)).K K K 
The PRF F takes a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}∗, associated data (AD) A ∈ {0, 1}∗, and a 

plaintext M ∈ {0, 1}∗ as input, and returns a fixed length output T ∈ {0, 1}n, and we write T = FK (N, A, M). 
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Algorithm SIV.EncK (N, A, M) 

1. T ← FK (N, A, M) 
2. C ← ET (M)K 
3. return (C, T ) 

Algorithm SIV.DecK (N, A, C, T ) 

1. M ← DT (C)K 
2. T ∗ ← FK (N, A, M) 

∗3. if T = T then return M 
4. else return ⊥ 

Figure 1.1: The encryption and decryption algorithms of SIV scheme. 

Algorithm EIV (M) Algorithm DIV (C)K K 

1. (M [1], . . . ,M [m])← M 
2. S ← IV 

4. S ← E7 (S)K 
5. C[i] ← S ⊕ M [i] 
6. S ← E7 (S)K 
7. C[m] ← msb|M [m]|(S) ⊕ M [m] 
8. C ← (C[1], . . . , C[m]) 
9. return C 

n

3. for to −i = 1 1m 

1. (C[1], . . . , C[m])
n

5. ← ⊕M [i] S C[i] 

← C 
2. S ← IV 
3. for i = 1 to m − 1 
4. S ← E7 (S)K 

6. S ← E7 (S)K 
7. M [m] ← msb|C[m]|(S) ⊕ C[m] 
8. M ← (M [1], . . . ,M [m]) 
9. return M 

Figure 1.2: The definitions of E and D. 

With these components, the encryption algorithm of SIV scheme SIV.Enc takes a key K, a nonce N , 
AD A, and a plaintext M as input, and returns a pair of ciphertext and tag (C, T ). We write (C, T ) = 
SIV.EncK (N, A, M). The decryption algorithm of SIV scheme SIV.Dec takes (K, N, A, C, T ) as input, and re-
turns the corresponding plaintext M or the symbol ⊥ indicating rejection. We write M = SIV.DecK (N, A, C, T ) 
or ⊥ = SIV.DecK (N, A, C, T ). They are define in Fig. 1.1. 

Let E : {0, 1}k ×I ×{0, 1}n → {0, 1}n be the underlying block cipher, where k is the key length, I is the 
domain separation space, and n is the block length. We instantiate E and D as in Fig. 1.2. This is an OFB 
mode of E. See the overall illustration in Fig. 1.4. 

The definition of F is presented in Fig. 1.3. This is a variant of CBC-MAC, where N , A, and M are 
processed independently based on the domain separation. 

Algorithm FK (N, A, M) 

n

1. S ← 0n 15. if |M [m]| = n/2 then 
← A 16. S ← S ⊕ (M [m]∥N)2. (A[1], . . . , A[a])

3. if |A[a]| < n then d ← 1 else d ← 2 
4. A[a] ← pad (A[a])n

5. for i = 1 to a do 
6. S ← S ⊕ A[i] 
7. S ← E0 (S)K 

17. T ← E4 (S)K 
18. if n/2 < |M [m]| < n then 
19. S ← S ⊕ (pad (M [m]))n

20. S ← Ed (S)K 
21. S ← S ⊕ (0n/2∥N) 

8. (M [1], . . . ,M [m])
n← M 

9. for i = 1 to m − 1 do 
10. S ← S ⊕ M [i] 
11. S ← Ed (S)K 
12. if |M [m]| < n/2 then 
13. S ← S ⊕ (padn/2(M [m])∥N) 
14. T ← E3 (S)K 

22. T ← E5 
K (S) 

23. if |M [m]| = n then 
24. S ← S ⊕ M [m] 
25. S ← Ed (S)K 
26. S ← S ⊕ (0n/2∥N) 
27. T ← E6 (S)K 
28. return T 

Figure 1.3: The definitions of F . 
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plaintext M in FK (N, A, M) for the case |M [m] ≤ n/2. 3rd: Process of M for the case n/2 < |M [m] ≤ n. 

