
SKINNY-AEAD and SKINNY-Hash

v1.1

Christof Beierle1,4, Jérémy Jean2, Stefan Kölbl3, Gregor Leander4, Amir Moradi4,
Thomas Peyrin5, Yu Sasaki6, Pascal Sasdrich4,7, and Siang Meng Sim5

1 SnT, University of Luxembourg, Luxembourg
beierle.christof@gmail.com

2 ANSSI, Paris, France
Jean.Jeremy@gmail.com

3 Cybercrypt A/S, Denmark
kste@mailbox.org

4 Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany
{Firstname.Lastname}@rub.de

5 School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

Thomas.Peyrin@ntu.edu.sg, crypto.s.m.sim@gmail.com

6 NTT Secure Platform Laboratories, Japan
Sasaki.Yu@lab.ntt.co.jp

7 Rambus Cryptography, The Netherlands

Table of Contents

1 Introduction . 3
2 Specification . 5

2.1 Notations . 5
2.2 Parameter Sets . 5
2.3 The Tweakable Block Ciphers SKINNY-128-256 and SKINNY-128-384 6
2.4 The AEAD Scheme SKINNY-AEAD . 9
2.5 The Hash Functionality SKINNY-Hash . 26

3 Security Claims . 29
4 Design Rationale . 31

4.1 Rationale for the Tweakable Block Ciphers . 31
4.2 Rationale for the AEAD scheme . 33
4.3 Rationale for the Hash Function Scheme . 35

5 Security Analysis of the SKINNY Tweakable Block Cipher . 36
5.1 Differential/Linear Cryptanalysis . 36
5.2 Other Attacks . 37
5.3 Third-Party Cryptanalysis . 38

6 Performance . 39
6.1 Estimating Area and Performances . 39
6.2 Comparing Theoretical Performance . 40
6.3 Hardware Implementations of SKINNY-AEAD and SKINNY-Hash Members . . 41

7 Intellectual Property . 41
A The 8-bit Sbox for SKINNY . 47
B Test Vectors for SKINNY-128-256 and SKINNY-128-384 . 47

1 Introduction

In this document, we specify our submissions SKINNY-AEAD and SKINNY-Hash to the
NIST lightweight cryptography standardization process. SKINNY is a family of lightweight
tweakable block ciphers proposed at CRYPTO 2016 [7]. We specify how to provide the
AEAD and hashing functionalities by using SKINNY as a base primitive.

SKINNY-AEAD. In short, SKINNY-AEAD uses a mode following the general ΘCB3 framework,
instanciated with SKINNY-128-384. The fact that SKINNY is a beyond birthday-bound
secure tweakable block cipher enables to achieve the provable security providing full security
in the nonce-respecting setting. A similar mode was also employed in the third-round
CAESAR candidate Deoxys-I [22]. Our primary design takes a 128-bit key, a 128-bit
nonce, and an associated data and a message of up to 264 × 16 bytes. It then outputs a
ciphertext of the same length as the plaintext and a 128-bit tag. We also specify other
members of this family to support any combination of n`- and t`-bit nonces and tags,
respectively, where n` ∈ {96, 128} and t` ∈ {64, 128}.

Moreover, we also specify the lightweight version instantiated with SKINNY-128-256.
This design is motivated from the observation that the submission requirement to support
250 input bytes might be unnecessary for several of the use cases of the lightweight
cryptography. This family consists of two members that take a 128-bit key, a 96-bit nonce,
and an associated data and a message of up to 228 bytes as input and produce the ciphertext
and a t`-bit tag, where t` ∈ {64, 128}. Because of the restriction of the maximum number
of input message bytes, this family do not satisfy the submission requirement to support
input messages of up to 250 bytes, yet provides even smaller and faster AEAD schemes.

SKINNY-Hash. SKINNY-Hash consists of two members of the hash function schemes that
adopt the well-known sponge construction.

Our primary member uses a 384-bit to 384-bit function built with SKINNY-128-384 to
provide a 128-bit secure hash function and the secondary member uses a 256-bit to 256-bit
function built with SKINNY-128-256 to provide a 112-bit secure hash function.

Features. Before going into details of the specifications, we briefly summarize the main
features of our design in the following.

• Well-understood design and high security margin. The SKINNY family of tweak-
able block ciphers was designed as a solid Substitution-Permutation network (SPN)
having a well-analyzed security bound against the most fundamental cryptanalytic
approaches: differential cryptanalysis and linear cryptanalysis. In addition, SKINNY
receives a lot of security analysis by third-party researchers, which demonstrates its
strong resistance against cryptanalysis. The cipher can basically be understood as a
tweakable version of a tailored AES which omits or simplifies all components not strictly
necessary for the security. Therefore, similar cryptanalytic approaches as for AES can
be applied to our design. However, opposed to AES, the TWEAKEY framework allows to
derive strong security arguments in the related-key, related-tweak setting for SKINNY.
Moreover, SKINNY offers a high security margin. At the time of submission, based on
our own cryptanalysis and the extensive external cryptanalysis since its publication,
SKINNY-128-384 offers 29 (out of 56) rounds, and SKINNY-128-256 offers 25 (out of
48) rounds of security margin in the related-tweakey setting. In other words, less than
half of the number of rounds have been broken so far.

• Security proofs by a modular approach. The security of the authenticated en-
cryption schemes and hash functions are directly inherited from the well-known and
widely-applied modes of operation used in our design. Indeed, SKINNY-AEAD relies on

3

the proofs of the ΘCB3 mode, while for SKINNY-Hash we rely on the provable security
of the sponge framework. The security of our schemes can thus be reduced to the ideal
behavior of the underlying primitives SKINNY-128-384 and SKINNY-128-256.

• Beyond-birthday-bound security. By using a tweakable block cipher directly con-
structed by the TWEAKEY framework, we obtain beyond-birthday-bound security which
allows to efficiently exploit the whole state. This is different to modes based on OCB,
which only offers security up to the birthday bound. Such modes would require larger
internal states to achieve the same security level.

• Efficient protection against side-channel attacks. Thanks to the structured Sbox
of SKINNY, which is an iteration of a quadratic permutation, its Threshold Implemen-
tation (a provably-secure countermeasure against side-channel analysis attacks) can be
efficiently made. This helps us to efficiently integrate side-channel countermeasures
into various implementations of SKINNY with minimum number of shares and limited
number of fresh randomness, both affecting the area overhead of the resulting design.

• General-purpose lightweight schemes. When designing a lightweight encryption
or hashing scheme, several use cases must be taken in account. While area-optimized
implementations are important for some very constrained applications, throughput
or throughput-over-area optimized implementations are also very relevant. Actually,
looking at recently introduced efficiency measurements [24], one can see that our
designs choices are good for many types of implementations, which is exactly what
makes a good general-purpose lightweight encryption scheme.

• Efficiency for short messages. Our algorithms are efficient for short messages. For
authenticated encryption, the main reason is because the design is based on a tweakable
block cipher, which allows to avoid any precomputation (like in OCB, AES-GCM, etc.). In
particular, the first 128-bit message block is handled directly and by taking in account
the tag generation, one needs only m+ 1 internal calls to the tweakable block cipher
to process messages of m blocks of 128 bits each (if there is no associated data).
Our primary member for hashing requires at most 3(m + 2) calls to the tweakable
block cipher for producing a 256-bit digest for a message of m blocks of 128 bits each.

• Parallelizable mode. Our AEAD schemes are fully parallilizable as they are based
on the ΘCB3 mode, which employs independent calls to the tweakable block cipher.

• Flexibility. Our AEAD design allows for smooth parameter handling. For the official
NIST submision given in this document we define specific parameter sets, but any
user can in principle choose its own separation into nonce, key and block counter by
adapting the key and tweak sizes at his/her convenience. This flexibility comes from
the unified vision of the key and tweak material brought by the TWEAKEY framework.
In a nutshell, one implementation of the underlying cipher is sufficient to support all
versions with different key and tweak sizes (which sum up to the same size).

4

2 Specification

2.1 Notations

By ‖ we denote the concatenation of bitstrings. Given a bitstring B, we denote by Bj the
j-times concatenation of B, where B0 is defined to be the empty string ε. For instance
0‖103 = 0103 = 01000 and (10)3 = 101010. We denote the length of a string B in bits by
|B|, where |ε| = 0.

2.2 Parameter Sets

AEAD. In a nutshell, our AEAD scheme adopts a mode that can be described in the ΘCB3

framework [27] by using either SKINNY-128-384 or SKINNY-128-256 as the underlying
tweakable block cipher.

Our primary member instantiates ΘCB3 with the tweakable block cipher SKINNY-128-384
used with 128-bit keys, 128-bit nonces and which produces 128-bit authentication tags.
Along with this primary AEAD scheme, we propose three additional ones that extend
the possible parameters and allow users to choose between two nonce sizes (96 bits or
128 bits), and two tag sizes (128 bits or 64 bits). All of them are consistent with NIST’s
requirements.

We also specify two secondary options that are designed for processing short inputs.
Those are based on a second tweakable block cipher, namely SKINNY-128-256. The nonce
size is fixed to 96 bits, while users can choose between two tag sizes: 128 or 64 bits. The
maximum number of message blocks that can be processed with SKINNY-128-256-based
members is limited to 228 bytes. Users need to be careful about its usage because these two
algorithms do not meet NIST’s requirements to support input messages of up to 250 bytes.

