
The CiliPadi

Family of Lightweight

Authenticated Encryption

Version 1.0

Muhammad Reza Z’aba1, Norziana Jamil2, Mohd Saufy Rohmad3,
Hazlin Abdul Rani4, and Solahuddin Shamsuddin4

1Faculty of Computer Science and Information Technology, University of Malaya
reza.zaba@um.edu.my

2College of Computing and Informatics, Universiti Tenaga Nasional
norziana@uniten.edu.my

3Faculty of Electrical Engineering, Universiti Teknologi MARA saufy@uitm.edu.my
4CyberSecurity Malaysia hazlin@cybersecurity.my solahuddin@cybersecurity.my

March 29, 2019

reza.zaba@um.edu.my
norziana@uniten.edu.my
saufy@uitm.edu.my
hazlin@cybersecurity.my
solahuddin@cybersecurity.my

Contact Information

For any correspondence, please contact:

CyberSecurity Malaysia
Level 9 Tower 1
Menara Cyber Axis
Jalan Impact
63000 Cyberjaya, Selangor
Malaysia

Tel: +603 8800 7999
Fax: +603 8008 7000

E-mail: cilipadi@cybersecurity.my

Acknowledgement

We thank Teh Je Sen and Yasir Amer Abbas for providing additional security
analysis and implementation results.

The CiliPadi Family of Lightweight Authentication Encryption
Version 1.0: March 29, 2019

i

http://www.cybersecurity.my
mailto:cilipadi@cybersecurity.my

Contents

1 Introduction 1

2 Preliminaries 1
2.1 Notations . 1
2.2 Mode of Operation . 1

3 Specification 2
3.1 Parameters . 2
3.2 Initialization Phase . 4
3.3 Padding . 4
3.4 Associated Data Authentication Phase 4
3.5 Message Encryption Phase . 5
3.6 Message Decryption Phase . 5
3.7 Finalization Phase . 5
3.8 The Permutation Function P . 5
3.9 The F function . 6

3.9.1 AddConstants (AC) . 7
3.9.2 SubCells (SC) . 7
3.9.3 ShiftRows (SR) . 7
3.9.4 MixColumnsSerial (MCS) 8

4 Design Rationale 8
4.1 Key Lengths . 8
4.2 Sponge . 8
4.3 Permutation . 9

5 Performance Analysis 9
5.1 Implementation Results . 11

6 Security Analysis 12
6.1 Differential Cryptanalysis . 12

6.1.1 Preliminaries . 13
6.1.2 P as a Random Permutation 14
6.1.3 Collision-Producing Differentials of CiliPadi 17
6.1.4 Practical Security Bounds 18

6.2 Full Bit Diffusion . 19
6.3 Extension to Linear Cryptanalysis 19

7 Strengths and Weaknesses 19
7.1 Strengths . 20
7.2 Weaknesses . 20

A Test Vectors 23

ii

1 Introduction

This document describes a family of lightweight authenticated encryption with
associated data (AEAD) called CiliPadi1. There are four flavours of CiliPadi:
Mild, Medium, Hot and ExtraHot. The primary member of CiliPadi is CiliPadi-
Mild.

2 Preliminaries

This section introduces the notation and other preliminaries as basis to under-
stand subsequent sections.

2.1 Notations

The notation used in this paper is given in Table 1.

Description

K,N, T The secret key, nonce, and tag, respectively
X‖Y The concatenation of bit strings X and Y
A The associated data where A = A1‖ . . . ‖As

M The message where M = M1‖ . . . ‖Mt

C The ciphertext where C = C1‖ . . . ‖Ct‖T
|X| The length of X in bits
S The internal state where S = Sr‖Sc, r = |Sr| and

c = |Sc|
n The length of the internal state S, i.e. n = |S| = r+c
0x2 , 1

x
2 An all-zeros and all-ones binary string of x bits, re-

spectively
dXei The first i bits (or leftmost bits) of X

(X1‖ . . . ‖Xx)
y←− X The parsing of the bit string X into x equally-sized

y-bit strings

Table 1: Notation

A number written in typewriter font is always treated as a 4-bit hexadecimal
value, i.e. 0, 1, . . . f. If the value is subscripted with ‘2’, as shown in Table 1
then it is treated as a 1-bit value, which applies only for 0 and 1.

2.2 Mode of Operation

The CiliPadi[n, r, a, b] mode of operation is based on the MonkeyDuplex construc-
tion [3, 6] and depicted in Figure 1. It consists of four phases: initialization,
associated data authentication, message encryption/decryption, and finaliza-
tion. The state length is n bits initialized with the value of the secret key K
and nonce N . The bitrate is r bits and the capacity is c = n − r bits. The
permutation for the initialization and finalization phases has a rounds while the

1Cili padi is a Malay word for the bird’s eye chili. The name is chosen due to the Malay
proverb, kecil-kecil cili padi which means tiny but powerful. In our context, CiliPadi has a
small footprint but secure for lightweight applications.

1

Initialization AD Authentication Message Encryption Finalization

K‖N r
P a
n

r

A1

c

P b
n

r

As

c

P b
n

0c−11

r

M1C1

c

P b
n

r

Mt Ct

c

P a
n

r

⌈K⌉r T

Figure 1: CiliPadi mode of operation

permutation for the associated data and message encryption/decryption phases
has b rounds where b > a.

3 Specification

This section formally describes the specification of CiliPadi.

3.1 Parameters

The CiliPadi[n, r, a, b] family of authentiated encryption (AE) scheme consists of
configurable parameters. For the purpose of evaluation, we propose four flavours
of CiliPadi which is listed in Table 2 according to increasing level of security.
They are CiliPadi-Mild, CiliPadi-Medium, CiliPadi-Hot and CiliPadi-ExtraHot. The
lengths stated in the table are all in bits.

CiliPadi- Algorithm Length of No. of rounds
[n, r, a, b] Key Nonce Tag Block P a

n P b
n

Mild [256, 64, 18, 16] 128 128 64 64 18 16
Medium [256, 96, 20, 18] 128 128 96 96 20 18
Hot [384, 96, 18, 16] 256 128 96 96 18 16
ExtraHot [384, 128, 20, 18] 256 128 128 128 20 18

Table 2: CiliPadi parameters where the primary member is CiliPadi-Mild

Formally, the CiliPadi family of AE accepts a k-bit secret key K and a 128-bit
nonce N . These values become the initial value of the n-bit internal state S =
K‖N . The state is then updated by the permutation P a

n . If the sr-bit associated
data A = A1‖ . . . ‖As is non-empty, it will be subsequently processed, along with
the internal state, by the associated data authentication phase. Encryption
takes the padded message M = M1‖ . . . ‖Mt and outputs the ciphertext C =
C1‖ . . . ‖Ct and tag T where |Mi| = |Ci| = T = r bits. Decryption takes the
ciphertext C and tag T and outputs the original message M if and only if C is
authentic, else it outputs ⊥. The components and high-level overview of CiliPadi
are given in Figures 2 and 3, respectively. The descriptions are provided in the
following sections.

