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Chapter 1

Introduction

Authentication encryption with associated data (AEAD) and hash function are widely used in modern

information systems. Recently various competitions such as SHA-3, PHC and CAESAR are held to satisfy

a wide range of application requirements of these cryptographic algorithms. On the other hand, due to

the rapid development of lightweight devices, requirements in different resource-constrained scenarios are

proposed, such as in IoT, embedded system, smart card and wireless sensor node. If these algorithms are

implemented by different circuits, it will cause a waste of hardware resources. We hope to design both

AEAD and hash function which can be implemented in a single small circuit together.

The most popular way to construct both AEAD and hash function is to use the sponge function

which is a mode of operation with variable-length input and arbitrary-length output based on fixed-length

permutation. The AEAD and hash function can share the same permutation. For example, AEAD schemes

Keyak [1], Ketje [2] and Kravatte [3] all use the permutation of KECCAK-p. The advantage of sponge

construction is that the security of AEAD and hash can be proved given that the underlying permutation

is a publicly random one. So the permutation must be a strong component to support the theory of sponge.

The other way is to use blockcipher as shared component. There are a lot of AEAD modes including

CCM[4], EAX[5], GCM[6], and OCB[7]. But the theory of blockcipher-based hash function is not practical.

The security of blockcipher mode supposes that the blockcipher is a pseudorandom permutation (PRP)

and blockcipher based hash function treats the blockcipher as an ideal cipher.

These two ways need strong components, increasing the area and latency of hardware implementation.

Furthermore, these constructions also suffer security losses due to their simple structures, such as birthday

attacks. Plenty of research is devoted to improving the security bound of sponge function [8, 9, 10, 11, 12]

or constructing beyond-birthday-bound schemes [13, 14].

The third way is to adopt stream cipher style construction, such as AEAD scheme ACORN [15]). Like

the sponge function, it also applies a permutation to operate on finite state variables, interleaved with the

entry of input or the retrieval of output. But here the permutation does not need to be a strong one and

can be implemented in a small scale circuit. We call it thin sponge function in this document. The security

of thin sponge function is guaranteed by its resistance to specific attacks including differential attack, cube

attack, etc. However, the construction of hash function based on thin sponge has not been addressed in the

literature.
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In this document, we give both AEAD and hash function constructions, called HERN and HERON

respectively, by thin sponge function.

The permutation in HERN consists of four linear feedback shift registers (LFSRs) concatenated in a

circle combined with some nonlinear feedback operations. As the state of HERN is too small, we use a

buffer to expand the state of HERON. The buffer is a pipe used to temporarily store a segment of key

stream. The basic operations and other state variables are the same as in HERN, leading to reduced

implementation costs both in hardware and software.

The document is organized as follows. Chapter 2 gives the specifications of HERN and HERON. Chap-

ter 3 gives the design rationale. Chapter 4 gives the security goals. Chapter 5 gives the security analysis.

Chapter 6 gives the software and hardware performances. Chapter 7 concludes the advantages and limi-

tations of HERN and HERON.
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Chapter 2

Specifications

2.1 Overview

HERN and HERON are lightweight encryption authentication with associated data (AEAD) scheme and

hash function respectively. HERN and HERON are bit-based constructions and process 1-bit message in

each step. 32 steps can be computed in parallel.

HERN consists of two deterministic algorithms: an encryption algorithm HERN.Enc and a decryption

algorithm HERN.Dec. The encryption algorithm takes as input a 128-bit key K, a 128-bit initialization

vector IV , associated data A and a plaintext P and outputs a ciphertext (C, T ) where T is a 128-bit

authentication tag. We write it as HERN.EncK(IV,A, P ) = (C, T ). The decryption algorithm HERN.Dec

takes in a tuple (K, IV,A,C, T ) and outputs P or a special symbol ⊥ indicating that the ciphertext is

invalid. We require that HERN.DecK(IV,A,C, T ) = P if HERN.EncK(IV,A, P ) = (C, T ). HERON takes

as input a message M , and outputs a 256-bit digest D. We write it as HERON(M) = D.