= EIV Bottom: C (M). Note that IV = T .K 

1.1.3 Rijndael256 

The Rijndael block cipher is a proposal for the Advanced Encryption Standard (AES). Rijndael was selected as 
the AES after narrowing the range of supported values for the block length and key length. As well-known, 
AES has a unique block length – 128 bits, and supports three key lengths – 128, 192, or 256 bits. Whereas, 
the original proposal – Rijndael, supports any independently specified block length b bits and key length k 
bits, such that b and k are multiple of 32, 128 ≤ b ≤ 256, and 128 ≤ k ≤ 256. 

In the proposal of SIV-Rijndael256, we select Rijndael with fixed block length 256 bits and fixed key 
length 128 bits as our building block, and denote this primitive by Rijndael256. Next, we specify Rijndael256 
in detail (for the full specification of Rijndael, please refer to [7]). 

Rijndael256 is a key-alternating block cipher with block length 256 bits and key length 128 bits. It is 
composed of three algorithms – the encryption, the decryption, and the key schedule. In SIV-Rijndael256, 
only the encryption and the key schedule of Rijndael256 are used. Hence, we describe these two algorithms 
only. The encryption and the different transformations composing it operates on an intermediate result, 
called the state. The key schedule and its steps operate on an intermediate result, called the cipher key state. 
Both the state and the cipher key state can be pictured as a rectangular array of bytes, as illustrated in 
Figure 1.5. In which the number of columns in the state is denoted by Nb which equals 8, and the number 
of columns of the cipher key state is denoted by Nk which equals 4. 

The encryption of Rijndael256 is of substitution-permutation-networks (SPN) structure. It consists of an 
initial key addition, denoted by AddRoundKey, followed by 13 applications of the transformation Round, and 
finally one application of FinalRound. Thus, the total number of rounds, denoted by Nr, is 14. 

The round transformation Round is composed by the following four basic transformations, called steps. 
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Figure 1.5: State and cipher key layout 

• SubBytes (SB). The SubBytes step is the only non-linear transformation of the cipher. It consists of 
an substitution table (or S-box) applied to each byte of the state independently. The S-box, denoted 
by SRD, is an 8-bit to 8-bit permutation and is obtained by taking the multiplicative inverse in GF(28) 
followed by applying an affine (over GF(2)) transformation. For the multiplicative inverse x 7→ x−1 in 

8 4 3GF(28), multiplication is done modulo the irreducible binary polynomial m(x) = x + x + x + x + 1 
(or ‘11B’ in hexadecimal representation). The value 00 is mapped onto itself. The affine transformation 
and the tabular representation of SRD(xy) can be seen in Appendix A.1.1. 

• ShiftRows (SR). The ShiftRows step is a byte transposition that cyclically shifts the rows of the state 
to the left. The shift offsets for row 0, 1, 2, 3 are denoted by C0, C1, C2, C3, which equal 0, 1, 3, 4 
respectively. Then, the byte at position j in row i moves to position (j − Ci) mod 4. 

• MixColumns (MC). The MixColumns step is a linear (over GF(2)) permutation. It consists of a modular 
multiplication with a fixed polynomial c(x) operating on each column of the state independently. The 
columns of the state are considered as polynomials over GF(28). They are multiplied modulo x4 +1 with 

3 2the polynomial c(x) which is given by c(x) = 03·x +01·x +01·x+02. This modular multiplication with 
c(x) can be written as a matrix multiplication (denoted by M×C). Let b(x) = c(x)·a(x) (mod x4 +1). 
Then ⎤⎡⎤⎡⎤⎡ 

b0 02 03 01 01 a0 ⎢⎢⎣ 
b1 

b2 

⎥⎥⎦ = 
⎢⎢⎣ 

01 02 03 01 
01 01 02 03 

⎥⎥⎦× 
⎢⎢⎣ 

a1 

a2 

⎥⎥⎦ 

b3 03 01 01 02 a3 

• AddRoundKey (AK). The key addition, denoted by AddRoundKey, consists of bitwise XORing a round 
key to the state. A round key is denoted by ExpandedKey[i], 0 ≤ i ≤ Nr, with length equals the block 
length (256 bits). The array of 15 round keys ExpandedKey is derived from the cipher key by applying 
the key schedule. 