2

Proc Init(K,N)

1 S ← K‖N
2 return S

Proc Finalization(S)

1 S ← P a
n (S)

2 T ← dSek ⊕K
3 return T

Proc AD(S,A)

1 for i = 1, . . . , s do
2 S ← P b

n((Sr ⊕Ai)‖Sc)
3 end

4 S ← (Sr‖Sc ⊕ (0c−12 ‖1))
5 return S

Proc MEnc(S,M)

1 for i = 1, . . . , t− 1 do
2 Ci ← Sr ⊕Mi

3 S ← P b
n(Ci‖Sc)

4 end
5 Ct ← Sr ⊕Mt

6 S ← (Ct‖Sc)
7 return (S,C)

Proc MDec(S,C)

1 for i = 1, . . . , t− 1 do
2 Mi ← Sr ⊕ Ci

3 S ← P b
n(Ci‖Sc)

4 end
5 Mt ← Sr ⊕ Ct

6 S ← (Ct‖Sc)
7 return (S,M)

Proc P r
256(S)

1 (X1‖ . . . ‖X4)
64←− S

2 for i = 1, . . . , r do
3 Y1 ← F1(X1)⊕X2

4 Y2 ← X3

5 Y3 ← F2(X3)⊕X4

6 Y4 ← X1

7 X ← Y

8 end
9 S ← X

10 return S

Proc F i
l (X)

1 (x1‖ . . . ‖x4)
16←− X

2 (w1‖w2)
2←− l

3 (z1‖z2)
3←− rc[i]

4 x1 ← (022‖w1‖02‖z1‖082)
5 x2 ← (022‖w2‖02‖z2‖082)
6 x3 ← (2‖02‖z1‖082)
7 x4 ← (3‖02‖z2‖082)
8 RC ← (x1‖x2‖x3‖x4)
9 X ← LED1r(X,RC)

10 X ← LED1r(X, 0642)
11 return X

Proc P r
384(S)

1 (X1‖ . . . ‖X6)
64←− S

2 for i = 1, . . . , r do
3 Y1 ← F1(X1)⊕X2

4 Y2 ← X3

5 Y3 ← F2(X5)⊕X6

6 Y4 ← X1

7 Y5 ← F3(X3)⊕X4

8 Y6 ← X5

9 X ← Y

10 end
11 S ← X
12 return S

Proc LED1r(X,RC)

1 X ← AC(X,RC)
2 X ← SC(X)
3 X ← SR(X)
4 X ← MCS(X)
5 return X

Figure 2: Components of CiliPadi

3

Proc Encrypt(K,N,A,M)

1 S ← Init(K,N)
2 S ← AD(S,A)
3 (S,C)← MEnc(S,M)
4 T ← Finalization(S)
5 return (C, T)

Proc Decrypt(K,N,A,C, T)

1 S ← Init(K,N)
2 S ← AD(S,A)
3 (S,M)← MDec(S,C)
4 T ′ ← Finalization(S)
5 if (T = T ′) then
6 return M
7 else
8 return ⊥
9 end

Figure 3: High-level overview of the encryption and decryption of CiliPadi

3.2 Initialization Phase

The n-bit state S is initialized with the value of the k-bit key followed by the
128-bit nonce N . The internal state S is initialized as

S = K‖N.

Note that the nonce must never be repeated to encrypt different messages
using the same secret key. The internal state can also be viewed as the con-
catenation of the r-bit rate Sr and c-bit capacity Sc parts, i.e. S = Sr‖Sc. The
state is then processed by the n-bit permutation P a

n , which is described later.
The output of this phase is fed to the associated data authentication phase, if
the associated data is non-empty.

3.3 Padding

Both the associated data and message blocks are individually padded only if its
length is not a multiple of r bits. Padding is performed by adding a bit 1, and
then as many zero bits as necessary until the padded data is in multiple of r
bits. If the length of the last block is r − 1 bits, then only bit 1 is added.

3.4 Associated Data Authentication Phase

If the associated data A = A1‖ . . . ‖As is non-empty, then A1 is XORed with
the inner state Sr. The state S is then updated by the permutation P b

n. This
process is repeated for Ai (i = 1, . . . , s) until all associated data blocks are
processed:

S ← P b
n((Sr ⊕Ai)‖Sc).

After the last associated data is processed, the outer state Sc is XORed with the
binary string 0c−12 ‖12 to denote the completion of the associated data phase:

S ← (Sr‖Sc ⊕ (0c−12 ‖12)).

The output of this phase is fed to either the message encryption or decryption
phase, described next.

4

3.5 Message Encryption Phase

There are two main inputs for this phase. The first comes from either the
initialization (if the associated data is empty) or associated data authentication
phase. The second input comes from the padded message M = M1‖ . . . ‖Mt.
The current inner state Sr is first XORed with the first message block M1 to
produce the ciphertext block C1. If there are more message block available,
then this process is repeated until all message blocks are processed, except for
the last block where the permutation P b

n is not applied:

S ←
{
P b
n((Sr ⊕Mi)‖Sc), for i = 1, . . . , t− 1,

(Sr ⊕Mi)‖Sc, for i = t.

The i-th ciphertext block is extracted from the current state prior to the execu-
tion of P b

n as Ci = Sr⊕Mi. The output of this phase is fed into the finalization
phase.

3.6 Message Decryption Phase

The decryption phase is almost identical to encryption. It receives two inputs.
The first is the outcome of either the initialization or associated data authen-
tication phase. The second input is the ciphertext C = C1‖ . . . ‖Ct. The first
ciphertext block assumes the value of Sr and then the state S is updated by
P b
n. This process is repeated until the second last ciphertext block. The last

ciphertext block is not processed by P b
n.

S ←
{
P b
n(Ci‖Sc), for i = 1, . . . , t− 1,

Ci‖Sc, for i = t.

The corresponding message block is only released when the tag is verified, i.e.
only after succesful execution of the finalization phase. The i-th message block
is extracted from the current state prior to the execution of the permutation
P b
n, i.e. Mi = Sr ⊕ Ci.

3.7 Finalization Phase

This phase updates the internal state S to output a single r-bit tag. After the
state has been processed by P a

n , Sr is XORed with the first r bits of the key K.
The tag T is the result of this XOR as follows.

S ← P a
n (Sr‖Sc)

T ← Sr ⊕ dKer

When decrypting ciphertext, the original message M will only be released if the
computed tag above matches the one supplied by the sending party.

3.8 The Permutation Function P

The permutation function P makes use of an unkeyed 2-round2 of the lightweight
block cipher LED [19] as the round- and line- dependent F -function in a Type-II

2This refers to a full 2 rounds where no operation is omitted in the last (second) round.

5

X1 X2 X3 X4

64 64 64 64

F i
1 F i

2

d = 4

X1 X2 X3 X4 X5 X6

64 64 64 64 64 64

F i
1 F i

2 F i
3

d = 6

Figure 4: Type-II GFN employed in CiliPadi for d = 4 and d = 6

generalized feistel network (GFN) [24]. We refer a Type-II GFN that accepts
d input sub-blocks as a d-line Type-II GFN. For CiliPadi, d is an even number
and each line is of length n/d bits. There are d/2 F functions in each round
that accepts input from odd-numbered lines. Let X1‖ . . . ‖Xd denote the input
lines. They are updated by the F -function in the i-th round as follows.