In HERN the associated data length and the plaintext length are less than 264 bits. In HERON the

message length is less than 264 bits.

The parameters of HERN and HERON are listed in the following:

• HERN: 128-bit key, 128-bit IV, 128-bit tag.

• HERON: 256-bit digest.

2.2 Operations and round functions

2.2.1 Symbols and operations

The following symbols are used in HERN and HERON:

• ⊕ : bit-wise exclusive OR (XOR).

• · : bit-wise AND.

• ‖ : concatenation.

• x << 1: shift x to the left by 1 bit.

• lM : bit length of M .
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• A(m): the string formed by repeating the string A for m times. For example 0(4) = 0000 and

01(2) = 0101.

• ε: empty string.

• 0x: hexadecimal string representation of binary string with leftmost being the highest bit, such as

0x2 = 0010.

The state variables of HERN consists of two components. Firstly, four 64-bit variables

Si = si0s
i
1 · · · si63, i = 0, 1, 2, 3

implement a concatenated linear feedback shift register (LFSR). Secondly, two 1-bit variables a and b,

maintaining nonlinear feedback bits, are used to process input bit and generate output bit respectively.

As the state of HERN is too small for hash function construction, in addition to S0, S1, S2, S3, a and

b, HERON uses another 512-bit buffer state variables:

S4 = s40s
4
1 · · · s4511.

The state variables are always preserved and updated during the computation of HERN and HERON.

Three basic operations on state variables S0, S1, S2, S3, a and b are defined i.e. H core step, Adda and

Addb, which are shared by both HERN and HERON. Based on these operations the round functions that

process a bit in HERN and HERON are defined. We show all these variables, operations and functions in

Fig.2.1.

AddaH_core_step Addb

H_if_step(x)H_enc_step(p)

H_dec_step(c) B_hash_step(b)

H_hash_step(m)

S0   S1   S2   S3   a   b

S4 

HERN HERON

Figure 2.1: Basic operations and functions in HERN and HERON.

The operation H core step defined by Algorithm 1, stores the nonlinear feedback bits in a and b, and

updates the state using LFSR as illustrated in Fig.2.2.

Two nonlinear functions from 8 bits to 1 bit are used in H core step: SB and SB′.

• SB(x0, y0, x1, y1, x2, y2, x3, y3) = 1⊕ x0 · y0 ⊕ x1 · y1 ⊕ x2 · y2 ⊕ x3 · y3,

• SB′(x0, y0, x1, y1, x2, y2, x3, y3) = x0 · y2 ⊕ y0 · y3 ⊕ x1 · x3 ⊕ y1 · x2.

The operation Adda defined by Algorithm 2, XORs the value of a into s063 and s263.

The operation Addb defined by Algorithm 3, XORs the value of b into s163 and s363.

The operations H core step, together with Adda and Addb, form a simple permutation on state variables

of S0, S1, S2, S3.
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0   31   32 0   28   30 0   22   27 0   8   19

13 1 2631

Figure 2.2: The LFSR in HERN and HERON is four LFSRs concatenated in a circle where one bit of one

register affects its previous register.

Algorithm 1: H core step

1 /* Compute the nonlinear feedback bits*/

2 a← SB(s030, s
0
29, s

1
32, s

1
24, s

2
31, s

2
4, s

3
15, s

3
14)

3 b← SB′(s030, s
0
29, s

1
32, s

1
24, s

2
31, s

2
4, s

3
15, s

3
14)⊕ s032

4 /* Compute the linear feedback bits*/

5 f0 ← s00 ⊕ s031 ⊕ s032 ⊕ s113
6 f1 ← s10 ⊕ s128 ⊕ s130 ⊕ s21
7 f2 ← s20 ⊕ s222 ⊕ s227 ⊕ s326
8 f3 ← s30 ⊕ s38 ⊕ s319 ⊕ s031

9 /* Update state*/

10 Si ← Si << 1, for i = 0, 1, 2, 3

11 si63 ← f i, for i = 0, 1, 2, 3

Algorithm 2: Adda

1 s063 ← s063 ⊕ a
2 s263 ← s263 ⊕ a

Algorithm 3: Addb

1 s163 ← s163 ⊕ b
2 s363 ← s363 ⊕ b

2.2.2 Round functions

The round functions process the data bit-wisely in HERN and HERON. We list them in the following.