Hashing. Overall, the SKINNY-Hash family contains two function-based sponge con-
structions [11], in which the underlying functions are built with SKINNY-128-384 and
SKINNY-128-256. Both family members, denoted SKINNY-tk3-Hash and SKINNY-tk2-Hash,
process input messages of arbitrary length and output a 256-bit digest.

A list of our proposed AEAD schemes (members M1 to M6), together with the two
hashing algorithms is provided in Table 1. For comparisons, we pair the AEAD members M1,
M2, M3 and M4 with the hashing algorithm SKINNY-tk3-Hash and the AEAD members
M5 and M6 with SKINNY-tk2-Hash as the constructions in the respective pairs are based
on the same variant of the SKINNY tweakable block cipher.

Table 1: Our proposed AEAD schemes and hashing algorithms.

Member Block Cipher Nonce Tag Key Hash Function Rate Capacity

underlying primitive bits bits bits type bits bits

M1 † SKINNY-128-384 128 128 128

384-bit sponge 128 256
M2 SKINNY-128-384 96 128 128

M3 SKINNY-128-384 128 64 128

M4 SKINNY-128-384 96 64 128

M5 ∗ SKINNY-128-256 96 128 128
256-bit sponge 32 224

M6 ∗ SKINNY-128-256 96 64 128

†: Primary member. ∗: Do not strictly follow NIST requirements.

5

2.3 The Tweakable Block Ciphers SKINNY-128-256 and SKINNY-128-384

We already published the SKINNY family of tweakable block ciphers in 2016 in [7]. For
the sake of completeness, we provide the specifications of the two members of the SKINNY

family that are relevant for this submission, namely SKINNY-128-256 and SKINNY-128-384

below.
The tweakable block ciphers SKINNY-128-256 and SKINNY-128-384 both have a block

size of n = 128 bit and the internal state is viewed as a 4× 4 square array of cells, where
each cell contains a byte. We denote ISi,j the cell of the internal state located at Row i
and Column j (counting starts from 0). One can also view this 4× 4 square array of cells
as a vector of cells by concatenating the rows. Thus, we denote with a single subscript ISi
the cell of the internal state located at Position i in this vector (counting starts from 0)
and we have that ISi,j = IS4·i+j .

The ciphers follow the TWEAKEY framework from [21] and therefore take a tweakey
input – instead of a key only – without any distinction between key and tweak input.

The two tweakable block ciphers SKINNY-128-256 and SKINNY-128-384 mainly differ
in the size of the tweakey input: they respectively process 2n = 256 or 3n = 384 tweakey
bits. The tweakey state is also viewed as a collection of two (resp., three) 4 × 4 square
arrays of cells of 8 bits each. We denote these arrays TK1 and TK2 for SKINNY-128-256
and TK1, TK2 and TK3 for SKINNY-128-384. Moreover, we denote TKzi,j the cell of
the tweakey state located at Row i and Column j of the z-th cell array. As for the internal
state, we extend this notation to a vector view with a single subscript: TK1i, TK2i and
TK3i.

We now give the structural specifications of the ciphers.

Initialization. The ciphers receive a plaintext m = m0‖m1‖ · · · ‖m14‖m15, where the mi

are 8-bit words. The initialization of the ciphers’ internal state are performed by simply
setting ISi = mi for 0 ≤ i ≤ 15, i.e.,

IS =

m0 m1 m2 m3

m4 m5 m6 m7

m8 m9 m10 m11

m12 m13 m14 m15

 .

Note that the state is loaded row-wise rather than in the column-wise fashion as done for
example in the AES. This is a more hardware-friendly choice, as pointed out in [33].

The ciphers receive a tweakey input tk = tk0‖tk1‖ · · · ‖tk31 (resp., tk = tk0‖tk1‖ · · · ‖tk47),
where the tki are 8-bit words. The initialization of the cipher’s tweakey state is performed
by simply setting for 0 ≤ i ≤ 15:

For 2n-bit tweakey: For 3n-bit tweakey:

TK1i = tki TK1i = tki

TK2i = tk16+i TK2i = tk16+i

TK3i = tk32+i

Note that the tweakey states are also loaded row-wise.

Round Function. One encryption round of SKINNY is composed of five operations in the
following order: SubCells, AddConstants, AddRoundTweakey, ShiftRows and MixColumns

(see illustration in Figure 1). The number r of rounds to perform during encryption depends
on the tweakey size. In particular, SKINNY-128-256 applies r = 48 and SKINNY-128-384

applies r = 56 rounds. Note that no whitening key is used.

6

SC AC

ART

>>> 1

>>> 2

>>> 3

ShiftRows MixColumns

Figure 1: The SKINNY round function applies five different transformations: SubCells
(SC), AddConstants (AC), AddRoundTweakey (ART), ShiftRows (SR) and MixColumns (MC).

MSB LSB

MSB LSB

Figure 2: Construction of the Sbox S8.

SubCells. An 8-bit Sbox S8 is applied to every cell of the ciphers internal state. Its
design, depicted in Figure 2, is simple and inspired by the PICCOLO Sbox [43].

If x0, . . ., x7 represent the eight inputs bits of the Sbox (x0 being the least significant
bit), it basically applies the below transformation on the 8-bit state:

(x7, x6, x5, x4, x3, x2, x1, x0)→ (x7, x6, x5, x4 ⊕ (x7 ∨ x6), x3, x2, x1, x0 ⊕ (x3 ∨ x2)),

followed by the bit permutation

(x7, x6, x5, x4, x3, x2, x1, x0) −→ (x2, x1, x7, x6, x4, x0, x3, x5),

repeating this process four times, except for the last iteration where there is just a bit
swap between x1 and x2. Besides, we provide in Appendix A the table of S8 and its
inverse in hexadecimal notations.

AddConstants. A 6-bit affine LFSR, whose state is denoted (rc5, rc4, rc3, rc2, rc1, rc0)
(with rc0 being the least significant bit), is used to generate round constants. Its update
function is defined as:

(rc5||rc4||rc3||rc2||rc1||rc0)→ (rc4||rc3||rc2||rc1||rc0||rc5 ⊕ rc4 ⊕ 1) .

The six bits are initialized to zero, and updated before used in a given round. The bits
from the LFSR are arranged into a 4× 4 array and only the first column of the state

7

is affected by the LFSR bits, i.e.,

c0 0 0 0

c1 0 0 0

c2 0 0 0

0 0 0 0

 ,

with c2 = 0x2 and (c0, c1) = (0‖0‖0‖0‖rc3‖rc2‖rc1‖rc0, 0‖0‖0‖0‖0‖0‖rc5‖rc4).
The round constants are combined with the state, respecting array positioning, using
bitwise exclusive-or. The values of the (rc5, rc4, rc3, rc2, rc1, rc0) constants for each
round are given in Table 2 below, encoded to byte values for each round, with rc0
being the least significant bit.

Table 2: SKINNY Round Constants.

Rounds Constants

1 - 16 01,03,07,0F,1F,3E,3D,3B,37,2F,1E,3C,39,33,27,0E

17 - 32 1D,3A,35,2B,16,2C,18,30,21,02,05,0B,17,2E,1C,38

33 - 48 31,23,06,0D,1B,36,2D,1A,34,29,12,24,08,11,22,04

49 - 62 09,13,26,0C,19,32,25,0A,15,2A,14,28,10,20

AddRoundTweakey. The first and second rows of all tweakey arrays are extracted and
bitwise exclusive-ored to the ciphers internal state, respecting the array positioning.
More formally, for i = {0, 1} and j = {0, 1, 2, 3}, we have:
• ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j for SKINNY-128-256,
• ISi,j = ISi,j ⊕ TK1i,j ⊕ TK2i,j ⊕ TK3i,j for SKINNY-128-384.

Extracted
8s-bit subtweakey

PT

LFSR

LFSR

Figure 3: The tweakey schedule in SKINNY. Each tweakey word TK1, TK2 and TK3 (if
any) follows a similar transformation update, except that no LFSR is applied to TK1.

Then, the tweakey arrays are updated as follows (this tweakey schedule is illustrated
in Figure 3). First, a permutation PT is applied on the cells positions of all tweakey
arrays: for all 0 ≤ i ≤ 15, we set TKzi ← TKzPT [i] with

PT = [9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7] ,

for z ∈ {1, 2} (resp., z ∈ {1, 2, 3}). This corresponds to the following reordering of the
matrix cells, where indices are taken row-wise:

(0, . . . , 15)
PT7−→ (9, 15, 8, 13, 10, 14, 12, 11, 0, 1, 2, 3, 4, 5, 6, 7).

8

Table 3: The LFSRs used in SKINNY to generate the round tweakeys. The TK parameter
gives the number of the corresponding tweakey word in the cipher.

TK s LFSR

TK2 8 (x7||x6||x5||x4||x3||x2||x1||x0) → (x6||x5||x4||x3||x2||x1||x0||x7 ⊕ x5)

TK3 8 (x7||x6||x5||x4||x3||x2||x1||x0) → (x0 ⊕ x6||x7||x6||x5||x4||x3||x2||x1)

Finally, every cell of the first and second rows of TK2 (resp., TK2 and TK3) are
individually updated with an LFSR. The LFSRs used are given in Table 3 (x0 stands
for the LSB of the cell).

ShiftRows. As in the AES, in this layer, the rows of the cipher state cell array are rotated.
More precisely, the second, third, and fourth cell rows are rotated by 1, 2 and 3
positions to the right, respectively. In other words, a permutation P is applied on
the cells positions of the cipher internal state cell array: for all 0 ≤ i ≤ 15, we set
ISi ← ISP [i] with

P = [0, 1, 2, 3, 7, 4, 5, 6, 10, 11, 8, 9, 13, 14, 15, 12].