Xj ← Xj for j = 1, 3, . . . , d− 1

Xj ← Xj ⊕ F i
j/2(Xj−1) for j = 2, 4, . . . , d

After the above transformations, the lines are shuffled by the permutation func-
tion π before being used as input to the next round. For instance, the shuffle
π = {2, 3, 4, 1} means that the first input line is mapped to the second output
line, the second input line to the third output line, and so forth. The same
shuffle π is used in both the message encryption and decryption phases. For
CiliPadi, the shuffling3 used are given in Table 3 and depicted in Figure 4 for
d = 4 and d = 6.

Input length Number of Shuffle
n (in bits) lines d π

128 2 {2, 1}
256 4 {4, 1, 2, 3}
384 6 {4, 1, 2, 5, 6, 3}
512 8 {4, 1, 2, 5, 8, 3, 6, 7}

Table 3: Shuffling used in the Type-II GFN

3.9 The F function

As mentioned earlier, the round- and line- dependent F function is an unkeyed
2-round of the LED [19] block cipher where no operation is omitted in the last (i.e.

3Note that in [23], the index starts with 0, ours start with 1.

6

AC
x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

x13 x14 x15 x16

SC
x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

x13 x14 x15 x16

SR
x1 x2 x3 x4

x6 x7 x8 x5

x11 x12 x9 x10

x16 x13 x14 x15

MCS
x1 x2 x3 x4

x6 x7 x8 x5

x11 x12 x9 x10

x16 x13 x14 x15

Figure 5: A single round of LED

second) LED round. A single LED round4 consists of the following four operations,
depicted in Figure 5, applied in sequence to the 64-bit input: AddConstants,
SubCells, ShiftRows and MixColumnsSerial. The input to LED is 64 bits
partitioned into 16 4-bit cells. Let x = x1‖ . . . ‖x16 denote this input which can
be depicted as a 4× 4 matrix which is entered row-wise as follows.

x1 x2 x3 x4
x5 x6 x7 x8
x9 x10 x11 x12
x13 x14 x15 x16


In AES, the input is entered column-wise.

3.9.1 AddConstants (AC)

Initialize a 6-bit round constant rc1‖ . . . ‖rc6 set to all zeros. In each round of
the permutation, the constant is updated by shifting its value 1 bit to the left.
The new value for rc6 is taken as rc1 ⊕ rc2 ⊕ 1. We also add the F -function
number encoded as a 4-bit value l = l1‖ . . . ‖l4 as one of the parameters in the
constant value. This is to ensure that every F -function has different constant
value. 

l1‖l2 rc1‖rc2‖rc3 0 0

l3‖l4 rc4‖rc5‖rc6 0 0

2 rc1‖rc2‖rc3 0 0

3 rc4‖rc5‖rc6 0 0


The above matrix is XORed to the current value of the state in the first round
of LED in the F -function. The constants for the second round of LED are set to
all-zeros. The complete values of the round constants are given in Table 4.

3.9.2 SubCells (SC)

This operation substitutes the current value of each 4-bit cell with another 4-bit
value, using the s-box of Present [9] given in Table 5.

3.9.3 ShiftRows (SR)

This operation rotates the second, third and fourth row of the state matrix by
one, two and three cells to the left.

4We are not referring to v2 of LED [20].

7

Rnd. Value Rnd. Value Rnd. Value Rnd. Value

1 (0, 1, 0, 1) 6 (7, 6, 7, 6) 11 (3, 6, 3, 6) 16 (1, 6, 1, 6)
2 (0, 3, 0, 3) 7 (7, 5, 7, 5) 12 (7, 4, 7, 4) 17 (3, 5, 3, 5)
3 (0, 7, 0, 7) 8 (7, 3, 7, 3) 13 (7, 1, 7, 1) 18 (7, 2, 7, 2)
4 (1, 7, 1, 7) 9 (6, 7, 6, 7) 14 (6, 3, 6, 3) 19 (6, 5, 6, 5)
5 (3, 7, 3, 7) 10 (5, 7, 5, 7) 15 (2, 7, 2, 7) 20 (5, 3, 5, 3)

Table 4: The values for the second column of the round constant state matrix
used in the first LED-round of all F -functions. The round constants for the
second LED-round are set to all-zeros. The first column of the round constant
matrix is (0, 1, 2, 3) for F i

1 , (0, 2, 2, 3) for F j
2 , and (0, 3, 2, 3) for F j

3 .

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] c 5 6 b 9 0 a d 3 e f 8 4 7 1 2

Table 5: The s-box S of Present used in LED

3.9.4 MixColumnsSerial (MCS)

This operation multiplies the current value of the state with the following 4× 4
matrix. 

4 2 1 1

8 6 5 6

b e a 9

2 2 f b


The result of the multiplication is the new value of the state.

4 Design Rationale

This section outlines the rationale for the design choices made for CiliPadi.

4.1 Key Lengths

We recommend two different key lengths, i.e. 128 and 256 bits. The former is
meant for applications where resources such as area are very limited. The latter
is proposed for applications where performance can be slightly sacrificed to gain
more security.

4.2 Sponge

Our construction is based on the MonkeyDuplex [3, 6] Sponge, which evolves
from the original Sponge proposed in 2007 [4]. The versatile construction has
been extensively scrutinized and deployed in numerous hash functions and AE
proposals. These include Keccak [5, 2] (standardized in SHA-3 and ISO/IEC
10118-3), PHOTON [18] (ISO/IEC 29192-5) and one of CAESAR’s5 final port-

5Competition for Authenticated Encryption: Security, Applicability, and Robustness
(CAESAR)

8

folio Ascon [16]. In particular, our use of different numbers of rounds in the
initialization, message processing and finalization phases resembles that of As-
con and Fides [8].

4.3 Permutation

The permutation function makes use of an unkeyed 2-round of the lightweight
block cipher LED [19] as the F -function in a Type-II generalized feistel network
(GFN) [24]. This is similar to the Simpira v2 permutation framework intro-
duced by Gueron and Mouha [17]. To maximize diffusion, Simpira v2 utilizes
a shuffling introduced by Suzaki and Minematsu [23], instead of the traditional
left or right rotation of the input sub-blocks. The optimized shuffling allows
us to achieve faster full diffusion of the input sub-blocks compared to the con-
ventional Type-II GFN. A full diffusion means that all output sub-blocks are
affected by all input sub-blocks.

Note that Simpira v2 was originally designed to utilize native AES instruc-
tions such as Intel’s AES-NI present in many modern processors. The aim is
to achieve a high throughput implementation. As there is no hardware-specific
instructions for LED, this is not our ultimate aim. We chose to follow Simpira v2
due to its flexibility in extending to larger input lengths and also because it is
easy to analyze its security with respect to differential and linear cryptanalysis.

By employing a Type-II GFN, it is trivial to extend the input lengths in
multiple of 128 bits. The use of 2-round LED as the F -function allows us to
borrow the security analysis done on Simpira v2, which utililizes 2-round AES
instead.