• H if step(x) defined by Algorithm 4, is used to process the bit of IV , associated data or generate

authentication tag in HERN at initialization or finalization stage.

• H enc step(p) defined by Algorithm 5, is used in HERN to process the bit of plaintext to generate
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the bit of ciphertext.

• H dec step(c) defined by Algorithm 6, is used in HERN to process the bit of ciphertext.

• B hash step(b) defined by Algorithm 7, is used in HERON to update the buffer state.

• H hash step(m) defined by Algorithm 8, is used in HERON to process the bit of message.

Algorithm 4: Initialization and finalization round function H if step(x)

Input: 1-bit x

1 H core step

2 a← a⊕ x
3 Adda

4 Addb

Algorithm 5: Encryption round function H enc step(p)

Input: 1-bit plaintext p

Output: 1-bit ciphertext c

1 H core step

2 a← a⊕ p
3 Adda

4 c← b⊕ p
5 return c

Algorithm 6: Decryption round function H dec step(c)

Input: 1-bit ciphertext c

Output: 1-bit plaintext p.

1 H core step

2 p← b⊕ c
3 a← a⊕ p
4 Adda

5 return p

2.3 AEAD construction HERN

2.3.1 The encryption HERN.Enc

The encryption is divided into the following 3 stages.
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Algorithm 7: Buffer state update function B hash step(b)

Input: 1-bit b

Output: 1-bit d

1 d← s40

2 S4 ← S4 << 1

3 h← d⊕ b
4 s4511 ← h

5 return d

Algorithm 8: Hash round function H hash step(m)

Input: 1-bit message m

1 H core step

2 a← a⊕m
3 b← B hash step(b)

4 Adda

5 Addb

1) Initialization. The initialization consists of loading the key K and constant CT into state variables

and processing the initialization vector IV , associated data A and running H if step for 512 steps with

zero input.

• Load the state variables Si (i = 0, 1, 2, 3) with constant CT = ct0ct1 · · · ct127 = 0x 14 f1 c2 72 32 79

c4 19 4b 8e a4 1d 0c c8 08 63 and the key K = k0k1 · · · k127 as follows.

Set s0i = cti, for i = 0 to 7,

Set s0i+8 = ki, for i = 0 to 31,

Set s0i+40 = cti+8, for i = 0 to 23,

Set s1i = cti+32, for i = 0 to 7,

Set s1i+8 = ki+32, for i = 0 to 31,

Set s1i+40 = cti+40, for i = 0 to 23,

Set s2i = cti+64, for i = 0 to 7,

Set s2i+8 = ki+64, for i = 0 to 31,

Set s2i+40 = cti+72, for i = 0 to 23,

Set s3i = cti+96, for i = 0 to 7,

Set s3i+8 = ki+96, for i = 0 to 31,

Set s3i+40 = cti+104, for i = 0 to 23,

Set a = b = 0.

• Process IV = iv0iv1 · · · iv127. At each step, one bit of IV is used to update the state.
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– H if step(ivi) for i = 0 to 127.

• Process A = ad0ad1 · · · adu−1. At each step, one bit of A is processed to update the state.

– H if step(adi), for i = 0 to u− 1.

• Run the H if step for 512 steps with zero-stream.

– H if step(0), for i = 0 to 511.

2) Processing plaintext. The plaintext P = p0p1 · · · pv−1 is used to update the state bit-by-bit and

the corresponding ciphertext bit is generated.

• C ← ε.

• ci ← H enc step(pi), C ← C‖ci, for i = 0 to v − 1.