MixColumns. Each column of the cipher internal state array is multiplied by the following
binary matrix M:

M =

1 0 1 1

1 0 0 0

0 1 1 0

1 0 1 0

 .

The final value of the internal state array provides the ciphertext with cells be-
ing unpacked in the same way as the packing during initialization. Test vectors for
SKINNY-128-256 and SKINNY-128-384 are provided in Appendix B. Note that decryption
is very similar to encryption as all cipher components have very simple inverses (SubCells
and MixColumns are based on a generalized Feistel structure, so their respective inverse
is straightforward to deduce and can be implemented with the exact same number of
operations).

2.4 The AEAD Scheme SKINNY-AEAD

The authenticated encryption scheme adopts the ΘCB3 mode using either SKINNY-128-384
or SKINNY-128-256 as the underlying tweakable block cipher, depending on the member
as shown in Table 1. In the following, we provide the detailed specification of the scheme.
Let SKINNY-128-384tk(P) denote the encryption of a plaintext P under the tweakey
tk with the SKINNY-128-384 algorithm and let SKINNY-128-256tk(P) be the encryption
of a plaintext P under the tweakey tk with the SKINNY-128-256 algorithm. Let further
SKINNY-128-384−1tk (C) (resp. SKINNY-128-256−1tk (C)) denote the decryption of a ciphertext
C under the tweakey tk with the SKINNY-128-384 (resp. SKINNY-128-256) algorithm.

By (N,A,M), we denote the tuple of a nonce N , associated data A and a message M ,
where A and M can be of arbitrary length (including empty).

SKINNY-AEAD Based on SKINNY-128-384. This case applies to our primary member (M1),
as well as M2, M3, and M4 (refer to Table 1).

9

Domain Separation. We first define a 1-byte string that ensures independence of tweakable
block cipher calls for different kinds of computations (i.e., domain separation) and also for
different SKINNY-AEAD members. Let b7‖b6‖b5‖b4‖b3‖b2‖b1‖b0 be the bitwise representation
of this byte, where b7 is the MSB and b0 is the LSB (see also Figure 4). Then, we use the
following convention:

- b7 to b5 are always fixed to 0,
- b4 encodes the nonce size n` ∈ {0, 1}, where n` is set to 0 if the nonce size is 128 bits

and 1 if the nonce size is 96 bits,
- b3 encodes the tag size t` ∈ {0, 1}, where t` is set to 0 if the tag size is 128 bits and 1 if

the tag size is 64 bits,
- b2 to b0 are used for the actual domain separation, which is further specified as follows:

- 000: encryption of a full message block,
- 001: encryption of a partial message block,
- 010: computation of a full associated data block,
- 011: computation of a partial associated data block,
- 100: generation of a tag if the message size in bits is a multiple of 128,
- 101: generation of a tag if the message size in bits is not a multiple of 128.

fixed to 0 𝑑𝑖: domain separation

𝑡ℓ: tag size
𝑛ℓ: nonce size

𝑏7 𝑏6 𝑏5 𝑏4 𝑏3 𝑏2 𝑏1 𝑏0

Figure 4: Domain separation and distinction of the different members.

Note that the nonce size (b4) and the tag size (b3) are fixed during the computation of
a single tuple of nonce N , associated data A and message M , while b2 to b0 vary accross a
computation of a single (N,A,M).

Hereafter, we specify the computations of a ciphertext C and a tag tag for a given
(N,A,M), key K, n`, and t`. For simplicity, we denote this single byte by d0, d1, d2, d3,
d4, or d5 depending on the 3-bit value for the domain separation, i.e.:

d0 = 000n`t`000,

d1 = 000n`t`001,

d2 = 000n`t`010,

d3 = 000n`t`011,

d4 = 000n`t`100,

d5 = 000n`t`101.

Associated Data Processing. The computation for the associated data is depicted in Figure 5.
If the byte-length of A is not a multiple of the block size (i.e., 16 bytes), it has to be
padded. In particular, if |A| denotes the length of A in bit, let A = A0‖A1‖ . . . ‖A`a−1‖A`a
with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128. Note that if |A| is a multiple of
128, |A`a | is set to the empty string ε and no padding is applied. Otherwise, we apply the
padding pad10* to A`a which is defined as

pad10*: X 7→ X‖1‖0127−|X| mod 128.

Each associated data block Ai is processed in parallel by SKINNY-128-384 as a plaintext
input under a 384-bit tweakey, where the structure of the 384-bit tweakey is as follows.

10

- The tweakey bytes tk0, . . . , tk15 store 8 bytes from a 64-bit LFSR, followed by 7 bytes
of zeros, and then the single byte for the domain separation (d2 or d3 whether it is
a padded block). The 64-bit LFSR plays the role of a block counter. It is defined
as follows: Let x63‖x62‖x61‖ · · · ‖x2‖x1‖x0 denote the 64-bit state of the LFSR. It is
initialized to LFSR0 = 063‖1 and updated as LFSRt+1 = upd64(LFSRt), where the
update function upd64 is defined by the polynomial x64 + x4 + x3 + x+ 1 as

upd64 : x63‖x62‖ . . . ‖x1‖x0 −→ y63‖y62‖ . . . ‖y1‖y0

with:

yi ← xi−1 for i ∈ {63, 62, . . . , 1}\{4, 3, 1},
y4 ← x3 ⊕ x63,
y3 ← x2 ⊕ x63,
y1 ← x0 ⊕ x63,
y0 ← x63.

Before loaded in the tweakey state, the order of the bytes of the LFSR state is reversed,
i.e., tk0‖tk1‖ . . . ‖tk15 = rev64(LFSRt)‖056‖d2 (resp. tk15 = d3 for the last padded
block), where rev64 is defined by

rev64 : x7‖x6‖x5‖x4‖x3‖x2‖x1‖x0 7→ x0‖x1‖x2‖x3‖x4‖x5‖x6‖x7 (∀i : |xi| = 8) .

- The tweakey bytes tk16‖tk17‖ . . . ‖tk31 store the nonce N . If n` = 1, i.e., if the nonce
size is 96 bits, 32-bit zeros are appended to N , thus, tk16‖tk17‖ . . . ‖tk31 = N‖032.

- The tweakey bytes tk32‖tk33‖ . . . ‖tk47 store the 128-bit key K.

The XOR sum of the each block’s output is stored as Auth, which is later used in the final
authentication tag computation.

Remind that if the size of A is not a multiple of 128 bits, we use the domain separation
byte d3 to process the last padded block.

A0

E
0‖d2

N,K

0

A1

E
1‖d2

N,K
. . .

Ala−1

E
la−1‖d2

N,K

Auth. . .

(a) Without padding.

A0

E
0‖d2

N,K

0

A1

E
1‖d2

N,K
. . .

Ala−1

E
la−1‖d2

N,K

Ala10
∗

E
la‖d3

N,K

Auth. . .

(b) With padding.

Figure 5: Handling of the associated data: in the case where the associated data is a
multiple of the block size, no padding is needed. In the figures, E refers to SKINNY-128-384.
For simplicity, we denote the block counter by 0 . . . , `a − 1 (resp., 0, . . . , `a) but actually
refer to the state of the LFSRs serving as a block counter.

Encryption. The encryption of M is depicted in Figure 6 and Figure 7. First, suppose
that the size of M in bits is a multiple of 128 (Figure 6). In that case, M is parsed into
128-bit blocks M0,M1,M2, . . . ,M`m−1 and no padding is applied. Each message block Mi

is processed by SKINNY-128-384 as a plaintext input under a particular 384-bit tweakey
and the output is taken as the corresponding ciphertext block. The structure of the 384-bit

11

tweakey differs from the associated data processing only by the domain separation byte.
Here, the byte tk15 is fixed to d0 instead of d2.

To produce the tag, the XOR sum of the plaintext blocks noted Σ is computed and
then encrypted by SKINNY-128-384, where the 384-bit tweakey is analogously defined as
tk0‖tk1‖ . . . ‖tk47 = rev64(LFSR`m)‖056‖d4‖N‖K. Finally, the output of this encryption
is XORed with Auth. If t` = 0, i.e., the tag size is 128 bits, the result of this XOR is a tag.
If t` = 1, i.e., the tag size is 64 bits, the result of this XOR is truncated by trunc64 to 64
bit, where the truncation functions trunci are defined for inputs of length at least i by

trunci : X = x0‖x1‖ . . . ‖x|X|−1 7→ x0‖x1‖ . . . ‖xi−1.

M0

E
0‖d0

N,K

C0

M1

E
1‖d0

N,K

C1

Mlm−1

E
lm−1‖d0

N,K

Clm−1

.

Σ

E
lm‖d4

N,K

tag

Auth

Figure 6: Encryption of SKINNY-AEAD with SKINNY-128-384 without padding when t` =
128. Again, E refers to SKINNY-128-384. For simplicity, we denote the block counter by
0, . . . , `m but actually refer to the state of the LFSRs serving as a block counter.

In the case |M | is not a multiple of 128 (Figure 7), the same padding pad10* as for the as-
sociated data is applied to M . In particular, M is split into M = M0‖M1‖ . . . ‖M`m−1‖M`m

with |Mi| = 128 for i ∈ {0, . . . , `m−1} and 0 < |M`m | < 127. The processing of the message
blocks Mi, i ∈ {0, . . . , `m−1} is the same as in the case described above. The last ciphertext
block C`m is computed as the XOR sum of the encryption of 0 with SKINNY-128-384

under the 384-bit tweakey tk0‖tk1‖ . . . ‖tk47 = rev64(LFSR`m)‖056‖d1‖N‖K (truncated
to |M`m | bits) with the plaintext block M`m .