The i-th (1 ≤ i < 14) round transformation Round(State, ExpandedKey[i]) can be written as (see Fig-
ure 1.6) 

AddRoundKey ◦ MixColumns ◦ ShiftRows ◦ SubBytes(State, ExpandedKey[i]) 
The last round transformation FinalRound(State, ExpandedKey[14]) can be written as 

AddRoundKey ◦ ShiftRows ◦ SubBytes(State, ExpandedKey[14]). 
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Figure 1.6: Graphical representation of the round transformation Round 

W[·][0] W[·][1] W[·][2] W[·][3] W[·][4] W[·][5] W[·][6] W[·][7] W[·][8] W[·][9] W[·][10] W[·][11] W[·][12] W[·][13] W[·][14] W[·][15] W[·][16] · · ·

ExpandedKey[0] ExpandedKey[1] · · ·

Figure 1.7: Key expansion and round key selection for Nb = 8 and Nk = 4. 

The key schedule of Rijndael256 expands a cipher key (128 bits) into an expanded key array by operating 
the Key Expansion. From the expanded key array, the 15 round keys ExpandedKey (256 bits each) are 
selected by the Round Key Selection. 

• Key expansion. The key expansion of Rijndael256 is the same as that in AES with 128 bits key, except 
for the total number of columns in the expanded key array. In Rijndael256, the expanded key array 
consists of 4 rows and Nb · (Nr + 1) (i.e., 8 × 15 = 120) columns, which is denoted by W[4][8 × 15]. The 
128-bit cipher key is copied into the first four columns of the expanded key array, i.e., 

W[i][j] = ki,j for 0 ≤ i ≤ 3 and 0 ≤ j ≤ 3. 

Then, W[i][j] for 4 ≤ j < 120 and 0 ≤ i ≤ 3 is computed as 

W[i][j] = 

⎧ ⎪⎨ ⎪⎩ 

W[i][j − 4] ⊕ SRD(W[(i + 1) mod 4][j − 1]) ⊕ RC[j/4], j ≡ 0 mod 4 and i = 0 

W[i][j − 4] ⊕ SRD(W[(i + 1) mod 4][j − 1]), j ≡ 0 mod 4 

W[i][j] ⊕ W[i][j − 1], otherwise. 

where, RC[·] is an array of bytes which are the round constants defined by the recursion rule in GF(28) 
with the irreducible polynomial m(x) used to define SRD: 

RC[j] = 

⎧ ⎪⎨ ⎪⎩ 

x0 (i.e., 01) j = 0 

x1 (i.e., 02) j = 1 
j−1x · RC[j − 1] = x j ≥ 2. 

• Round key selection. The round key of the i-th round, denoted by ExpandedKey[i] is given by (and 
depicted by Figure 1.7) 

ExpandedKey[i] = W[·][8i]∥W[·][8i + 1]∥ · · · ∥W[·][8i + 7], 0 ≤ i ≤ 14. 

1.1.4 Add 3-bit Tweak into Rijndael256 

In SIV-Rijndael256, multiple (explicitly, eight) independent instances of Rijndael256 are required. Thus, a 
3-bit tweak is required to act as domain separator. 

We propose to add a 3-bit tweak to the bytes at the second column in the state (i.e., a·,1 shown in 
Figure 1.8) before the SubBytes step in each Round and FinalRound (when encoded by a byte, they are put 
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RC
[2i + 1]

d

d

d

d

RC
[2i + 2]

Figure 1.8: The positions of the bytes in the state to which the round constants and the 3-bit tweak d will 
be XOR-ed. 

at the least significant bits). The position of the XOR-ed byte is chosen to avoid the interaction between 
the round constants which are equivalently XOR-ed to a0,0 and a0,4. The additional effect of adding these 
3-bit tweak on implementation is negligible. The effect on security is also expected to be small. These can 
be viewed as following the Tweakey framework proposed in [15]. In [15], a family of tweakable block ciphers 
named Kiasu-BC was proposed. Kiasu-BC has a 128-bit internal state and 64-bit tweakey state. “It is exactly 
the AES cipher, except that the tweak value is XOR-ed to the two top rows of the internal state at every 
round after the addition of the subkeys (after the AddRoundKey operation)” [15]. In our case, considering 
that the number of controllable bit on tweak is quite small and it can be viewed as following the method 
of inserting tweak in Kiasu-BC, we believe the impact on security is limited. We will denote the instance 
of Rijndael256 inserted with 3-bit tweak d as Rijndael256d , i.e., Rijndael2560 , Rijndael2561 , · · · , Rijndael2567 

respectively. 