3) Finalization. After processing all the plaintext bits, the finalization consists of running H if step for

512 steps with zero-stream input, and generating the tag.

• H if step(0), for i = 0 to 511.

• T ← ε.

• t← H enc step(0), T ← T‖t, for i = 0 to 127.

• return (C, T ).

2.3.2 The decryption HERN.Dec

The decryption is also divided into 3 stages.

1) Initialization. The initialization is the same as in the encryption.

2) Processing ciphertext. The plaintext C = c0c1 · · · cv−1 is used to update the state bit-by-bit and

the corresponding plaintext bit is generated.

• P ← ε.

• pi ← H dec step(ci), P ← P‖pi, for i = 0 to v − 1.

3) Finalization. After processing all the ciphertext bits, the finalization consists of running H if step

for 512 steps with zero-stream input, and generating the tag.

• H if step(0), for i = 0 to 511.

• T ′ ← ε.
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• t← H enc step(0), T ′ ← T ′‖t, for i = 0 to 127.

• return P if T ′ = T ; ⊥ otherwise.

2.4 Hash function construction HERON

HERON is divided into the following 3 stages.

1) Initialization. At the initialization of HERON, constants are loaded into the state.

• Load the state variables Si (i = 0, 1, 2, 3, 4) with constant CT0 = 0x 14 f1 c2 72, CT1 = 0x 32 79 c4

19, CT2 = 0x 4b 8e a4 1d, CT3 = 0x 0c c8 08 63 and CT4 = 0x d2 80 62 e1 e7 1d 3d da e3 c4 d1 58

a7 f0 67 ac 94 93 50 56 8e e5 c6 3d f5 a0 ce c3 d3 3d a5 a7 7d e8 92 ac e8 fd 9b 12 fb 62 5a 84 f1 5a

53 23 d9 3d 39 95 9a 48 5a 71 da b8 ec d1 9d 9b 3e 2e as follows.

Set S0 = S2 = CT0‖CT1,

Set S1 = S3 = CT2‖CT3,

Set S4 = CT4.

2) Processing message. The message M is padded with minimal 0s so that its bit-length is the mul-

tiple of 32, then it is encoded by inserting 32-bit zero blocks.

• Padding M to M .

– M = M‖0(w)

where w = (32 · d lM32 e − lM ).

• Encode M into MH.

– M = M0‖M1‖ · · · ‖M lM/32−1

– MH = M0‖0(32)‖M1‖0(32)‖ · · · ‖M lM/32−1‖0(32) = mh0mh1 · · ·mhlMH−1

where M0,M1, · · · are 32-bit message blocks.

• Run H hash step using MH.

– H hash step(mhi), for i = 0 to lMH − 1.

3) Finalization. After processing the encoded message stream, a 1024-bit string U = bmlen(16) ⊕
CT4‖0(512) = u0u1 · · ·u1023 and the mid bit s4256 in buffer are used to update the state of HERON and

generate the digest D, where bmlen is the binary representation of the length of M in 64-bit string.

• H hash step(ui ⊕ s4256), for i = 0 to 1023.

• D ← s4256s
4
257 · · · s4511.
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Chapter 3

Design rationale

Objective. We aim to design both AEAD and hash function that can be implemented in a single small

circuit. HERN and HERON are also designed to be efficient in hardware and software.

HERN and HERON in common. The state variables Si, i = 0, 1, 2, 3, a, b and the basic operations

H core step, Adda and Addb are shared by HERN and HERON. All the round functions in HERN and

HERON are based on these basic operations.

The LFSR in HERN and HERON is formed by 64-bit registers concatenated in a circle. 64-bit register

is suitable for software implementation. a and b are used to store the nonlinear feedback bits which are

XORed to the register by operations Adda and Addb.

SB and SB′ are the only two nonlinear functions in HERN and HERON. SB and SB′ are suitable for

lightweight implementations, because their degree are only 2.

Although the specifications of HERN and HERON process the data bit-wisely, up to 32 steps can be

computed in parallel. The feature benefits the performance on a wide rang of 8-bit, 16-bit and 32-bit

microcontroller architectures.