For the tag computation, the checksum is computed as M0 ⊕M1 ⊕ · · · ⊕M`m−1 ⊕
pad10*(M`m) and it is encrypted with SKINNY-128-384 under the 384-bit tweakey

rev64(LFSR`m+1
)‖056‖d5‖N‖K.

Similar as for the unpadded case, the encryption is XORed with Auth and truncated in
the same way as described above if t` = 1.

Decryption. The decryption and tag verification procedure for given (K,N,A,C, tag) is
straightforward.

Formally, we provide the algorithms of the authenticated encryption members M1, M2,
M3, and M4, together with their decryption and tag verification procedure, in Algorithms 1,
2, 3, 4, 5, 6 and 7, 8, respectively.

12

M0

E
0‖d0

N,K

C0

M1

E
1‖d0

N,K

C1

Mlm−1

E
lm−1‖d0

N,K

Clm−1

Mlm10∗

0n

E
lm‖d1

N,K

Clm

.

Σ

E
lm+1‖d5

N,K

tag

Auth

Figure 7: Encryption of SKINNY-AEAD with SKINNY-128-384 with padded message when
t` = 128. The last cipherblock block Clm is further truncated to have the same size as
Mlm . Again, we denote the block counter by 0, . . . , `m + 1 but actually refer to the state
of the LFSRs serving as a block counter.

Algorithm 1 The authenticated encryption algorithm SKINNY-AEAD-M1-Enc(K,N,A,M)
In: Key K, nonce N (both 128 bit), associated data A, message M (both arbitrarily long)
Out: (C, tag), where C is the ciphertext with |C| = |M | and tag is a 128-bit tag

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 063‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00000010‖N‖K(Ai)
LFSR← upd64(LFSR)

if A`a 6= ε then
Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00000011‖N‖K(pad10*(A`a))

//Encryption
M0‖M1‖ . . . ‖M`m−1‖M`m ←M with |Mi| = 128 for i ∈ {0, . . . , `m − 1} and |M`m | < 128
Σ ← 0128

LFSR← 063‖1
for all i = 0, . . . , `m − 1 do

Ci ← SKINNY-128-384rev64(LFSR)‖056‖00000000‖N‖K(Mi)
Σ ← Σ ⊕Mi

LFSR← upd64(LFSR)

if M`m = ε then
C`m ← ε
T ← SKINNY-128-384rev64(LFSR)‖056‖00000100‖N‖K(Σ)

else
R← SKINNY-128-384rev64(LFSR)‖056‖00000001‖N‖K(0128)
C`m ←M`m ⊕ trunc|M`m |(R)
LFSR← upd64(LFSR)
Σ ← Σ ⊕ pad10*(M`m)
T ← SKINNY-128-384rev64(LFSR)‖056‖00000101‖N‖K(Σ)

C ← C0‖C1‖ . . . ‖C`m−1‖C`m

//Tag generation
tag← T ⊕ Auth
return (C, tag)

13

Algorithm 2 The decryption algorithm SKINNY-AEAD-M1-Dec(K,N,A,C, tag)
In: Key K, nonce N (both 128 bit), associated data A, ciphertext C (both arbitrarily
long), 128-bit tag tag
Out: M if tag is valid, ⊥ otherwise

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 063‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00000010‖N‖K(Ai)
LFSR← upd64(LFSR)

if A`a 6= ε then
Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00000011‖N‖K(pad10*(A`a))

//Decryption
C0‖C1‖ . . . ‖C`m−1‖C`m ← C with |Ci| = 128 for i ∈ {0, . . . , `m − 1} and |C`m | < 128
Σ ← 0128

LFSR← 063‖1
for all i = 0, . . . , `m − 1 do

Mi ← SKINNY-128-384−1
rev64(LFSR)‖056‖00000000‖N‖K(Ci)

Σ ← Σ ⊕Mi

LFSR← upd64(LFSR)

if C`m = ε then
M`m ← ε
T ← SKINNY-128-384rev64(LFSR)‖056‖00000100‖N‖K(Σ)

else
R← SKINNY-128-384rev64(LFSR)‖056‖00000001‖N‖K(0128)
M`m ← C`m ⊕ trunc|C`m |(R)
LFSR← upd64(LFSR)
Σ ← Σ ⊕ pad10*(M`m)
T ← SKINNY-128-384rev64(LFSR)‖056‖00000101‖N‖K(Σ)

M ←M0‖M1‖ . . . ‖M`m−1‖M`m

//Tag verification
tag′ ← T ⊕ Auth
if tag′ = tag then

return M
else

return ⊥

14

Algorithm 3 The authenticated encryption algorithm SKINNY-AEAD-M2-Enc(K,N,A,M)
In: 128-bit key K, 96-bit nonce N , associated data A, message M (both arbitrarily long)
Out: (C, tag), where C is the ciphertext with |C| = |M | and tag is a 128-bit tag

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 063‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00010010‖N‖032‖K(Ai)
LFSR← upd64(LFSR)

if A`a 6= ε then
Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00010011‖N‖032‖K(pad10*(A`a))

//Encryption
M0‖M1‖ . . . ‖M`m−1‖M`m ←M with |Mi| = 128 for i ∈ {0, . . . , `m − 1} and |M`m | < 128
Σ ← 0128

LFSR← 063‖1
for all i = 0, . . . , `m − 1 do

Ci ← SKINNY-128-384rev64(LFSR)‖056‖00010000‖N‖032‖K(Mi)
Σ ← Σ ⊕Mi

LFSR← upd64(LFSR)

if M`m = ε then
C`m ← ε
T ← SKINNY-128-384rev64(LFSR)‖056‖00010100‖N‖032‖K(Σ)

else
R← SKINNY-128-384rev64(LFSR)‖056‖00010001‖N‖032‖K(0128)
C`m ←M`m ⊕ trunc|M`m |(R)
LFSR← upd64(LFSR)
Σ ← Σ ⊕ pad10*(M`m)
T ← SKINNY-128-384rev64(LFSR)‖056‖00010101‖N‖032‖K(Σ)

C ← C0‖C1‖ . . . ‖C`m−1‖C`m

//Tag generation
tag← T ⊕ Auth
return (C, tag)

15

Algorithm 4 The decryption algorithm SKINNY-AEAD-M2-Dec(K,N,A,C, tag)
In: 128-bit key K, 96-bit nonce N , associated data A, ciphertext C (both arbitrarily long),
128-bit tag tag
Out: M if tag is valid, ⊥ otherwise

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 063‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00010010‖N‖032‖K(Ai)
LFSR← upd64(LFSR)

if A`a 6= ε then
Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00010011‖N‖032‖K(pad10*(A`a))

//Decryption
C0‖C1‖ . . . ‖C`m−1‖C`m ← C with |Ci| = 128 for i ∈ {0, . . . , `m − 1} and |C`m | < 128
Σ ← 0128

LFSR← 063‖1
for all i = 0, . . . , `m − 1 do

Mi ← SKINNY-128-384−1
rev64(LFSR)‖056‖00010000‖N‖032‖K(Ci)

Σ ← Σ ⊕Mi

LFSR← upd64(LFSR)

if C`m = ε then
M`m ← ε
T ← SKINNY-128-384rev64(LFSR)‖056‖00010100‖N‖032‖K(Σ)

else
R← SKINNY-128-384rev64(LFSR)‖056‖00010001‖N‖032‖K(0128)
M`m ← C`m ⊕ trunc|C`m |(R)
LFSR← upd64(LFSR)
Σ ← Σ ⊕ pad10*(M`m)
T ← SKINNY-128-384rev64(LFSR)‖056‖00010101‖N‖032‖K(Σ)

M ←M0‖M1‖ . . . ‖M`m−1‖M`m

//Tag verification
tag′ ← T ⊕ Auth
if tag′ = tag then

return M
else

return ⊥

16

Algorithm 5 The authenticated encryption algorithm SKINNY-AEAD-M3-Enc(K,N,A,M)
In: Key K, nonce N (both 128 bit), associated data A, message M (both arbitrarily long)
Out: (C, tag), where C is the ciphertext with |C| = |M | and tag is a 64-bit tag

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 063‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00001010‖N‖K(Ai)
LFSR← upd64(LFSR)

if A`a 6= ε then
Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00001011‖N‖K(pad10*(A`a))

//Encryption
M0‖M1‖ . . . ‖M`m−1‖M`m ←M with |Mi| = 128 for i ∈ {0, . . . , `m − 1} and |M`m | < 128
Σ ← 0128

LFSR← 063‖1
for all i = 0, . . . , `m − 1 do

Ci ← SKINNY-128-384rev64(LFSR)‖056‖00001000‖N‖K(Mi)
Σ ← Σ ⊕Mi

LFSR← upd64(LFSR)

if M`m = ε then
C`m ← ε
T ← SKINNY-128-384rev64(LFSR)‖056‖00001100‖N‖K(Σ)

else
R← SKINNY-128-384rev64(LFSR)‖056‖00001001‖N‖K(0128)
C`m ←M`m ⊕ trunc|M`m |(R)
LFSR← upd64(LFSR)
Σ ← Σ ⊕ pad10*(M`m)
T ← SKINNY-128-384rev64(LFSR)‖056‖00001101‖N‖K(Σ)