The LED block cipher is chosen due to its lightweight construction and its
similarity to the AES. In contrast to a 1-round LED that has a minimum of
one active s-box, a 2-round LED has a minimum of 5 active s-boxes, which is
identical to the AES [15]. This allows us to easily extend the results of Gueron
and Mouha [17], whom originally use AES in the Simpira v2 framework, to
CiliPadi.

The number of rounds for P b
n, i.e. b = 16, is one round extra than the

suggested number of rounds for Simpira v2 (i.e. 15) for d = 4 and d = 6.
Furthermore, P a

n is two rounds more than P b
n, which should provide ample

protection against tag forgery in the finalization phase.

5 Performance Analysis

Our main goal for CiliPadi is a lightweight AEAD scheme with a very low hard-
ware footprint. CiliPadi mainly consist of the internal operation of LED and XOR
operation on its datapath. Three MUXes are the logic that control the overall
operation of CiliPadi. There are 5 states of finite state machine (FSM), i.e. idle,
initialization, authentication data, message and final phase. We make the state
definition intuitive and straightforward. For simplicity, we only describe the
implementation of CiliPadi-Mild. Other flavours of CiliPadi follow similarly.

At the heart of the implementation is a 2-round LED block cipher that consists
of 4 operations: AddConstanrs, SubCells, ShiftRows and MixColumnsSerial

as described in Section 3.9. Figure 6 shows the datapath structure of CiliPadi.

9

c_sel

mixcolumn

addconstants

shiftrows

subcells

addconstans

subcells

shiftrows

mixcolumn

XOR

XOR

XOR

XOR

r_sel

am_sel

C_out

AD_in
M_in

Key ||nonce

K_in

T_out

am_sel_muxam_sel_mux

c_sel_mux

r_sel_mux

1

Figure 6: CiliPadi Datapath

On the left side is the input and output signal that comes from the control unit
and from input output port of the datapath.

• key and nonce are both 128-bit signals.

• M in is a 64-bit signal for the message block.

• A in is a 64-bit signal for associated data.

• C out is a 64-bit signal for the ciphertext block.

• K in is the final 64-bit portion key input.

• T out is the final 64-bit tag output.

The datapath for CiliPadi is controlled by the FSM. Input values to the
MUXes are supplied by the state output logic design in the FSM. Figure 7
shows the state diagram of the FSM.

• idle state:

– init=1 will transition to init phase.

• init phase state:

– r sel mux contains the r-bit (bitrate) part of the key concatenated
with the nonce.

– c sel mux contains the c-bit (capacity) part of the key concatenated
with the nonce.

• auth data phase state:

– c sel mux = c is the capacity part of the internal state.

– r sel mux is the associated data XORed with the bitrate part of the
state.

10

idle

Init_
phase

auth_data_
phaseMessage_

phase

final_phase

init=1
c_sel_mux=k||n

r_sel_mux=k||n

r_sel_mux=AxorR

c_sel_mux=c

am_sel_mux=AD_in

init_done=1

AD_done=1

r_sel_mux=MxorR
c_sel_mux=1xorR(0);

am_sel_mux=M_in

M_done=1

r_sel_mux=KxorR

c_sel_mux=c

am_sel_mux=K_in

final_done=1

Figure 7: CiliPadi Finite State Machine

– am sel mux = AD in contains the associated data.

• message phase state:

– c sel mux = 1xorR(0) refers to the XOR operation of the least signif-
icant bit of the state with the bit 1.

– r sel mux = MxorR is the XOR of the message with the bitrate part
of the internal state.

– am sel mux = M in is the message block input.

• final phase state:

– c sel mux = c is the capacity part of the internal state.

– r sel mux = KxorR refers to the XOR of the r-bit part of the key with
the bitrate part of the state.

– am sel mux = K in is the key.

State transition is controlled by the status signal from datapath indicated by
dotted lines between the state. In each state, MUXes value will change according
to the input that is supposedly go to the registers inside the permutation entity.
The datapath is controlled by this MUXes values for the final 64 bit tag output
and ciphertext block.

5.1 Implementation Results

We implemented and simulated CiliPadi-Mild using VHDL on Xilinx ISE and
synthesized on xc6vlx760-2ff1760 FPGA chip inside the Virtex 6 development
board. We use RTL approach and make use of an iterative type design. The

11

other flavours of CiliPadi are obtained from our estimate based on the implemen-
tation of Mild. Table 6 shows a comparison of our implementation with other
similarly designed AEs, i.e. Beetle [12] and Ascon [16]. These schemes are
chosen due to the use of a sponge-based construction. Furthermore, the latter
uses different number of rounds for the initialization and message encryption
phases, which is similar to our design. The results for Ascon are obtained from
Athena’s database [1].

Scheme LUTs Slices Freq. Gbps Mbps/ Mbps/
(MHz) LUT Slice

Beetle[Light+] [12] 616 252 381.592 1.879 3.050 7.369
Beetle[Secure+] [12] 998 434 256 2.520 2.525 5.806
Ascon-128 [1] 1274 451 341.1 3.118 2.447 6.914
Ascon-128a [1] 1587 547 358.6 5.099 3.213 9.322

CiliPadi-Mild 1052 303 639.959 1.138 1.082 3.756
CiliPadi-Medium 747 363 620 1.353 1.8112 3.727
CiliPadi-Hot 1268 373 631 1.685 1.329 4.517
CiliPadi-ExtraHot 1332 392 605 1.760 1.321 4.490

Table 6: Comparison of FPGA implementation of CiliPadi against other similar
designs on Virtex 6

Beetle[Light+] and Beetle[Secure+] respectively use a 144-bit key (with 64
bits of security) and 256-bit key (with 121-bit security). On the other hand, both
variants of Ascon employ a 128-bit key. The main differences between Ascon-
128 and Ascon-128a are the message block size and numbers of permutation
rounds. The former accepts a 64-bit block size while the latter, 128 bits.

The execution of CiliPadi-Mild and CiliPadi-Hot producing one ciphertext
block and tag is 72 clock cycles. For CiliPadi-Medium and CiliPadi-ExtraHot, the
number of clock cycles is 88. The primary member of CiliPadi, i.e. Mild, occupies
303 slices, which is about 20% higher than Beetle[Light+] but lower than other
AEs compared in Table 6. However, our scheme provides 128-bit security as
compared to Beetle[Light+]’s 64-bit. In the 256-bit key space, the two flavours
of CiliPadi, i.e. Hot and ExtraHot consume fewer numbers of slices compared to
Beetle[Secure+]. They even surpassed both variants of the 128-bit key Ascon.
The numbers of slices for both Hot and ExtraHot flavours of CiilPadi are below
400 whereas the other compared AEs exceed this number. We believe that the
implementation of CiliPadi can be further improved.

6 Security Analysis

6.1 Differential Cryptanalysis

In this section, we analyze the security of CiliPadi against differential cryptanaly-
sis both theoretically and experimentally. We then extend some of these findings
to linear cryptanalysis. Note that although there is no LED round subkeys to
recover, such analysis is still useful since our analysis falls in the known-key
attack model [21]. In our case, the known-key is the round constants.