The design of HERN. The initialization stage processes the IV and associated data by the same function

H if step(x) and then runs H if step(0) 512 times. The encryption or decryption stage uses H enc step(p)

and H dec step(c) to process the bit of plaintext or ciphertext. The finalization stage runs H if step(0)

512 times and uses H enc step(0) to generate the tag. We notice that H enc step(p) and H dec step(c) do

not include the operation of Addb, but H if step(x) does. So that different stages are separated by using

different operations.

The design of HERON. In addition to state variables and operations in HERN, HERON uses another

512-bit buffer state variable, in order to enlarge the state of HERN. The buffer state is connected to the

state of HERN by the function B hash step(b) which uses only 1-bit XOR and shift operations, so that it

can be carried out outside hardware circuit. Therefore HERON uses almost the same circuit in HERN.

All state variables are initiated by constants. The function H hash step(m) is used to process the bit

of message and update state variables in the finalization stage. The security of HERON relies on two
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assumptions. First, it is hard to find two different messages that lead to a same state value. Second, the

finalization stage should behave like a random oracle to the input of state value and length of message.

Choice of constants. The constants CT , CTi, i = 0, 1, 2, 3, 4 in HERN and HERON are key-streams

generated by stream cipher ZUC [16] with key 0x 3d 4c 4b e9 6a 82 fd ae b5 8f 64 1d b1 7b 45 5b and IV

0x 84 31 9a a8 de 69 15 ca 1f 6b da 6b fb d8 c7 66. Furthermore, some of the constants are reused i.e.

CT = CT0‖CT1‖CT2‖CT3.
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Chapter 4

Security goals

The security goals of HERN are given in Table 4.1. HERN is designed to have confidentiality of the

plaintexts under adaptive chosen-plaintext attacks and the integrity of the ciphertexts under adaptive

forgery attacks. Note the IV should be use as nonce in HERN.Enc that never repeat and plaintext shall

not be returned by HERN.Dec if the verification fails.

Table 4.1: Security Goals of HERN

Confidentiality Integrity

HERN 128-bit 128-bit

The security goals of HERON are given in Table 4.2.

Table 4.2: Security Goals of HERON

Preimage Collision

HERON 256-bit 128-bit
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Chapter 5

Security analysis

The security of HERN should consider how many steps are needed to make sure that the initialization and

finalization will behave like a random oracle. The most related cryptanalysis are differential cryptanalysis

and cube attack. The key stream should be generated in a secure and random way.

In HERON, the state is consisted of two parts, the register part and the buffer part. We consider the

differential trails which has 2 stages.

5.1 Differential analysis of initialization

We consider the differential propagation in the state. In our analysis, we introduce difference into IV,

then compute the number of active S-box and differential probability. The SB and SB′ can be seen as a

8-2-bit S-box. The S-box is active if and only if the input difference is non-zero. The numbers of active

S-box are 27 after 128 steps, and the differential probability is nearly 2−47 because of the dependency of

the S-boxes. As the limited computing resource, the smallest numbers of active S-box we found are 72,

156 and 216 after 192, 256 and 320 steps respectively. The differential probability is nearly 2−129, 2−304

and 2−416 after 192, 256 and 320 steps.

From the above experiments, we think that the initialization has enough security margin against

differential cryptanalysis.

5.2 Cube analysis

Cube attack is a common analysis method against stream ciphers, stream cipher based constructions and

hash function. It is effective against the ciphers with low algebraic degree, or against the ciphers with high

algebraic degree but the system of nonlinear equations of the cipher is very sparse.