C ← C0‖C1‖ . . . ‖C`m−1‖C`m

//Tag generation
tag← trunc64(T ⊕ Auth)
return (C, tag)

17

Algorithm 6 The decryption algorithm SKINNY-AEAD-M3-Dec(K,N,A,C, tag)
In: Key K, nonce N (both 128 bit), associated data A, ciphertext C (both arbitrarily
long), 64-bit tag tag
Out: M if tag is valid, ⊥ otherwise

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 063‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00001010‖N‖K(Ai)
LFSR← upd64(LFSR)

if A`a 6= ε then
Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00001011‖N‖K(pad10*(A`a))

//Decryption
C0‖C1‖ . . . ‖C`m−1‖C`m ← C with |Ci| = 128 for i ∈ {0, . . . , `m − 1} and |C`m | < 128
Σ ← 0128

LFSR← 063‖1
for all i = 0, . . . , `m − 1 do

Mi ← SKINNY-128-384−1
rev64(LFSR)‖056‖00001000‖N‖K(Ci)

Σ ← Σ ⊕Mi

LFSR← upd64(LFSR)

if C`m = ε then
M`m ← ε
T ← SKINNY-128-384rev64(LFSR)‖056‖00001100‖N‖K(Σ)

else
R← SKINNY-128-384rev64(LFSR)‖056‖00001001‖N‖K(0128)
M`m ← C`m ⊕ trunc|C`m |(R)
LFSR← upd64(LFSR)
Σ ← Σ ⊕ pad10*(M`m)
T ← SKINNY-128-384rev64(LFSR)‖056‖00001101‖N‖K(Σ)

M ←M0‖M1‖ . . . ‖M`m−1‖M`m

//Tag verification
tag′ ← trunc64(T ⊕ Auth)
if tag′ = tag then

return M
else

return ⊥

18

Algorithm 7 The authenticated encryption algorithm SKINNY-AEAD-M4-Enc(K,N,A,M)
In: 128-bit key K, 96-bit nonce N , associated data A, message M (both arbitrarily long)
Out: (C, tag), where C is the ciphertext with |C| = |M | and tag is a 64-bit tag

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 063‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00011010‖N‖032‖K(Ai)
LFSR← upd64(LFSR)

if A`a 6= ε then
Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00011011‖N‖032‖K(pad10*(A`a))

//Encryption
M0‖M1‖ . . . ‖M`m−1‖M`m ←M with |Mi| = 128 for i ∈ {0, . . . , `m − 1} and |M`m | < 128
Σ ← 0128

LFSR← 063‖1
for all i = 0, . . . , `m − 1 do

Ci ← SKINNY-128-384rev64(LFSR)‖056‖00011000‖N‖032‖K(Mi)
Σ ← Σ ⊕Mi

LFSR← upd64(LFSR)

if M`m = ε then
C`m ← ε
T ← SKINNY-128-384rev64(LFSR)‖056‖00011100‖N‖032‖K(Σ)

else
R← SKINNY-128-384rev64(LFSR)‖056‖00011001‖N‖032‖K(0128)
C`m ←M`m ⊕ trunc|M`m |(R)
LFSR← upd64(LFSR)
Σ ← Σ ⊕ pad10*(M`m)
T ← SKINNY-128-384rev64(LFSR)‖056‖00011101‖N‖032‖K(Σ)

C ← C0‖C1‖ . . . ‖C`m−1‖C`m

//Tag generation
tag← trunc64(T ⊕ Auth)
return (C, tag)

19

Algorithm 8 The decryption algorithm SKINNY-AEAD-M4-Dec(K,N,A,C, tag)
In: 128-bit key K, 96-bit nonce N , associated data A, ciphertext C (both arbitrarily long),
64-bit tag tag
Out: M if tag is valid, ⊥ otherwise

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 063‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00011010‖N‖032‖K(Ai)
LFSR← upd64(LFSR)

if A`a 6= ε then
Auth← Auth⊕ SKINNY-128-384rev64(LFSR)‖056‖00011011‖N‖032‖K(pad10*(A`a))

//Decryption
C0‖C1‖ . . . ‖C`m−1‖C`m ← C with |Ci| = 128 for i ∈ {0, . . . , `m − 1} and |C`m | < 128
Σ ← 0128

LFSR← 063‖1
for all i = 0, . . . , `m − 1 do

Mi ← SKINNY-128-384−1
rev64(LFSR)‖056‖00011000‖N‖032‖K(Ci)

Σ ← Σ ⊕Mi

LFSR← upd64(LFSR)

if C`m = ε then
M`m ← ε
T ← SKINNY-128-384rev64(LFSR)‖056‖00011100‖N‖032‖K(Σ)

else
R← SKINNY-128-384rev64(LFSR)‖056‖00011001‖N‖032‖K(0128)
M`m ← C`m ⊕ trunc|C`m |(R)
LFSR← upd64(LFSR)
Σ ← Σ ⊕ pad10*(M`m)
T ← SKINNY-128-384rev64(LFSR)‖056‖00011101‖N‖032‖K(Σ)

M ←M0‖M1‖ . . . ‖M`m−1‖M`m

//Tag verification
tag′ ← trunc64(T ⊕ Auth)
if tag′ = tag then

return M
else

return ⊥

20

SKINNY-AEAD with SKINNY-128-256. This case applies to the members M5 and M6 (refer
to Table 1). It is very similar to the previous case, the main difference being the definition
of the tweakey states due to their smaller sizes.

Domain Separation. The domain separation is exactly the same as in the previous case.
Note that b4 is always fixed to 1 as only 96-bit nonces can be used in the members M5
and M6.

Associated Data Processing. The computation for associated data A is very similar to
the previous case. The difference is that each associated data block Ai is processed by
SKINNY-128-256 as a plaintext input under a 256-bit tweakey, where the structure of the
256-bit tweakey is as follows.

- The tweakey bytes tk0, . . . , tk15 store 3 bytes from a 24-bit LFSR, the single byte for
the domain separation, followed by the 12-byte nonce N . The byte for the domain
separation is fixed to d2, i.e., 0001t`010, for a non-padded block and to d3 = 0001t`011
for a padded block. The 24-bit LFSR is defined below.
Let x23‖x22‖x21‖ · · · ‖x2‖x1‖x0 denote the 24 bits of the LFSR. It is initialized to
LFSR0 = 0231 and updated as LFSRt+1 = upd24(LFSRt), where the update function
upd24 is defined by the polynomial x24 + x4 + x3 + x+ 1 as

upd24 : x23‖x22‖ . . . ‖x1‖x0 7→ y23‖y22‖ . . . ‖y1‖y0

with

yi ← xi−1 for i ∈ {23, 22, . . . , 1}\{4, 3, 1},
y4 ← x3 ⊕ x23,
y3 ← x2 ⊕ x23,
y1 ← x0 ⊕ x23,
y0 ← x23.

Before loaded in the tweakey state, the order of the bytes of the LFSR state is reversed,
i.e., tk0‖tk1‖ . . . ‖tk15 = rev24(LFSRt)‖d2‖N (resp. tk15 = d3 for the last padded
block), where rev24 is defined by

rev24 : x2‖x1‖x0 7→ x0‖x1‖x2 (∀i : |xi| = 8).

- The tweakey bytes tk16‖tk17‖ . . . ‖tk31 store the 128-bit key K.

Encryption and Decryption. The encryption of M is also very similar to the previous case.
Also, decryption and tag verification is straightforward.

Formally, we provide the algorithms of the authenticated encryption members M5 and
M6, together with their decryption and tag verification procedure, in Algorithms 9, 10
and 11, 12, respectively.

Remarks for Further Extension. Here, we explain two additional features of our
AEAD schemes, which are not officially included in our submission but can be implemented
efficiently depending on the user’s demand.

Supporting More than 264 blocks with SKINNY-128-384. Recall that in SKINNY-128-384-
based members, the tweakey bytes tk0, . . . , tk15 store 8 bytes for a 64-bit LFSR, followed
by 7 bytes of zeros, and then a single byte for the domain separation. If the user wants
to support input data of more than 264 blocks, it is possible to replace the 7 bytes

21

Algorithm 9 The authenticated encryption algorithm SKINNY-AEAD-M5-Enc(K,N,A,M)
In: 128-bit key K, 96-bit nonce N , associated data A, message M (both arbitrarily long)
Out: (C, tag), where C is the ciphertext with |C| = |M | and tag is a 128-bit tag

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 023‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-256rev24(LFSR)‖00010010‖N‖K(Ai)
LFSR← upd24(LFSR)

if A`a 6= ε then
Auth← Auth⊕ SKINNY-128-256rev24(LFSR)‖00010011‖N‖K(pad10*(A`a))

//Encryption
M0‖M1‖ . . . ‖M`m−1‖M`m ←M with |Mi| = 128 for i ∈ {0, . . . , `m − 1} and |M`m | < 128
Σ ← 0128

LFSR← 023‖1
for all i = 0, . . . , `m − 1 do

Ci ← SKINNY-128-256rev24(LFSR)‖00010000‖N‖K(Mi)
Σ ← Σ ⊕Mi

LFSR← upd24(LFSR)

if M`m = ε then
C`m ← ε
T ← SKINNY-128-256rev24(LFSR)‖00010100‖N‖K(Σ)

else
R← SKINNY-128-256rev24(LFSR)‖00010001‖N‖K(0128)
C`m ←M`m ⊕ trunc|M`m |(R)
LFSR← upd24(LFSR)
Σ ← Σ ⊕ pad10*(M`m)
T ← SKINNY-128-256rev24(LFSR)‖00010101‖N‖K(Σ)

C ← C0‖C1‖ . . . ‖C`m−1‖C`m

//Tag generation
tag← T ⊕ Auth
return (C, tag)

of zeros by the following 56-bit LFSR. Note that this LFSR would be updated every
264 blocks, hence very rarely in comparison to the 64-bit LFSR. Let x55‖x54‖ · · · ‖x1‖x0
denote the 56 bits of the 56-bit LFSR. It is initialized to LFSR0 = 055‖1 and updated as
LFSRt+1 = upd56(LFSRt), where the update function upd56 is defined by the polynomial
x56 + x7 + x4 + x2 + 1 as

upd56 : x55‖x54‖ . . . ‖x1‖x0 −→ y55‖y54‖ . . . ‖y1‖y0

with:

yi ← xi−1 for i ∈ {55, 54, . . . , 1}\{7, 4, 2},
y7 ← x6 ⊕ x55,
y4 ← x3 ⊕ x55,
y2 ← x1 ⊕ x55,
y0 ← x55.