1.2 Specification of SIV-Rijndael256 Family 

1.2.1 SIV-Rijndael256-AEAD Authenticated Encryption 

The SIV-Rijndael256-AEAD family is the instance of the SIV scheme (specified in Sect. 1.1.2) with multiple 
instances of Rijndael256 (specified in Sect. 1.1.3 and Sect. 1.1.4) being the underlying block ciphers. 

The SIV-Rijndael256-AEAD family consists of only one instance, with the parameter sizes: 

- block size n = 256 bits, 

- key size k = 128 bits, 

- tag size |T | = 256 bits, 

- nonce length |N | = 128 bits. 

It supports the following: 

- any bit length of associated data |A| ≥ 0, 

- any bit length of messages |M | ≥ 0. 

Due to the mode, decryption algorithm of the cipher is not necessary. 

1.2.2 SIV-Rijndael256 Hash Function 

SIV-Rijndael256-Hash adopts the Sponge-like construction (as shown in Fig. 1.9 and 1.10). The difference 
with Sponge is that the initial absorbing rate and the squeezing rate are larger than the internal absorbing 
rate. Specifically, in SIV-Rijndael256-Hash, both of the initial absorbing bitrate and the squeezing bitrate are 
r0, whereas, the internal absorbing bitrate is r1 and output digest size is ds, i.e., 

r0 = 128, r1 = 32, c0 = 128, c1 = 224, ds = 256. 

The underlying permutation in SIV-Rijndael256-Hash is the Rijndael256 with the master key set to the constant 
0, and we keep the additional input d, and denote the resulted permutation as f [d]. d = 0 is used for all 
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Figure 1.9: SIV-Rijndael256-Hash adopts Sponge-like construction, with initial absorbing bitrate r0, internal 
absorbing bitrate r1 and squeezing bitrate r0. 

Algorithm SpongeHash[f [0/1/2], pad, r0, r1, ds](M) 

Absorption Phase: 
r0,r11. (M [1], . . . ,M [m]) ←−−− M 

2. if |M | ≤ r0 then 
3. d ← (|M [m]| = r0)?1 : 2 
4. M [m] ← pad (M [m])r0
5. else 
6. d ← (|M [m]| = r1)?1 : 2 
7. M [m] ← pad (M [m])r1
8. S ← 0 
9. for i = 1 to m − 1 

10. S ← S ⊕ (M [i] || 0|S|−|M [i]|) 
= f [0](S)11. S 

12. S ← f [d](S ⊕ (M [m] || 0|S|−|M [m]|)) 

Squeezing Phase: 

13. T = msbr0 (S) 
14. for i = 1 to ⌈ds/r0⌉ − 1 

S ← f [0](S)15. 
16. T = T || msbr0 (S) 
17. return msbds(T ) 

Figure 1.10: The definition of our modified Sponge construction. 

other places, rather than the last call in the absorption phase. The padding rule follows the same as in the 
AEAD, i.e., when the last message is of full block (128 bits if |M | ≤ 128, 32 bits otherwise), no padding is 
necessary otherwise a bit string of 10∗ is padded, and the corresponding d is defined as 1 for full block, and 
2 for non-full block. 
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Chapter 2 

Security 

2.1 Summary of Expected Security Strength 

Attack Model Time Complexity Data Complexity 

Key Recovery 128 bits 128 bits 
Forgery 128 bits 128 bits 

Table 2.1: The security claims of SIV-Rijndael256-AEAD. 

collision second-preimage preimage 
112 bits 112 bits 128 bits 

Table 2.2: The security claims of SIV-Rijndael256-Hash. 

2.2 Known Cryptanalytic Attacks on Rijndael with Block Length 
256-bit 

For SIV-Rijndael256-AEAD, we consider secrete-key attacks on Rijndael. According to the published results 
on cryptanalysis of large-block Rijndael, the impossible differential attacks and integral attacks are the most 
threatening attacks. This situation is similar with the situation on cryptanalysis of AES with 128-bit key. 
Table 2.3 lists current best attacks on Rijndael with 256-bit block and 256-bit key. These attacks shown in 
Table 2.3 are under the single-key model, which indicate that when using a 128-bit key the data complexity 
should be upper bounded by 2128. For attacks on more than 7 rounds, the data complexity are all close to 
or larger than 2128. For general estimation on resistance against the differential attack, we can refer to [38], 
in which authors provided updated bound on the number of active S-boxes for Rijndael with 256-bit block, 
which can be seen in Table 2.4. 