5.2.1 Cube analysis on HERN

In the HERN initialization, there are 4 linear feedback shift registers, and there are 8 taps being used in

the feedback, we expect that the system of equations of HERN would be dense.
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We performed experiments to estimate the algebraic degrees of key stream bits in terms of the K and

IV . In particular, we analyze whether the term IVi0 · IVi1 · IVi2 · · · IVin−1 affects the key stream. In our

experiments, we focus on the term IV128−n · IV128−n+1 · · · IV127 which is the product of the last n bits of

IV . Note that in the initialization, the ith IV bit is XORed to the state at the ith step, so the last n bits

of IV bits are expected to have the least effect on the key stream. In the experiments, we set the rest of

IV bits to zero, and use 16 random keys for confirmation.

Table 5.1 shows the minimum number of steps that are needed so that all the key stream bits are

affected by the term IV128−n · IV128−n+1 · · · IV127, which is the product of the last n bits of IV . For

example n = 1, the last IV bit IV127 is XORed to the state at the 128th step, then it takes at least 92

steps for this bit being shifted through the state to effect the key stream bit after 219th step. In total, it

takes at least 220 steps so that the last bit IV127 affects all the key stream bits.

Table 5.1: The minimum number of steps after which key stream bit is always affected by IV128−n ·
IV128−n+1 · · · IV127.

n 1 2 3 4 5 6 7 8

steps 220 251 251 253 259 260 260 270

n 9 10 11 12 13 14 15 16

steps 274 284 284 284 287 287 287 289

n 17 18 19 20 21 22 23 24

steps 290 291 291 293 300 304 307 307

n 25 26 27 28 29 30 31 32

steps 307 308 309 309 310 311 311 311

Figure 5.1: The increasing of minimum number of steps as n increases.

Fig.5.1 shows the increasing of the minimum number of steps as the cube size increases. From Table 5.1

and Fig.5.1, we could observe that as the cube size increases, the minimum number of steps increases at a
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almost decelerated pace. After computation, we could find that steps(2n)−steps(n) ≤ 48, so steps(128) ≤
steps(64) + 48 ≤ step(32) + 96 = 407, which is less than 128 + 512 = 640. We thus expect HERN has large

security margin against the cube attack.

5.2.2 Cube analysis on HERON

In addition to state variables and operations in HERN, HERON uses another 512-bit buffer state variable,

in order to enlarge the state of HERN, so we also expect that the system of equations of HERON would be

dense.

We perform experiments to estimate the algebraic degrees of the nonlinear feedback bit to buffer

(referred as b below) in terms of the processed message. In particular, we analysis whether the term

mh95−n ·mh95−n+1 ·mh95 (encoded from the second message block M1) affects b. In the experiments, we

set MH = M0||0(32)||M1||0(32), the rest of M1 bits to zero and use 16 random M0 for confirmation.

Table 5.2 shows the minimum number of steps that are needed so that b of each steps are all affected

by the term mh95−n ·mh95−n+1 ·mh95, which is the product of the last n bits of M0. For example n = 1,

the last bit mh95 is processed at the 96th step, then 0(32) are processed, and in finalization phase, it takes

at least 91 steps for this bit to effect every b.

Table 5.2: The minimum number of steps after which the nonlinear feedback bit to buffer is always affected

by mh95−n ·mh95−n+1 ·mh95.

n 1 2 3 4 5 6 7 8

steps 91 124 124 124 124 146 149 149

n 9 10 11 12 13 14 15 16

steps 149 150 151 151 151 151 153 153

n 17 18 19 20 21 22 23 24

steps 153 154 155 155 156 158 169 172

n 25 26 27 28 29 30 31 32

steps 172 172 177 179 179 179 179 180

Fig.5.2 shows the increasing of the minimum number of steps as the cube size increases. From Table 5.2

and Fig.5.2, we could observe that as the cube size increases, the minimum number of steps increases at a

almost decelerated pace. After computation, we could find that steps(2n)−steps(n) ≤ 36, so steps(256) ≤
steps(128) + 36 ≤ step(64) + 72 ≤ step (32) + 108 = 288, which is far less than 1024. We thus expect

HERON has large security margin against the cube attack.