We stress that this additional functionality is only available in SKINNY-128-384-based
members, and cannot be adopted in SKINNY-128-256-based members.

22

Algorithm 10 The decryption algorithm SKINNY-AEAD-M5-Dec(K,N,A,C, tag)
In: 128-bit key K, 96-bit nonce N , associated data A, ciphertext C (both arbitrarily long),
128-bit tag tag
Out: M if tag is valid, ⊥ otherwise

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 023‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-256rev24(LFSR)‖00010010‖N‖K(Ai)
LFSR← upd24(LFSR)

if A`a 6= ε then
Auth← Auth⊕ SKINNY-128-256rev24(LFSR)‖00010011‖N‖K(pad10*(A`a))

//Decryption
C0‖C1‖ . . . ‖C`m−1‖C`m ← C with |Ci| = 128 for i ∈ {0, . . . , `m − 1} and |C`m | < 128
Σ ← 0128

LFSR← 023‖1
for all i = 0, . . . , `m − 1 do

Mi ← SKINNY-128-256−1
rev24(LFSR)‖00010000‖N‖K(Ci)

Σ ← Σ ⊕Mi

LFSR← upd24(LFSR)

if C`m = ε then
M`m ← ε
T ← SKINNY-128-256rev24(LFSR)‖00010100‖N‖K(Σ)

else
R← SKINNY-128-256rev24(LFSR)‖00010001‖N‖K(0128)
M`m ← C`m ⊕ trunc|C`m |(R)
LFSR← upd24(LFSR)
Σ ← Σ ⊕ pad10*(M`m)
T ← SKINNY-128-256rev24(LFSR)‖00010101‖N‖K(Σ)

M ←M0‖M1‖ . . . ‖M`m−1‖M`m

//Tag verification
tag′ ← T ⊕ Auth
if tag′ = tag then

return M
else

return ⊥

Acceleration of Associated Data Processing. When associated data A is processed, we fix
128 bits and 96 bits of the tweakey state to the nonce value N for SKINNY-128-384- and
SKINNY-128-256-based members. We note that it is not strictly necessary to include N
during the associated data processing, hence a potential acceleration of the associated data
processing could replace N with bits from A. This would reduce the number of tweakable
block cipher calls for processing A. In particular, the number of calls could be halved in
SKINNY-128-384-based members.

23

Algorithm 11 The authenticated encryption algorithm SKINNY-AEAD-M6-Enc(K,N,A,M)
In: 128-bit key K, 96-bit nonce N , associated data A, message M (both arbitrarily long)
Out: (C, tag), where C is the ciphertext with |C| = |M | and tag is a 64-bit tag

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 023‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-256rev24(LFSR)‖00011010‖N‖K(Ai)
LFSR← upd24(LFSR)

if A`a 6= ε then
Auth← Auth⊕ SKINNY-128-256rev24(LFSR)‖00011011‖N‖K(pad10*(A`a))

//Encryption
M0‖M1‖ . . . ‖M`m−1‖M`m ←M with |Mi| = 128 for i ∈ {0, . . . , `m − 1} and |M`m | < 128
Σ ← 0128

LFSR← 023‖1
for all i = 0, . . . , `m − 1 do

Ci ← SKINNY-128-256rev24(LFSR)‖00011000‖N‖K(Mi)
Σ ← Σ ⊕Mi

LFSR← upd24(LFSR)

if M`m = ε then
C`m ← ε
T ← SKINNY-128-256rev24(LFSR)‖00011100‖N‖K(Σ)

else
R← SKINNY-128-256rev24(LFSR)‖00011001‖N‖K(0128)
C`m ←M`m ⊕ trunc|M`m |(R)
LFSR← upd24(LFSR)
Σ ← Σ ⊕ pad10*(M`m)
T ← SKINNY-128-256rev24(LFSR)‖00011101‖N‖K(Σ)

C ← C0‖C1‖ . . . ‖C`m−1‖C`m

//Tag generation
tag← trunc64(T ⊕ Auth)
return (C, tag)

24

Algorithm 12 The decryption algorithm SKINNY-AEAD-M6-Dec(K,N,A,C, tag)
In: 128-bit key K, 96-bit nonce N , associated data A, ciphertext C (both arbitrarily long),
64-bit tag tag
Out: M if tag is valid, ⊥ otherwise

//Associated data processing
A0‖A1‖ . . . ‖A`a−1‖A`a ← A with |Ai| = 128 for i ∈ {0, . . . , `a − 1} and |A`a | < 128
Auth← 0128

LFSR← 023‖1
for all i = 0, . . . , `a − 1 do

Auth← Auth⊕ SKINNY-128-256rev24(LFSR)‖00011010‖N‖K(Ai)
LFSR← upd24(LFSR)

if A`a 6= ε then
Auth← Auth⊕ SKINNY-128-256rev24(LFSR)‖00011011‖N‖K(pad10*(A`a))

//Decryption
C0‖C1‖ . . . ‖C`m−1‖C`m ← C with |Ci| = 128 for i ∈ {0, . . . , `m − 1} and |C`m | < 128
Σ ← 0128

LFSR← 023‖1
for all i = 0, . . . , `m − 1 do

Mi ← SKINNY-128-256−1
rev24(LFSR)‖00011000‖N‖K(Ci)

Σ ← Σ ⊕Mi

LFSR← upd24(LFSR)

if C`m = ε then
M`m ← ε
T ← SKINNY-128-256rev24(LFSR)‖00011100‖N‖K(Σ)

else
R← SKINNY-128-256rev24(LFSR)‖00011001‖N‖K(0128)
M`m ← C`m ⊕ trunc|C`m |(R)
LFSR← upd24(LFSR)
Σ ← Σ ⊕ pad10*(M`m)
T ← SKINNY-128-256rev24(LFSR)‖00011101‖N‖K(Σ)

M ←M0‖M1‖ . . . ‖M`m−1‖M`m

//Tag verification
tag′ ← trunc64(T ⊕ Auth)
if tag′ = tag then

return M
else

return ⊥

25

2.5 The Hash Functionality SKINNY-Hash

Overall, the SKINNY-Hash family are function-based sponge constructions SKINNY-tk3-Hash
and SKINNY-tk2-Hash, in which underlying functions are built with SKINNY-128-384 and
SKINNY-128-256, respectively. We recall here that the sponge construction [11] can be
based on a cryptographic function as well as a cryptographic permutation.

F384: 384-bit to 384-bit function. We build a function F384 : {0, 1}384 → {0, 1}384
based on SKINNY-128-384. Let x ∈ {0, 1}384 be an input to F384. Let SKINNY-128-384tk(P)
be the encryption of a plaintext P under a tweakey tk with the SKINNY-128-384 algorithm.
The output of F384 is computed as follows (see also Figure 8):

F384(x) = SKINNY-128-384x(0128)
∥∥∥SKINNY-128-384x(07‖1‖0120)

∥∥∥SKINNY-128-384x(06‖1‖0121).

||

Ẽtk3

Ẽtk3

Ẽtk3

0

1

2

384 384128

128

128

x F384(x)

Figure 8: Construction of the function F384 used in SKINNY-tk3-Hash.

F256: 256-bit to 256-bit function. We build a function F256 : {0, 1}256 → {0, 1}256
based on SKINNY-128-256. Let SKINNY-128-256tk(P) be the encryption of a plaintext P
under a tweakey tk with the SKINNY-128-256 algorithm. The output of F256 is computed
as follows (see also Figure 9):

F256(x) = SKINNY-128-256x(0128)
∥∥∥SKINNY-128-256x(07‖1‖0120).

SKINNY-tk3-Hash. The computation of SKINNY-tk3-Hash simply follows the well-known
sponge construction. Differently from many of existing instantiations, we use the function
F384 as an underlying primitive. The construction is illustrated in Figure 10.

The 384-bit state, S384, is divided into 128-bit rate and 256-bit capacity, which are
initialized to the following values:

rIV384 = 0128,

cIV384 = 10255,

S384 = rIV384 ‖ cIV384.

26

x F256(x)

Ẽtk2

Ẽtk2

0

1

||
256 256128

128

Figure 9: Construction of F256.

. . .

. . .
cIV`

rIV`

M‖10−1−|M | mod r

H0 H1

F` F` F` F`

Figure 10: The structure of SKINNY-Hash based on a sponge.

The padding pad10* is applied to an input message M (note that the padding is always
applied, even if |M | is already a multiple of 128). The message blocks Mi are XORed to
the rate part of the state during the absorbing phase.