According to the known best attacks, we estimate that the best attacks on Rijndael with 256-bit block 
and 128-bit key, i.e., Rijndael256 used in SIV-Rijndael256-AEAD, cannot attack more than 10 rounds out of 
the 14 rounds with data complexity lower than 2128. 

In SIV-Rijndael256-Hash, we consider known-key attacks on Rijndael. In [39], known-key attacks are 
presented which work on 8-round Rijndael with 192-bit block and 9-round Rijndael with 256-bit block. In the 
attack on Rijndael with 256-bit block, one can find a pair of values which has 16-byte (128-bit) differences 
in both of input and output with 248 computations and 232 amount of memory, while an ideal case requires 
264. No similar property is known on 10-round Rijndael with 256-bit block. Besides, for Rijndael with 192-bit 
block, better ShiftRows parameters are recommended for resisting truncated differential attack. However, 
for Rijndael with 256-bit block, no better ShiftRows parameters than the original one (i.e., (0, 1, 3, 4)) was 
recommended. This conclusion on the optimality of the ShiftRows parameters in Rijndael256 is also supported 
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Cipher NR Data (CP) Time (Enc) Memory (Bytes) Attack type Source 
7 2130.5 2141 Multiset [16] 
7 2153 2182 2122 IDA [31] 
7 293.2 2113.2 261 IDA [50] 
7 6 × 232 244 Integral [12] 

Rijndael-256-256 8 ≈ 2128 ≈ 2128 Integral [12] 
9 ≈ 2128 2204 Integral [12] 
9 2244.3 2208.8 2189 IDA [50] 
9 2132.5 2174.5 Integral [22] 
9 2237.3 2159.1 2115.3 IDA [45] 
9 2245.3 2127.1 290.9 IDA [45] 
10 2244.2 2253.9 2186.8 IDA [45] 
10 2244.4 2240.1 2186.4 IDA [23] 

IDA: impossible differential attack 

Table 2.3: Summary of known attacks on Rijndael-256-256 

r 3 4 5 6 7 8 9 10 12 14 20 
MNDAS 9 25 41 50 58 65 74 85 105 120 175 
MNDAS/r 3 6.25 8.2 8.33 8.28 8.12 8.22 8.5 8.75 8.57 8.75 
MNDAS: minimum number of differentially active S-boxes 

Table 2.4: Lower bound of the number of active S-box for r rounds of Rijndael-256 [38] 

by authors of [38] after trying to find better options among ten possible parameters in terms of lower bound 
for the minimum number of active S-boxes. 

There are many more other cryptanalysis results [23, 45, 39, 22, 46, 29, 12, 50, 31, 18, 47, 34, 41, 4, 3, 
10, 32, 19, 6, 9] against classic security notations, and side-channels [42, 13, 43, 49]. 

In summary, Rijndael-256-256 remains secure as a primitive after twenty years’ cryptanalysis by the 
community, and Rijndael256 (Rijndael-256-128) as a special instance of Rijndael-256-256 is supposed to remain 
secure with high security margins. 
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Chapter 3 

Design Rationale 

Our design goals are summarized as follows. 

• The AEAD scheme that is suitable for use lightweight applications. 

• Strong security guarantee, based on well analyzed and trusted underlying primitive and well established 
mode of operation. 

• Address misuse cases of nonce-repetition and release of unverified plaintexts. 

• Avoid the use of decryption algorithm of the underlying block cipher, for AEAD decryption. 

• The hash function can be easily defined by reusing the primitive from the AEAD scheme, under a well 
understood mode, slightly modified for efficiently processing short messages. 

• All necessary modifications are kept to be minimum, without affecting the security and lightweightness 
in hardware/software. 

3.1 Choice of SIV 

Above goals in mind, we decided to use the SIV mode [36] as our mode of operation. The mode enjoys the 
provable security in the strong sense of nonce-misuse case, and it also has the provable security in terms of 
release of unverified plaintexts [1]. The combined OFB mode also enables decryption of the AEAD without 
the use of decryption algorithm of the underlying block cipher, which saves the gates required in the hardware 
implementations and reduces the code size or ROM in software implementations. 