5.3 Security analysis of HERON

The security of HERON is reduced to the problem of finding collisions: to find two messages M 6= M ′ so

that SM = SM ′ , where SM is the state (S0, S1, S2, S3, S4) after processing all message M . In general, the

problem of finding collisions will be transformed into solving systems of equations. This kind of systems of
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Figure 5.2: The increasing of minimum number of steps as n increases.

equations are too complex for existing solvers. The only known method for solving this type of equations

is differential cryptanalysis.

Differential cryptanalysis is a method to find a differential trail which has the smallest cost. We denote

a as the bit a input to Adda, and a is the sequence consisting of a for all message process steps. A differential

trail is a sequence pair (a, a′), which is the differential sequence. Consider the differential cryptanalysis in

the processing message process. A full valid trail is the one that makes the whole state from 0 to 0. Note

that a′ is decided by a and the output of SB
′
(which must be 0 for inactive S-boxes). At each step, a is

either the output of SB or arbitrary, which we say the S-box is at constant position or message position

respectively. The cost of a trail denoted the work factor to realize this trail, when the cost is q, we mean

the work factor is 2q.

We can count the cost of a trail as follows: each active S-box at constant position increases the cost

by two and each non-active S-box at message position decreases the cost by one. The cost of a differential

trail is the maximum of costs of its all sub-trails.

In HERON, the state is consisted of two parts, the register part and the buffer part. We consider the

following trail which has 2 stages.

In the first stage, stream a (a′=0) is chosen as a small multiple of minimal polynomial of A, where

A is the following linear matrix corresponding to the linear update functions of the register part. The

difference of buffer part has no effects on the register part in the first state.

A =


A0 Z0 0 0

0 A1 Z1 0

0 0 A2 Z2

Z3 0 0 A3

 (5.1)

Denote ej be 1 × 64 unit vector with j-th element be 1. 0 in A is 64 × 64 zero matrix. According to

H core step, Ai,Zi are 64× 64 matrix on F2. j-th(j = 0, 1, . . . , 62) row of all Ai, i = 0, . . . , 3 is ej+1, 63-th

row of A0(A1,A2,A3)is e0⊕e31⊕e32(e0⊕e28⊕e30, e0⊕e22⊕e27,e0⊕e8⊕e19). Each of the first 62 rows of

Zi is all zero vector, and 63-th of Z0(Z1,Z2,Z3) is e13(e1, e26, e31). Then the state update in H core step
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can be expressed in the following, where ST is the transposed 64× 1 vector of S:

ST ← A · ST (5.2)

The small multiple makes almost all the S-boxes active so that this sub-trail is valid. This stream makes

register state zero, and makes buffer state containing a segment M ′, where M ′ is determined later. The

number of active S-boxes in this sub-trail is about (lS − c1), where lS = 256 is the size of the register state

here, and c1 is a small constant. According to previous subsection, the cost of this sub-trail is about

2 · (lS − c1) · (1− ρ).

ρ = |M0|
|M0|+32

= 1
2 , where |M0| is the length of first coded message block.

Let M,M ′ be sequences of suitable length which transform the register state from 0 to 0. This suitable

length is about half of lS , so the cost of this sub-trail is

2 · ( lS
2

) · (1− ρ).

After the first stage and a segment of zero input,we can make the input to the register is (a = M, a′ =

M ′), which makes it zero and at the same time clear-off the buffer contents M ′.

The cost of the whole trail is the maximum of the two, i.e.

2 · (lS − c1) · (1− ρ).

This gives an upper bound of security strength of HERON.

We give an argument that it is also the lower bound. Consider trails which begin with zero state and

end before the buffer output affects S-boxes, i.e. a
′

= 0. The length of these trails are lB + c2, where c2 is

a constant (in our example, c2 > 64), and lB is the length of buffer. In any valid trail the inactive S-boxes’

input forms a linear space, which is a subspace of the space generated by variables in a, where each bit

is considered a variable. Each S-box gives a subspace of dimension 8, some of which overlap with other

S-boxes, so we pretend that each S-box gives an independent subspace of dimension 4. The total space has

dimension less than lB + c2, the number of inactive S-boxes is less than lB+c2
4 and the number of active

S-boxes is more than 3
4 (lB + c2). As a result, the cost of the trail would be larger than 2( 3

4 − ρ)(lB + c2).