After the absorbing phase, the 128 bits of the rate are extracted as the first 128 bits
of the 256-bit digest. Then, S384 ← F384(S384) is applied once again and the 128 bits of
the rate are extracted as the last 128 bits of the 256-bit digest. The formal algorithm is
specified in Algorithm 13.

SKINNY-tk2-Hash. The 256-bit state S256, is divided into a 32-bit rate part and a 224-bit
capacity part, which are initialized to the following values:

rIV256 = 032,

cIV256 = 10223,

S256 = rIV256‖cIV256.

A difference with the previous case is that the message M now has to be padded such
that its length is a multiple of 32 bits. Therefore, we apply the padding function pad10*32
which is defined as

pad10*32 : X 7→ X‖1‖031−|X| mod 32.

The message blocks Mi are XORed to the rate part of the state during the absorbing
phase. After the absorbing phase, the first 128 bits of the state are extracted as the first
128 bits of the 256-bit digest. Then, S256 ← F256(S256) is applied once again and the first
128 bits of the state are extracted as the last 128 bits of the 256-bit digest. This means

27

Algorithm 13 The hashing algorithm SKINNY-tk3-Hash

In: Message M of arbitrary length
Out: 256-bit digest H

//Absorbing phase
M0‖M1‖ . . . ‖M`m−1 ← pad10*(M) with |Mi| = 128 for i ∈ {0, . . . , `m − 1}
S384 ← 0128‖1‖0255

for all i = 0, . . . , `m − 1 do
S384 ← F384

(
S384 ⊕ (Mi‖0256)

)
//Squeezing phase
H0 ← trunc128(S384)
S384 ← F384

(
S384

)
H1 ← trunc128(S384)
H ← H0‖H1

return H

that in the squeezing phase, the rate is extended to 128 bits and the capacity is reduced
to 128 bits. The formal algorithm is specified in Algorithm 14.

Algorithm 14 The hashing algorithm SKINNY-tk2-Hash

In: Message M of arbitrary length
Out: 256-bit digest H

//Absorbing phase
M0‖M1‖ . . . ‖M`m−1 ← pad10*32(M) with |Mi| = 32 for i ∈ {0, . . . , `m − 1}
S256 ← 032‖1‖0223

for all i = 0, . . . , `m − 1 do
S256 ← F256

(
S256 ⊕ (Mi‖0224)

)
//Squeezing phase
H0 ← trunc128(S256)
S256 ← F256

(
S256

)
H1 ← trunc128(S256)
H ← H0‖H1

return H

Table of Parameters and Security of SKINNY-Hash. For a summary, parameters of
SKINNY-Hash are listed in Table 4.

Table 4: Parameters for SKINNY-Hash. The number of blocks of the first preimage is
denoted by L.

Algorithm State size Absorb Squeeze Security Security

Rate Capacity Rate Capacity (collision) (2nd preimage)

SKINNY-tk3-Hash 384 128 256 128 256 128 256− log2(L)

SKINNY-tk2-Hash 256 32 224 128 128 112 224− log2(L)

28

3 Security Claims

We provide our security claims for the different variants of SKINNY-AEAD and SKINNY-Hash

in Table 5. Basically, for all versions of SKINNY-AEAD, we claim full 128-bit security for
key recovery, confidentiality and integrity (unless the tag size is smaller than 128 bits, in
which case the integrity security claims drop to the tag size) in the nonce-respecting model.
For all versions of SKINNY-Hash, we claim that it is hard to find a collision, preimage or
second-preimage with substantially less than 2c/2 hash evaluations, where c represents the
capacity bitsize (c = 256 for M5 and c = 224 for M6).

One can see that we do claim full 128-bit security for all variants of SKINNY-AEAD
with a tag size of 128 bit for a nonce-respecting user. More precisely, confidentiality is
perfectly guaranteed and the forgery probability is 2−τ , where τ denotes the tag size,
independently of the number of blocks of data in encryption/decryption queries made
by the adversary. This is very different than other modes like AES-GCM [32] or OCB3 [27],
which only ensure birthday-bound security. In comparison, OCB3 only provides security
up to the birthday bound, more precisely up to roughly 2n/2 blocks of data since it relies
on XE/XEX (a construction of a tweakable block cipher from a standard block cipher with
security only up to the birthday bound). To give an numerical example, with 240 blocks
ciphered (about 16 TeraBytes), one gets an advantage of about 2−48 to generate a valid
tag for most operating modes in the nonce-respecting scenario. For the same amount of
data, the advantage remains 2−128 for members M1/M2/M5 of SKINNY-AEAD.

Security (bits)

SKINNY-AEAD (nonce-respecting) M1 M2 M3 M4 M5 M6

Key recovery 128 128 128 128 128 128

Confidentiality for the plaintext 128 128 128 128 128 128

Integrity for the plaintext/AD/nonce 128 128 64 64 128 64

Security (bits)

SKINNY-Hash M1/M2/M3/M4 M5/M6

Collision 128 112

(2nd)-preimage 128 112

Table 5: Security claims of SKINNY-AEAD and SKINNY-Hash. The bit security of our designs
is expressed in terms of calls to the internal primitive, up to a small logarithmic factor.

We assume that the total size of the associated data and the total size of the message
in SKINNY-AEAD do not exceed 268 bytes for M1/M2/M3/M4 and 228 bytes for M5/M6.
Moreover, the maximum number of messages that can be handled for a same key is 2nl for
all variants of SKINNY-AEAD (nl = 128 for M1/M3, nl = 96 for M2/M4/M5/M6). This will
ensure that as long as different fixed-length nonces are used, the tweak inputs of all the
tweakable block cipher calls are all unique.

Related-Cipher Attacks. By encoding the the length of the tag and nonce into the domain
separation, we obtain a proper separation between the SKINNY-AEAD members that em-
ploy the same instance of the SKINNY tweakable block cipher. We do not claim security
against related-cipher attacks between members that employ the two different instances
SKINNY-128-384 and SKINNY-128-256, e.g., M2 and M5.

29

Nonce-Misuse Setting. The above security claims are void under reuse of nonces. As
pointed out in [47] for the case of Deoxys-I, the scheme is vulnerable to a universal forgery
attack and a CCA decryption attack with complexity of only three queries. Because we
are basically using the same mode, the attacks would apply to SKINNY-AEAD as well.

30

4 Design Rationale

4.1 Rationale for the Tweakable Block Ciphers

In this section, we briefly recall the design rationale for the tweakable block ciphers
SKINNY-128-256 and SKINNY-128-384 as given in [7, 8].

Most importantly, we decided not to modify the cipher from its original specification.
The rationale for this is that none of the extensive third-party cryptanalysis, that we
discuss in detail in Section 5, pointed to any weakness of the cipher nor any bad design
choices. Indeed, all the third-party cryptanalysis confirmed the validity of the original
design and its rationale. We furthermore do not see any change in the specification that
would improve the cipher to the extent that would justify such a modification. All design
choices of SKINNY are optimized for its goal: One cipher well suited for many lightweight
applications.

When designing SKINNY, one of the main criteria was to only add components which
are vital for the security of the primitive, removing any unnecessary operation. The
construction of SKINNY has been done through several iterations, approaching the exact
spot where good performance meets strong security arguments. We detail in this section
how we tried to follow this direction for each layer of the cipher.

We define the adversarial model SK (resp. TK1, TK2 or TK3) where the attacker
cannot (resp. can) introduce differences in the tweakey state(s).

General Design and Components Rationale. A first and important decision was
to choose between a Substitution-Permutation Network (SPN), or a Feistel network. We
started from a SPN construction as it is generally easier to provide stronger bounds on the
number of active Sboxes. However, we note that there is a dual bit-sliced view of SKINNY
that resembles some generalized Feistel network. Somehow, one can view the cipher as a
primitive in between an SPN and an “AND-rotation-XOR” function like SIMON. We try to
get the best of both worlds by benefiting the nice implementation tradeoffs of the latter,
while organizing the state in an SPN view so that bounds on the number of active Sboxes
can be easily obtained.

The absence of whitening key is justified by the reduction of the control logic: by always
keeping the exact same round during the entire encryption process we avoid the control
logic induced by having a last non-repeating layer at the end of the cipher. Besides, this
simplifies the general description and implementation of the primitive. Obviously, having
no whitening key means that a few operations of the cipher have no impact on the security.
This is actually the case for both the beginning and the end of the ciphering process in
SKINNY since the key addition is done in the middle of the round, with only half of the
state being involved with this key addition every round.

A crucial feature of SKINNY is the easy generation of several tweakey size versions, while
keeping the general structure and most of the security analysis untouched. Using bigger
tweakey material is done by following the STK construction [21].

SubCells. The choice of the Sbox is obviously a crucial decision in an SPN cipher and we
have spent a lot of efforts on looking for the best possible candidate.

As the entire search space for an 8 bit Sbox is far from being completely searchable,
we considered a subclass of the entire search space: we have tested all possible Sboxes
built by iterating several times a NOR/XOR combination and a bit permutation. The
final 8-bit Sbox candidate S8 provides a good tradeoff between security and area cost. It
has maximal differential transition probability of 2−2, maximal absolute linear bias of 2−2,
and algebraic degree 6.

Note that S8 has the interesting feature that their inverse is computed almost identically
to the forward direction (as they are based on a generalized Feistel structure) and with

31

exactly the same number of operations. Thus, our design reasoning also holds when
considering the decryption process.