12

6.1.1 Preliminaries

P is based on the Simpira v2 framework which is a d-line Type-II GFN. Instead
of using AES like Simpira, CiliPadi uses an unkeyed 2-round LED as its round
function, F . The design of LED shares same diffusion properties as AES, thus 2
rounds of LED has 5 active s-boxes (AS) [15]. In other words, F has a minimum
of 5 active s-boxes given a non-zero input. The maximum differential probabil-
ity of its s-box (which is essentially PRESENT’s s-box [9]) is 2−2. We evaluate
CiliPadi using two approaches, the first of which is based on the notions of P as a
random permutation and the second is based on identifying collision-producing
differentials. An upper bound of the differential probability for both approaches
will be defined based on the number of “active F-functions”. We first provide
some brief definitions for these concepts:

P as a random permutation: It has been shown that the security of sponge
and duplex constructions rely on their underlying permutations being random [7,
3]. To evaluate P as a random permutation, we take into consideration the en-
tire internal state, S as a whole. The maximum differential probability for P
must be 2−256 and 2−384 for internal states of n = 256 and n = 384 respectively,
to demonstrate some semblance to a random permutation. To obtain a differ-
ential path for the entire state S, a related-key/related nonce differential attack
can be applied on the initialization phase, whereby an adversary is allowed to
inject differences in either the key or nonce (or both of them). We can then

define a differential path as ∆X
p̂−→ ∆Y , where p̂ is probability that an input

difference ∆X leads to an output difference ∆Y . We refer to p̂ as the differential
probability. ∆X and ∆Y are defined as

∆X = (K1 ⊕K2)‖(N1 ⊕N2)

and

∆Y = P a
n (K1‖N1)⊕ P a

n (K2‖N2)

respectively.

Thus, if ∆X
p̂−→ ∆Y holds with p̂ > 2−n, P is susceptible to a trivial distin-

guishing attack:

1. Initialize a counter, c = 0.

2. Generate 2n related-key/related-nonce pairs corresponding to ∆X.

3. Encrypt each key-nonce pair to obtain the corresponding output differ-
ence.

4. For each key-nonce pair that fulfills, ∆X → ∆Y , increment c.

5. Statistically, the distinguishing attack is successful if c ≈ 2p̂.

Note that computing the differential path requires that random subkeys be used
for each round of the underlying LED cipher to make the s-box inputs indepen-
dent. These subkeys can be simulated by the addition of round constants.We
also note that exhaustively searching through a state space of 256 or 384 bits

13

exceeds today’s computing capability. Therefore, these results are only of aca-
demic interest.

Collision-producing differential: In the AD authentication and message
encryption phases, a straightforward application of differential cryptanalysis
is difficult because the initial capacity state Sc is unknown to an adversary.
However, we can investigate collision-producing differentials for CiliPadi which
are differentials that have differences in Sr for both the input and outputs of
P , but have zero differences for Sc. Such differentials may be useful in forgery
attacks. A collision-producing differential can be defined as

∆X‖0c2
p̂−→ ∆Y ‖0c2 (1)

where ∆X can be introduced by injecting a difference in the message block,
∆Y ‖0c = P b

n(∆X‖0c2), and p̂ is the probability that the differential holds.

Active F -function analysis: To theoretically estimate the upper bounds of
the differential probability, we use the notion of “active F -functions” (AF). An
F -function is considered to be active when it receives a non-zero input, similar to
the concept of AS. We have implemented a searching algorithm to compute the
number of AF for each round which is equivalent to identifying the number of
AS for a regular GFN. The algorithm is based on a modified version of Matsui’s
branch-and-bound search proposed in [13].

To simplify explanations, we will use the concept of truncated differentials,
whereby every 64 bits of the concrete difference is represented as 1 bit in the
truncated difference. A non-zero 64-bit block results in a non-zero truncated
bit, and vice versa. E.g. for d = 4, if a concrete difference consists of four 64-bit
differences, ∆X = (0632 ‖12)‖(0632 ‖12)‖(0642)‖(0642), the corresponding truncated
difference is ∆XT = (1100). Thus, the maximum Hamming weight of the trun-
cated difference is equal to d. The odd numbered bits (1,3,6) of the truncated
difference will pass through the F -function, thus ”activating” it.

Using the searching algorithm, we identify the number of AF for d = 4 and
d = 6 for up to 30 rounds as shown in Tables 7 and 8 respectively. In the
following sections, we use this methodology to first evaluate P as a random
permutation before examining its security against the distinguishing attack.

Round 1 2 3 4 5 6 7 8 9 10
AF 0 1 2 3 4 6 6 8 10 11

Round 11 12 13 14 15 16 17 18 19 20
AF 12 12 12 13 14 15 16 18 18 19

Round 21 22 23 24 25 26 27 28 29 30
AF 20 21 22 24 24 25 26 27 28 30

Table 7: Active F -function distribution for CiliPadi-Mild/Medium (d = 4)

6.1.2 P as a Random Permutation

For P to approximate a random permutation, the differential probability should
be at most 2−256 (2−384) for d = 4 (d = 6). As the differential probability of

14

Round 1 2 3 4 5 6 7 8 9 10
AF 0 1 2 3 4 6 8 10 11 12

Round 11 12 13 14 15 16 17 18 19 20
AF 13 14 15 17 19 21 22 23 24 25

Round 21 22 23 24 25 26 27 28 29 30
AF 26 28 30 32 33 34 35 36 37 39

Table 8: Active F -function distribution for CiliPadi-Hot/ExtraHot (d = 6)

the s-box is 2−2, this requires at least 256
2 = 128 (384

2 = 192) AS. A conservative
approach is to assume each AF to contain only 5 AS as was the assumption
made for a Type-II GFN that has 2 substitution layers interleaved with a single
maximum distance separable (MDS)-based diffusion layer [10] (same as our 2-
round LED with the exception that ours have an extra diffusion layer). Based
on this approach, therefore, 256

2×5 ≈ 26 (384
2×5 ≈ 39) AF is required in order for

P to resist differential cryptanalysis. Indeed, 26 (39) AF gives 26 × 5 = 130
(39 × 5 = 195) AS. Based on this rough estimate, according to Table 7 (8), P
needs to have at least 27 (30) rounds for d = 4 (d = 6) to avoid any biases from
a random permutation.

However, since P makes use of LED, which inherits the wide trails strategy
of the AES, we can improve the previous analysis. As illustrated in Figure 8
and proven by the designers of AES, any 4-round differential path provides a
minimum of 25 active s-boxes. Suppose that a particular round in LED has
one AF where the internal differential paths looks like the first 2 rounds of
the 4-round path depicted in the figure. We can observe that MCS causes all
4-bit cells to have nonzero output difference. Then, these 16 nonzero differences
become the input to the next subsequent F -function which activate 16 AS in the
first LED round and another 4 AS in the second LED round. It is therefore not
possible for this second AF to have 5 AS as assumed before. Due to the wide
trail strategy, this second AF is guaranteed to contain 20 AS. The AS pattern
is 1→ 4→ 16→ 4→ 1.