Our choice of CBC MAC is to build our scheme on an established standard scheme, which generates the 
tag from the associated data and message with well understood proven security. We use OFB mode for its 
solid provable security guarantee and its small footprint in implementations. Overall, the mode removes the 
use of decryption algorithm, and requires such a small amount of gates to implement that the overall amount 
of gates required by the AEAD design is almost the same as that by the underlying Rijndael256 block cipher. 

The security bound is the standard birthday bound of the form O(σ2/2n), where σ denotes the total 
number of blocks in the security game. With the application for hashing in mind, we adopt a block size of 
n = 256, which gives a solid security bound for any lightweight applications. 

3.2 Choice of Rijndael 
The Rijndael family is a long-standing and well-studied design. From this family, three members are selected 
as The Advanced Encryption Standard (AES) by the U.S. National Institute of Standards and Technology 
(NIST) in 2001. In the design of SIV-Rijndael256, another member Rijndael256 different from the three 
members in AES is selected, in the consideration of minimum dimensions to fit the minimum acceptability 
requirements on the AEAD algorithm and Hash function. The block length (256 bits) is selected in the 
consideration of the birthday bound (2128) on the security of Hash function for collision-resistance. The key 
length (128 bits) is selected considering that any cryptanalytic attack on the AEAD algorithm shall require 
more than 2112 computations on a classical computer. 
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Rijndael256 should share both security-related and implementation-related properties with members of 
AES. The studies on both security and implementations aspects of AES have been going on for almost two 
decades. As a standard worldwide used, AES has become the most understood and deployed cryptographic 
scheme. It turns out that members of AES are strong enough to resist practical attacks. In addition, the 
performances both on hardware and software of AES are good. More than that, AES can be viewed as 
light-weight (1560 GEs) primitive using bit-slicing technique to implement [14]. Accordingly, other members 
of Rijndael, particularly Rijndael256, have the same advantages as that of members of AES. 
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Chapter 4 

Performance 

4.1 Hardware Performance 

For hardware, we expect the area cost by SIV-Rijndael256 to be very small when using bit-slicing serial 
implementation methods. The mode SIV costs little on top of the cost of the underlying block cipher 
Rijndael256. Hence, to estimate the hardware implementation cost of SIV-Rijndael256, we focus on estimating 
the hardware implementation cost of Rijndael256. 

We estimate the hardware performance of Rijndael256 with area minimization as the optimization target. 
The current record of minimized area of AES-128 is kept by the bit-serial implementations provided by Jean 
et al. [14]. Using the results in [14], we estimate area and latency of Rijndael256. 

Compared with implementations of AES-128, the additional area cost for implementations of Rijndael256 
comes from the cost for storing additional 128-bit state bits, the cost for storing the 3 bits (less than 8 3-bit 
values), and the cost for XOR-ing with 3-bit domain separators. Among the 128 additional state bits, 12 
requires to be stored in scan flip-flops and 116 can be stored in regular flip-flops following methods in [14]. 
The domain separators can be stored using 8 × 3 regular flip-flops. Table 4.1 lists more detailed estimations 
on additional cost. Based on Table 4.1 and 4.2 and the results of AES-128 in [14], we get the estimation for 
Rijndael256 which are summarized in Table 4.3. 

For latency of Rijndael256, the additional cycle-cost on top of that of AES-128 comes from the fact that 
Rijndael256 has more rounds and in each round double number of bits need to be updated. Note that, selecting 
and XOR-ing bits of domain separators can be implemented in the same clock cycles for AddRoundKey and 
SubBytes, thus cost no additional cycles. Thus, to estimate latency of Rijndael256, we use the following 
formula: 

2 × (13 × CyclesRound + CyclesFinalRound), 

where Cyclesround is the clock cycles took by one complete round of AES, CyclesFinalRound is that took by 
the last round and AddRoundKey, 13 is the number of complete round in Rijndael256, where Cyclesround and 
CyclesFinalRound for each implementation method is listed in Table 4.3 (column 8 for AES). 

From Table 4.3, the hardware performance of Rijndael256 can be very small. 
Besides, there are many previous studies on performance of Rijndael, e.g., [40, 28, 25, 37, 11, 27, 21, 24, 44]. 