This suggests that our upper bound above is also a lower bound if lB is large enough.

If the length of buffer is large enough, the security strength will not improve as the length of buffer

adds. Thus lB = 512 is enough.

5.4 Length extension attack

Typically, length extension attacks use the hash value of one message and its length to the hash value of

the other message that takes the previous message as prefix. Hash functions that use MD structure are

susceptible to this kind of attack such as MD-5, SHA-1, SHA-2. The sponge function based hash function

SHA-3 is not susceptible.

HERON adopts the thin sponge function construction which is divided into two stages. In the message

processing stage, it is hard to find two different messages that lead to a same state value. The finalization
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stage behaves like a random oracle to the input of state value and length of message. As to the strength

of the finalization stage, even the attacker knows the hash value and the message length, it is difficult to

get the hash value of the extended message.
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Chapter 6

Performance

6.1 Hardware implementations

Target device is XILINX Artix-7 AC701 Evaluation Platform (xc7a200tfbg676-2). To minimize the area,

the datapath can be 1 bit.

S0 S630

SB_A SB_B

S1 S631

bit_o

10
sel

S2 S632 S3 S633

bit_i

8 8

s320

10
sel

1 0
se
l

10
sel

Figure 6.1: The 1-bit datapath HERN core
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s320

1 0
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Figure 6.2: The 1-bit datapath HERON core

Fig.6.1 shows the basic structure of the HERN implementation on FPGA. Fig.6.2 shows the HERON

implementation. The most expensive module is state register (S0-S3), other modules are basic combina-
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tional circuits. The modules absorb 1 bit from the input port and output the result bit by bit. The circuits

have no complex structure. We further integrate the HERN and HERON into the circuit.

We further implement HERN and HERON in byte by byte modules. As shows in Table 6.1 HERN and

HERON is quite lightweight.

Table 6.1: Performance on FPGA.

Core Module Slice LUT FF Cycles Frequency/MHz

HERN bit 10 30 25 1536+u+v 146

HERON bit 9 27 25 1280+w 176

HERN+HERON bit 11 32 25 - 141

HERN byte 39 127 128 192+u/8+v/8 134

HERON byte 33 105 128 160+w/8 152

6.2 Software implementations

HERN and HERON are implemented in C code. We have the test run on Intel Core i7-6500U 2.5GHz

processor and Windows 10 Pro version 1809. We use Visual Studio 2017 as the IDE and compile our code

with the option ”Maximum Optimization (Favor Speed) (/O2)”. The associated data length in HERN is

always zero. IV length and tag length are both 128 bits. In HERON, the digest length is 256 bits. We just

use the change of message length to evaluate the speed of HERN and HERON. In a test with processing

same message, we run algorithm 1000 times and use the Median as the running time.

Table 6.2: The speed (cpb) of HERN and HERON.

64B 128B 256B 512B 1024B 2048B 4096B

HERN 54.16 33.14 20.71 16.02 13.56 12.39 11.80

HERON 74.84 49.86 38.46 32.82 30.03 28.59 27.90
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Chapter 7

Advantages and limitations

In this document we design two cryptographic algorithms: an AEAD scheme HERN and a hash function

HERON. The main advantages of HERN and HERON are:

• One stone, two birds. We construct both HERN and HERON that share the same state variables and

basic operations leading to reduced implementation costs both in hardware and software.

• Lightweight implementation. The feedback functions are either linear or have only degree of 2 and

one message bit is processed in each step. These features benefit lightweight implementation.

• Flexibility of implementation. The feature that up to 32 steps can be computed in parallel benefits

implementations on a wide rang of 8-bit, 16-bit and 32-bit microcontroller architectures.

• Efficiency in hardware and software. In HERN and HERON, 32 steps can be computed in parallel,

so its speed is reasonably fast.
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