Table 9 expands the AF distribution given in Tables 7 and 8 by showing
examples of truncated differential paths for P a

n for all flavours of CiliPadi. As
given earlier in this section, for d = 4, 128 AS are required in order for P to
be resistant to differential cryptanalysis. For d = 6, the number of AS is 192.
Based on Table 9, the truncated differential path for P 18

256 and P 20
256 each contains

a minimum of 180 and 185 AS, respectively. On the other hand, the path for
P 18
384 and P 20

384 each comprises 265 and 290 AS, respectively. These numbers for
CiliPadi are beyond the required number of AS. The upper bounds of the differ-
ential probability p̂u of P a

n for all variants of CiliPadi are shown in Table 10. For
each variant, we also provide the number of truncated paths that correspond to
the number of AF. Note that a 6-round iterative truncated differential with 6
AF (0001 → 0001), and a 16-round iterative truncated differential with 22 AF
(000001→ 000001) exists for d = 4 and d = 6 respectively.

Practical Confirmation: We now experimentally confirm that our “active F -
function” estimation is a conservative lower bound, and that the actual number
of AS per AF would be higher than 5 as the number of rounds increases. In

15

Round

1

AC

SC

1 AS

SR MCS

Round

2

AC

SC

4 AS

SR MCS

Round

3

AC

SC

16 AS

SR MCS

Round

4

AC

SC

4 AS

SR MCS

Figure 8: A 4-round differential path for LED that guarantees at least 25 active
s-boxes (AS)

other words, the number of AF provides us with an upper bound in terms of
differential probability. To perform the differential search, we leverage upon the
methodology described in [14]. Here, we focus on only the CiliPadi-Mild as a
proof-of-concept and use the truncated differential path shown in Table 9 as a
guide. We limit our input difference to have a hamming weight of 1 (only 1
bit out of any 64-bit word will be active at one time). Due to computational
limitations, we bound the search based on each round of LED as:

• LED Round 1: Based on the input difference, if the number of activated
s-boxes is more than 8, we limit the number of branches to 2 for each
s-box, whereby we select the two branches with the highest differential
probability. Otherwise, we search all branches.

• LED Round 2: Based on the input difference, if the number of activated
s-boxes is more than 4, we limit the number of branches to 1 for each s-
box, whereby we select the branch with the highest differential probability.
Otherwise, we search all branches.

Based on this methodology, we found a 4-round concrete path following the
truncated differential path 0001→ 0111 with a probability of 2−140:

∆X = 0642 ‖0642 ‖0642 ‖(0282 ‖2‖0322)

∆Y = 0642 ‖7f46a6de679866ce‖8f01218a4117896f‖(0282 ‖2‖0322)

where ∆Y is post-shuffle. The breakdown of the concrete differential path, the
number of AS per round, and the comparison to our lower bound ASl, is shown
in Table 11. In the second round, there are 5 AF which leads to a probability

16

Mild (P 18
256) Medium (P 20

256) Hot (P 18
384) ExtraHot (P 20

384)
Rnd. ∆X AF AS ∆X AF AS ∆X AF AS ∆X AF AS

1 0001 0 0 0001 0 0 000001 0 0 000011 1 5
2 0010 1 5 0010 1 5 001000 1 5 000001 0 0
3 0110 1 20 0110 1 20 010010 1 20 001000 1 5
4 1110 2 10 1110 2 10 101001 2 10 010010 1 20
5 0111 1 20 0111 1 20 111110 3 60 101001 2 10
6 1100 1 5 1100 1 5 011111 2 10 111110 3 60
7 0001 0 0 0001 0 0 110001 1 20 011111 2 10
8 0010 1 5 0010 1 5 001100 1 5 110001 1 20
9 0110 1 20 0110 1 20 010000 0 0 001100 1 5
10 1110 2 10 1110 2 10 100000 1 5 010000 0 0
11 0111 1 20 0111 1 20 100100 1 20 100000 1 5
12 1100 1 5 1100 1 5 100110 2 10 100100 1 20
13 0001 0 0 0001 0 0 101111 3 60 100110 2 10
14 0010 1 5 0010 1 5 110111 2 10 101111 3 60
15 0110 1 20 0110 1 20 000111 1 20 110111 2 10
16 1110 2 10 1110 2 10 000011 1 5 000111 1 20
17 0111 1 20 0111 1 20 000001 0 0 000011 1 5
18 1100 1 5 1100 1 5 001000 1 5 000001 0 0
19 0001 0 0 001000 1 5
20 0010 1 5 010010 1 20

Table 9: Numbers of AF and AS for truncated differential paths for P a
n

CiliPadi- n a AF AS p̂u Truncated Paths

Mild 256 18 18 180 2−360 122
Medium 256 20 19 185 2−370 10
Hot 384 18 23 265 2−530 144
ExtraHot 384 20 25 290 2−580 36

Table 10: Differential probability upper bounds for P a
n

of (2−2)5 = 2−10, verifying the correctness of our implementation. However,
although the third round has only 1 AF, the actual number of AS is 28 due to
the strong diffusion capability of LED. It confirms our claim that the number
of “active F -functions” can be used as a conservative estimate of the security
margin, and will lead to a conservative lower bound in terms of security margin
(and equivalently, an upper-bound in terms of differential probability).

6.1.3 Collision-Producing Differentials of CiliPadi

The number of AF for a collision-producing truncated differential for CiliPadi-
Mild and CiliPadi-ExtraHot can be identified by fixing both the input and output
truncated differences to “1000” and “110000” respectively (i.e. 1000 → 1000
and 110000→ 110000 because r is a multiple of 64. For ease of analysis, we use
1000 → 1000 as the truncated differential for CiliPadi-Medium, by setting the
remaining 96 − 64 = 32 bits of the bitrate part to nonzero. For CiliPadi-Hot,

17

Concrete Differential AS ASl

0642 0642 0642 (0282 ‖2‖0322) 0 0
0642 0642 (0282 ‖2‖0322) 0642 5 5
0642 (0282 ‖2‖0322) c25adcad9fdb44b1 0642 28 20

(0282 ‖2‖0322) c25adcad9fdb44b1 7f46a6de679866ce 0642 36 10
0642 7f46a6de679866ce 8f01218a4117896f (0282 ‖2‖0322) - -

Table 11: Example of a concrete differential path for P a
256

we use 100000 → 100000. We then employ the same searching algorithm to
identify the truncated differential path with the lowest number of AF for P b

n.
The results are summarized in Table 12 where p̂col denotes the probability of
the collision-inducing path. The truncated paths corresponding to each of Cili-
Padi’s variants are as shown in Table 13. Note that a 6-round iterative truncated
collision-producing differential exists for d = 4, where 1000→ 1000 with 6 AF.

CiliPadi- n b AF AS p̂col

Mild 256 16 18 180 2−360

Medium 256 18 18 180 2−360

Hot 384 16 22 260 2−520

ExtraHot 384 18 26 310 2−620

Table 12: Collision-producing differential probability upper bounds for P b
n

Practical Confirmation: We now experimentally confirm that the collision
probabilities in Table 12 provides conservative lower bounds. Again, we tar-
get CiliPadi-Mild as a proof-of-concept and use the truncated differential path
shown in Table 13 as a guide. Based on the same methodology described in Sec-
tion 6.1.2, we found a 3-round concrete path following the truncated differential
path with a probability of 2−140:

∆X = (0282 ‖2‖0322)‖0642 ‖0642 ‖0642
∆Y = 8f01218a4117896f‖(0282 ‖2‖0322)‖0642 ‖7f46a6de679866ce

where ∆Y is post-shuffle. The above differential path contains a total of 69 AS,
which is significantly higher than the theoretical lower bound of 35 AS for a
3-round differential, as shown in Table 13.