UMC 180 
GE 

UMC 130 
GE 

UMC 90 
GE 

Ngate 45
GE 

IBM 130 
GE 

1-bit DFF 
1-bit Scan FF 
1-bit XOR 
2-to-1 MUX 

4.67 
6.00 
2.67 
2.33 

5.00 
6.25 
2.75 
2.25 

4.25 
5.75 
2.50 
2.25 

5.67 
7.67 
2.00 
2.33 

4.25 
5.50 
2.00 
2.25 

Table 4.1: The (estimated) cost of regular flip-flops, 2-input XOR gates, and 2-to-1 Multiplexers in different 
libraries. 
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UMC 180 
GE 

UMC 130 
GE 

UMC 90 
GE 

Ngate 45 
GE 

IBM 130 
GE 

12 bit of the 
additional 128 
bit state 

72 75 69 92.04 66 

116 bit of the 
additional 128 
bit state 

541.72 580 493 657.72 493 

Total cost of 
the additional 
128 bit state 

613.72 655 562 749.76 559 

8 3-bit domain 
seperator 

112.08 120 102 136.08 102 

3-bit XOR and 
Multiplexer 

15 15 14.25 12.99 12.75 

Total cost of 
adding domain 
seperator 

127.08 135 116.25 149.07 114.75 

Table 4.2: The detail estimation on additional cost 

Cipher 

data 
path 
δ 

bits 

UMC 180 
GEs 

UMC 130 
GEs 

UMC 90 
GEs 

Ngate 45 
GEs 

IBM 130 
GEs 

Latency Cycles Ref. 

AES-128 

1 1727 1902 1596 1982 1560 1776/ (9 × 168 + 264) [14] 
2 1796 1992 1667 2054 1625 888/ (9 × 84 + 132) [14] 
4 1920 2168 1784 2146 1731 520/ (9 × 50 + 70) [14] 
8 2112 2360 1968 2337 1912 282/ (9 × 27 + 39) [14] 
8 2400 3574 2292 2768 2182 226/ (10 × 21 + 16) [30] 

Rijndael256 

1 2468 2692 2274 2881 2234 4896/ 2 × (13 × 168 + 264) [14] 
2 2537 2782 2345 2953 2299 2448/ 2 × (13 × 84 + 132) [14] 
4 2661 2958 2462 3045 2405 1440/ 2 × (13 × 50 + 70) [14] 
8 2853 3150 2646 3236 2586 780 / 2 × (13 × 27 + 39) [14] 
8 3141 4364 2970 3667 2856 620 / 2 × (14 × 21 + 16) [30] 

Table 4.3: Estimations on hardware implementation area and latency of Rijndael256 based on state-of-the-art 
results of AES-128 

4.2 Software Performance 

4.2.1 High-end CPU 

We can also estimate the software performance on high-end CPU of Rijndael256 on the basis of best results of 
AES software, which can be found in [26, 48, 5, 20, 17, 33] etc. From those result, the software performance 
of AES-128 can be 8.5 ∼ 15 cycles per byte using table-based methods, 5 ∼ 8 cycles per byte using bitsliced 
methods, and 0.6 ∼ 1.5 cycles per byte using AES-NI [33]. We expect Rijndael256 can perform better 
than AES-128 when both implemented using table-based methods or bitsliced methods, because Rijndael256 
encrypts messages of doubled length with less than double rounds. Thus, we can use (14/(10×2))×CAES−128 

to estimate Rijndael256 software performance, which can be 6 ∼ 10 cycles per byte using Table-based methods, 
3.5 ∼ 5.5 cycles per byte using bitsliced methods. 

4.2.2 Micro-controllers 

For micro-controllers, we also expect the software implementation costs of SIV-Rijndael256 be small in terms 
of code size (ROM) and RAM. The base is on the available results both of AES-128 [8] and of primitives 
using Rijndael256 as the underlying component [2]. 

According to [8], for AES-128 encryption with key schedule included, in AVR devices, the code size and 
RAM requirement are 1026 bytes and 26 bytes respectively; in MSP devices they are 1022 bytes and 36 
respectively; in ARM devices, they are 1208 bytes and 84 bytes respectively. 