6.1.4 Practical Security Bounds

In practice, the best cryptanalytic attack requires less computational complexity
than an exhaustive search of the secret key. CiliPadi has key sizes of 128 and
256 bits, thus any statistical distinguisher for a successful attack must have a
probability higher than 2−128 and 2−256 respectively. Based on Tables 10 and
12, the theoretical upper bounds of the differential probability indicate that all
flavours of CiliPadi are highly resistant to differential cryptanalysis and collision
attacks. In reality, the differential probabilities are much lower as depicted in

18

Mild (P 16
256) Medium (P 18

256) Hot (P 16
384) ExtraHot (P 18

384)
Rnd. ∆X AF AS ∆X AF AS ∆X AF AS ∆X AF AS

1 1000 1 5 1000 1 5 100000 1 5 110000 1 5
2 1001 1 20 1001 1 20 100100 1 20 000100 0 0
3 1011 2 10 1011 1 10 100110 2 10 000010 1 5
4 1101 1 20 1101 2 20 101111 3 60 001001 1 20
5 0011 1 5 0011 1 5 110111 2 10 011010 2 10
6 0100 0 0 0100 0 0 000111 1 20 111011 3 60
7 1000 1 5 1000 1 5 000011 1 5 010111 1 5
8 1001 1 20 1001 1 5 000001 0 0 101011 3 60
9 1011 2 10 1011 2 10 001000 1 5 110111 2 10
10 1101 1 20 1101 2 5 010000 1 20 000111 1 20
11 1011 2 10 0011 1 5 100000 2 10 000011 1 5
12 1101 1 20 0100 0 0 100100 3 60 000001 0 0
13 1011 2 10 1000 1 5 100110 2 10 001000 1 5
14 1101 1 20 1001 1 20 101111 1 20 010010 1 20
15 0011 1 5 1011 2 10 110101 1 5 101001 2 10
16 0100 0 0 1101 2 20 001110 0 0 111110 3 45
17 0011 1 5 111101 2 10
18 0100 0 0 011100 1 20

Table 13: Numbers of AF and AS for truncated collusion-producing differential
paths for P b

n

the practical confirmation experiments. Therefore, CiliPadi is expected to thwart
any differential type attacks.

6.2 Full Bit Diffusion

With the availability of the full AF distribution, we can determine the minimum
number of rounds for P to achieve full bit diffusion. Here, the findings from
Simpira v2 are directly applicable because the underlying round functions for
both Simpira and CiliPadi have the same diffusion properties. For d = 4, full
bit diffusion is achieved after 4d − 6 = 16 − 6 = 10 F -functions [17]. Based on
Table 7, 9 rounds of P is sufficient for full bit diffusion. As for d = 6, full bit
diffusion is achieved after 5 rounds [23]. Thus, the current number of rounds of
P for all variants of CiliPadi are sufficient to achieve full bit diffusion.

6.3 Extension to Linear Cryptanalysis

The previous findings on differential cryptanalysis can be trivially extended to
linear cryptanalysis due to the duality between linear and differential cryptanal-
ysis [22, 10], and also due to PRESENT’s s-box having a linear probability of
2−2. Thus, all the results in the previous subsections are applicable to linear
cryptanalysis.

19

7 Strengths and Weaknesses

The following list the expected strengths and weaknesses of CiliPadi.

7.1 Strengths

CiliPadi has the following advantages:

• It is trivial to expand the length of the permutation in multiple of 128 bits
due to the use of a Type-II GFN.

• The bitrate can be adjusted to allow different plaintext and tag lengths.

• The design is based on the sponge construction, which have been exten-
sively analyzed and employed in SHA-3 and one of the CAESAR portfolio
Ascon.

• Any AES-like block cipher or permutation can be adopted in the F -
function to replace the LED block cipher, if desired.

7.2 Weaknesses

The known limitations of CiliPadi are:

• The processing of the message and ciphertext blocks cannot be parallelized
because due to the sequential processing of the input blocks.

• The permutation can only be expanded in multiple of 128 bits. Extending
with a smaller granularity, e.g. 32 bits, is not supported. This can be ad-
dressed by using a smaller block cipher as the F -function such as KATAN
and KTANTAN [11].

References

[1] Authenticated Encryption FPGA Ranking. url: https://cryptography.
gmu.edu/athenadb/fpga_auth_cipher/table_view (visited on Mar. 20,
2019).

[2] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Cryptographic Sponge Functions, Version 0.1. http://keccak.noekeon.
org. Jan. 2011.

[3] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Permutation-Based Encryption, Authentication and Authenticated Encryp-
tion. DIAC – Directions in Authenticated Ciphers. July 2012.

[4] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
Sponge Functions. ECRYPT Hash Workshop 2007. 2007.

[5] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
The Keccak SHA-3 Submission, Version 3. SHA-3 Cryptographic Hash
Algorithm Competition. http://keccak.noekeon.org. Jan. 2011.

20

https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/table_view
https://cryptography.gmu.edu/athenadb/fpga_auth_cipher/table_view
http://keccak.noekeon.org
http://keccak.noekeon.org
http://keccak.noekeon.org

[6] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche, and
Ronny Van Keer. CAESAR submission: Ketje v2. CAESAR: Competition
for Authenticated Encryption: Security, Applicability, and Robustness.
https://competitions.cr.yp.to/round3/ketjev2.pdf. 2016.

[7] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche.
“Duplexing the Sponge: Single-Pass Authenticated Encryption and Other
Applications”. In: Selected Areas in Cryptography, SAC 2011. Ed. by Ali
Miri and Serge Vaudenay. Vol. 7118. Lecture Notes in Computer Science.
Springer, 2012, pp. 320–337. doi: 10.1007/978-3-642-28496-0_19.

[8] Begül Bilgin, Andrey Bogdanov, Miroslav Knežević, Florian Mendel, and
Qinju Wang. “Fides: Lightweight Authenticated Cipher with Side-Channel
Resistance for Constrained Hardware”. In: Cryptographic Hardware and
Embedded Systems – CHES 2013. Ed. by Guido Bertoni and Jean-Sébastien
Coron. Vol. 8086. Lecture Notes in Computer Science. Springer-Verlag,
2013, pp. 142–158. doi: 10.1007/978-3-642-40349-1_9.

[9] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkel-
soe. “PRESENT: An Ultra-Lightweight Block Cipher”. In: Cryptographic
Hardware and Embedded Systems – CHES 2007. Ed. by Pascal Paillier
and Ingrid Verbauwhede. Vol. 4727. Lecture Notes in Computer Science.
Springer-Verlag, 2007, pp. 450–466.

[10] Andrey Bogdanov and Kyoji Shibutani. “Generalized Feistel Networks
Revisited”. In: Designs, Codes and Cryptography 66.1–3 (2013), pp. 75–
97.

[11] Christophe De Cannière, Orr Dunkelman, and Miroslav Knežević. “KATAN
and KTANTAN – A Family of Small and Efficient Hardware-Oriented
Block Ciphers”. In: Cryptographic Hardware and Embedded Systems, CHES
2009. Ed. by Christophe Clavier and Kris Gaj. Vol. 5747. Lecture Notes
in Computer Science. Springer-Verlag, 2009, pp. 272–288.

[12] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. “Bee-
tle Family of Lightweight and Secure Authenticated Encryption Ciphers”.
In: IACR Transactions on Cryptographic Hardware and Embedded Systems
(TCHES) 2018.2 (2018), pp. 218–241. doi: 10.13154/tches.v2018.i2.
218-241.

[13] Jiageng Chen, Atsuko Miyaji, Chunhua Su, and Je Sen Teh. “Accurate
Estimation of the Full Differential Distribution for General Feistel Struc-
tures”. In: Information Security and Cryptology, Inscrypt 2015. Ed. by
Dongdai Lin, XiaoFeng Wang, and Moti Yung. Vol. 9589. Lecture Notes
in Computer Science. Springer-Verlag, 2016, pp. 108–124. doi: 10.1007/
978-3-319-38898-4_7.

[14] Jiageng Chen, Jesen Teh, Zhe Liu, Chunhua Su, Azman Samsudin, and
Yang Xiang. “Towards Accurate Statistical Analysis of Security Margins:
New Searching Strategies for Differential Attacks”. In: IEEE Transactions
on Computers 66.10 (Oct. 2017), pp. 1763–1777. doi: 10.1109/tc.2017.
2699190.

[15] Joan Daemen and Vincent Rijmen. The Design of Rijndael, AES – The
Advanced Encryption Standard. Springer-Verlag, 2002.

21

https://competitions.cr.yp.to/round3/ketjev2.pdf
https://doi.org/10.1007/978-3-642-28496-0_19
https://doi.org/10.1007/978-3-642-40349-1_9
https://doi.org/10.13154/tches.v2018.i2.218-241
https://doi.org/10.13154/tches.v2018.i2.218-241
https://doi.org/10.1007/978-3-319-38898-4_7
https://doi.org/10.1007/978-3-319-38898-4_7
https://doi.org/10.1109/tc.2017.2699190
https://doi.org/10.1109/tc.2017.2699190

[16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2: Submission to the CAESAR Competition. CAESAR: Compe-
tition for Authenticated Encryption: Security, Applicability, and Robust-
ness. https://competitions.cr.yp.to/round3/asconv12.pdf. 2016.

[17] Shay Gueron and Nicky Mouha. “Simpira v2: A Family of Efficient Per-
mutations Using the AES Round Function”. In: Advances in Cryptology –
ASIACRYPT 2016, Part I. Ed. by Jung Hee Cheon and Tsuyoshi Takagi.
Vol. 10031. Lecture Notes in Computer Science. Springer-Verlag, 2016,
pp. 95–125.

[18] Jian Guo, Thomas Peyrin, and Axel Poschmann. “The PHOTON Family
of Lightweight Hash Functions”. In: Advances in Cryptology – CRYPTO
2011. Ed. by Phillip Rogaway. Vol. 6841. Lecture Notes in Computer
Science. Springer, 2011, pp. 222–239. doi: 10.1007/978-3-642-22792-
9_13.

[19] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. “The
LED Block Cipher”. In: Cryptographic Hardware and Embedded Systems –
CHES 2011. Ed. by Bart Preneel and Tsuyoshi Takagi. Vol. 6917. Lecture
Notes in Computer Science. Springer-Verlag, 2011, pp. 326–341.

[20] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The
LED Block Cipher. Cryptology ePrint Archive, Report 2012/600. http:
//ia.cr/2012/600. 2012.

[21] Lars R. Knudsen and Vincent Rijmen. “Known-Key Distinguishers for
Some Block Ciphers”. In: Advances in Cryptology – ASIACRYPT 2007.
Ed. by Kaoru Kurosawa. Vol. 4833. Lecture Notes in Computer Science.
Springer-Verlag, 2007, pp. 315–324.

[22] Mitsuru Matsui. “On correlation between the order of S-boxes and the
strength of DES”. In: Advances in Cryptology – EUROCRYPT ’94. Ed. by
Alfredo De Santis. Vol. 950. Lecture Notes in Computer Science. Springer-
Verlag, 1995, pp. 366–375. doi: 10.1007/bfb0053451.

[23] Tomoyasu Suzaki and Kazuhiko Minematsu. “Improving the Generalized
Feistel”. In: Fast Software Encryption, FSE 2010. Ed. by Seokhie Hong
and Tetsu Iwata. Vol. 6147. Lecture Notes in Computer Science. Springer-
Verlag, 2010, pp. 19–39.

[24] Yuliang Zheng, Tsutomu Matsumoto, and Hideki Imai. “On the Construc-
tion of Block Ciphers Provably Secure and Not Relying on Any Unproved
Hypotheses”. In: Advances in Cryptology – CRYPTO ’89. Ed. by Gilles
Brassard. Vol. 435. Lecture Notes in Computer Science. Springer-Verlag,
1990, pp. 461–480.

22

https://competitions.cr.yp.to/round3/asconv12.pdf
https://doi.org/10.1007/978-3-642-22792-9_13
https://doi.org/10.1007/978-3-642-22792-9_13
http://ia.cr/2012/600
http://ia.cr/2012/600
https://doi.org/10.1007/bfb0053451

A Test Vectors

The following are the test vectors for the recommended flavours of CiliPadi.

CiliPadi-Mild

Key 01282

Nonce 01282

AD 164

Plaintext 064

Ciphertext 17a2da6e5f74a0c4

Tag f85b6cc1321172e8

CiliPadi-Medium

Key 01282

Nonce 01282

AD 1962
Plaintext 0962
Ciphertext 8d34c8413153119ac8b41336

Tag b349ac1f840bf016c931feed

CiliPadi-Hot

Key 02562

Nonce 01282

AD 1962
Plaintext 0962
Ciphertext bcb4f3795963a9b0f8b8cc8e

Tag 0f63efca252e1bef83888aab

CiliPadi-ExtraHot

Key 02562

Nonce 01282

AD 11282

Plaintext 01282

Ciphertext e2998e76e93da0ea5ff746579765272f

Tag 18eb6410b0c04b9aa02fe01ce974469d

Table 14: CiliPadi test vectors

23

	Introduction
	Preliminaries
	Notations
	Mode of Operation

	Specification
	Parameters
	Initialization Phase
	Padding
	Associated Data Authentication Phase
	Message Encryption Phase
	Message Decryption Phase
	Finalization Phase
	The Permutation Function P
	The F function
	AddConstants (AC)
	SubCells (SC)
	ShiftRows (SR)
	MixColumnsSerial (MCS)

	Design Rationale
	Key Lengths
	Sponge
	Permutation

	Performance Analysis
	Implementation Results

	Security Analysis
	Differential Cryptanalysis
	Preliminaries
	P as a Random Permutation
	Collision-Producing Differentials of CiliPadi
	Practical Security Bounds

	Full Bit Diffusion
	Extension to Linear Cryptanalysis

	Strengths and Weaknesses
	Strengths
	Weaknesses

	Test Vectors