According to [2], in Atmel AVR devices, an implementation of the hash function – Shrimpton-Stam 
construction based on Rijndael-256/256 with 256-bit digest – has code size 734 bytes and RAM 168 bytes. 
An implementation of the Davies-Meyer construction based on Rijndael-256/256 with 256-bit digest, has code 
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size 696 bytes and RAM 136 bytes. 
Considering the implementation of Rijndael256 on those devices can share the same implementation 

techniques and implementation merits of AES-128, and considering that both the SIV mode and the Sponge-
like construction used in SIV-Rijndael256-AEAD and SIV-Rijndael256-Hash cost little on top of the underlying 
Rijndael256, we expect the code size (ROM) and RAM requirements of software implementation of SIV-
Rijndael256 in micro-controllers to be small. 
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Appendix A 

Appendix 

A.1 Tabular Representation of Some Mappings Used in Rijndael256 

A.1.1 The S-box SRD of Rijndael256 

The affine (over GF(2)) transformation f composing the S-box SRD of Rijndael256 is defined by [7]: 

b = f(a) 
⇕⎤⎡ ⎤⎡⎤⎡⎤⎡ 

b7 1 1 1 1 1 0 0 0 a7 0 ⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

b6 

b5 

b4 

b3 

b2 

b1 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

= 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

0 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 0 
0 0 0 1 1 1 1 1 
1 0 0 0 1 1 1 1 
1 1 0 0 0 1 1 1 
1 1 1 0 0 0 1 1 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

× 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

a6 

a5 

a4 

a3 

a2 

a1 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

⊕ 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

1 
1 
0 
0 
0 
1 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

b0 1 1 1 1 0 0 0 1 a0 1 

y 
0 1 2 3 4 5 6 7 8 9 a b c d e f 

x 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
D 
E 
F 

63 
CA 
B7 
04 
09 
53 
D0 
51 
CD 
60 
E0 
E7 
BA 
70 
E1 
8C 

7C 
82 
FD 
C7 
83 
D1 
EF 
A3 
0C 
81 
32 
C8 
78 
3E 
F8 
A1 

77 
C9 
93 
23 
2C 
00 
AA 
40 
13 
4F 
3A 
37 
25 
B5 
98 
89 

7B 
7D 
26 
C3 
1A 
ED 
FB 
8F 
EC 
DC 
0A 
6D 
2E 
66 
11 
0D 

F2 
FA 
36 
18 
1B 
20 
43 
92 
5F 
22 
49 
8D 
1C 
48 
69 
BF 

6B 
59 
3F 
96 
6E 
FC 
4D 
9D 
97 
2A 
06 
D5 
A6 
03 
D9 
E6 

6F 
47 
F7 
05 
5A 
B1 
33 
38 
44 
90 
24 
4E 
B4 
F6 
8E 
42 

C5 30 
F0 AD 
CC 34 
9A 07 
A0 52 
5B 6A 
85 45 
F5 BC 
17 C4 
88 46 
5C C2 
A9 6C 
C6 E8 
0E 61 
94 9B 
68 41 

01 
D4 
A5 
12 
3B 
CB 
F9 
B6 
A7 
EE 
D3 
56 
DD 
35 
1E 
99 

67 
A2 
E5 
80 
D6 
BE 
02 
DA 
7E 
B8 
AC 
F4 
74 
57 
87 
2D 

2B 
AF 
F1 
E2 
B3 
39 
7F 
21 
3D 
14 
62 
EA 
1F 
B9 
E9 
0F 

FE 
9C 
71 
EB 
29 
4A 
50 
10 
64 
DE 
91 
65 
4B 
86 
CE 
B0 

D7 
A4 
D8 
27 
E3 
4C 
3C 
FF 
5D 
5E 
95 
7A 
BD 
C1 
55 
54 

AB 
72 
31 
B2 
2F 
58 
9F 
F3 
19 
0B 
E4 
AE 
8B 
1D 
28 
BB 

76 
C0 
15 
75 
84 
CF 
A8 
D2 
73 
DB 
79 
08 
8A 
9E 
DF 
16 

Table A.1: The tabular representation of SRD(xy) [7] 
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A.1.2 The Round Constants Used in Rijndael256 

i 0 1 2 3 4 5 6 7 
RC[i] 00 01 02 04 08 10 20 40 

i 8 9 10 11 12 13 14 15 
RC[i] 80 1B 36 6C D8 AB 4D 9A 

i 16 17 18 19 20 21 22 23 
RC[i] 2F 5E BC 63 C6 97 35 6A 

i 24 25 26 27 28 29 30 31 
RC[i] D4 B3 7D FA EF C5 91 39 

Table A.2: The round constants RC[·] [7] 
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