AddConstants. The constants in SKINNY have several goals: differentiate the rounds,
differentiate the columns and avoid symmetries, complicate subspace cryptanalysis and
complicated attacks exploiting fixed points from the Sbox. In order to differentiate the
rounds, we simply need a counter, and since the number of rounds of all SKINNY versions
is smaller than 64, the most hardware friendly solution is to use a very cheap 6-bit affine
LFSR (like in LED [18]) that requires only a single XNOR gate per update. The 6 bits are
then dispatched to the two first rows of the first column (this will maximize the constants
spread after the ShiftRows and MixColumns), which will already break the symmetry
between columns.

In order to avoid symmetries, fixed points and more generally subspaces to spread,
we need to introduce different constants in several cells of the internal state. The round
counter will already naturally have this goal, yet, in order to increase that effect, we have
added a “1” bit to the third row, which is almost free in terms of implementation cost.
This will ensure that symmetries and subspaces are broken even more quickly, and in
particular independently of the round counter.

AddRoundTweakey. The tweakey schedule of SKINNY follows closely the STK construction
from [21] that allows to easily get bounds on the number of active Sboxes in the related-
tweakey model. Yet, we have changed a few parts. First, instead of using multiplications
by 2 and 3 in a finite field, we have instead replaced these tweakey cells updates by cheap
8-bit LFSRs to minimize the hardware cost. All our LFSRs require only a single XOR
for the update, and we have checked that the differential cancellation behavior of these
interconnected LFSRs is as required by the STK construction: for a given position, a single
cancellation can only happen every 15 rounds for TK2, and same with two cancellations
for TK3.

Another important generalization of the STK construction is the fact that every round
we XOR only half of the internal cipher state with some subtweakey. The goal was to
optimize hardware performances of SKINNY, and it actually saves an important amount of
XORs in a round-based implementation, while the security bounds remain strong. Another
advantage is that we can now update the tweakey cells only before they are incorporated
to the cipher internal state. Thus, half of tweakey cells only will be updated every round
and the period of the cancellations naturally doubles: for a certain cell position, a single
cancellation can only happen every 30 rounds for TK2 and two cancellations can only
happen every 30 rounds for TK3.

The tweakey permutation PT has been chosen to maximize the bounds on the number
of active Sboxes that we could obtain in the related-tweakey model (note that it has no
impact in the single-key model). Besides, we have enforced for PT the special property
that all cells located in third and fourth rows are sent to the first and second rows, and
vice-versa. Since only the first and second rows of the tweakey states are XORed to the
internal state of the cipher, this ensures that both halves of the tweakey states will be
equally mixed to the cipher internal state (otherwise, some tweakey bytes might be more
involved in the ciphering process than others). Finally, the cells that will not be directly
XORed to the cipher internal state can be left at the same relative position. On top of
that, we only considered those variants of PT that consist of a single cycle.

We note that since the cells of the first tweakey word TK1 are never updated, they
can be directly hardwired to save some area if the situation allows.

ShiftRows and MixColumns. Due to its strong sparseness, SKINNY’s binary diffusion
matrix M has only a differential or linear branching number of two. In order to compensate

32

for the small branch number, we designed M such that when a branching two differential
transition occurs, the next round will likely lead to a much higher branching number.
Looking at M, the only way to meet branching two is to have an input difference in either
the second or the fourth input only. This leads to an input difference in the first or third
element for the next round, which then diffuses to many output elements. The differential
characteristic with a single active Sbox per round is therefore impossible, and actually we
are able to prove at least 96 active Sboxes for 20 rounds. Thus, for the very cheap price of
a differential branching two binary diffusion matrix, we are in fact getting a better security
than expected when looking at the iteration of several rounds. The effect is the same with
linear branching (for which we only need to look at the transpose of the inverse of M, i.e.
(M−1)>).

We have considered all possibilites for M that can be implemented with at most three
XOR operations and eventually kept the MixColumns matrices that, in combination with
ShiftRows, guaranteed high diffusion and led to strong bounds on the minimal number of
active Sboxes in the single-key model.

Note that another important criterion came into play regarding the choice of the
diffusion layer of SKINNY: it is important that the key material impacts as fast as possible
the cipher internal state. This is in particular a crucial point for SKINNY as only half of
the state is mixed with some key material every round, and since there is no whitening
keys. Besides, having a fast key diffusion will reduce the impact of meet-in-the-middle
attacks. Once the two first rows of the state were arbitrarily chosen to receive the key
material, given a certain subtweakey, we could check how many rounds were required (in
both encryption and decryption directions) to ensure that the entire cipher state depends
on this subtweakey. Our final choice of MixColumns is optimal: only a single round is
required in both forward and backward directions to ensure this diffusion.

Our entire design has been crafted to allow good provable bounds on the minimal
number of differential or linear active Sboxes, not only for the single-key model, but also
in the related-key model (or more precisely the related-tweakey model in our case). Those
bounds are given in Table 7 in Section 5.1.

Finally, in terms of diffusion, all versions of SKINNY achieve full diffusion after only
6 rounds (forwards or backwards), while SIMON versions with 64-bit block size requires
9 rounds, and even 13 rounds for SIMON versions with 128-bit block size [25] (AES-128
reaches full diffusion after 2 of its 10 rounds). Again, the diffusion comparison according
to the total number of rounds is at SKINNY’s advantage.

4.2 Rationale for the AEAD scheme

The reason for choosing the ΘCB3 mode for the tweakable block cipher SKINNY-128-384

or SKINNY-128-256 is its provable security providing full security in the nonce-respecting
setting. More precisely, for ΘCB3 using an ideal tweakable block cipher, confidentiality is
perfectly guaranteed and the forgery probability is independent of the number of blocks
of data in encryption/decryption queries made by the adversary. Those strong security
guarantees along with its performance features are the design rationale for our choice.

We state the security bound of ΘCB3 in the nonce-respecting setting:

Lemma 2 of [27]. Let
∏

= ΘCB3[Ẽ, τ] where Ẽ is an ideal tweakable block cipher.
Let A be an adversary. Then Advpriv∏ (A) = 0 and Advauth∏ (A) ≤ (2n−τ)/(2n − 1).

We denote by Adv±prpSKINNY-TK2(A) and Adv±prpSKINNY-TK3(A) the PRP-advantage against
SKINNY-128-256 and SKINNY-128-384 respectively. Replacing the ideal tweakable block
cipher with SKINNY, we have the security bounds for our members as shown in Table 6.

33

Table 6: Provable security bounds for our provided AEAD members.

Members Security Bounds

M1, M2
Advpriv∏ (A) ≤ Adv±prp

SKINNY-TK3(A)

Advauth∏ (A) ≤ (2128 − 1)−1 + Adv±prp
SKINNY-TK3(A)

M3, M4
Advpriv∏ (A) ≤ Adv±prp

SKINNY-TK3(A)

Advauth∏ (A) ≤ (264 − 2−64)−1 + Adv±prp
SKINNY-TK3(A)

M5
Advpriv∏ (A) ≤ Adv±prp

SKINNY-TK2(A)

Advauth∏ (A) ≤ (2128 − 1)−1 + Adv±prp
SKINNY-TK2(A)

M6
Advpriv∏ (A) ≤ Adv±prp

SKINNY-TK2(A)

Advauth∏ (A) ≤ (264 − 2−64)−1 + Adv±prp
SKINNY-TK2(A)

On OCB and Tweakable Block Ciphers. The OCB mode was first published in [38]
(i.e., OCB1). It has later been refined to OCB2 in [37] and finally to OCB3 in [27]. That
last paper describes the actual ΘCB3 framework we employ in SKINNY-AEAD by using a
dedicated tweakable block cipher. The classical OCB (1–3) mode does not employ a dedicated
tweakable block cipher, but rather a usual block cipher in an XEX-like construction. Recently,
OCB3 employed with the AES was selected as one of the winners of the CAESAR competition
in the category for high-performance applications [28]. However, this scheme only offers
birthday-bound security.

More generally, a tweakable block cipher can be described as a family of block ciphers
parameterized by a public parameter, the tweak. The idea of a block cipher that gets a
public parameter for achieving variability goes back to the design of the Hasty Pudding
Cipher [41], a submission to the AES competition. This was later formalized in the notion
of a tweakable block cipher by Liskov, Rivest and Wagner at CRYPTO 2002 [30]. The
motivation is that independent block cipher calls are needed at the mode-of-operation
level, as in OCB. Liskov, Rivest and Wagner suggested that the source of variability should
be directly incorporated in the primitive itself instead at the mode-of-operation level. This
is a big difference to the classical OCB mode. There, a block cipher E is employed in a
construction that can be understood as a tweakable block cipher (i.e., the tweakable block

cipher ETK is just defined as E
(T1,T2)
K (x) = EK(x⊕ T1)⊕ T2)). In that sense, OCB can be

seen as an instance of the more general TAE mode, the tweakable authenticated encryption
mode defined in [30]. Indeed, Liskov, Rivest and Wagner have already proven a similar
statement as Lemma 2 in [27]:

Theorem 3 of [30]. If Ẽ is a secure tweakable block cipher, then Ẽ used in TAE mode
will be unforgeable and pseudorandom.

In other words: The advantage of the adversary only comes from the distinguishing
advantage of the tweakable block cipher and not from the mode.

However, the XEX construction used in OCB and also in ΘCB3 does not lead to an
ideal tweakable block cipher. In fact, it only offers security up to the birthday bound. The
TWEAKEY framework [21] was introduced at ASIACRYPT 2014 as a method to build

34

tweakable block ciphers from scatch (i.e., without employing an already existing underlying
block cipher in a specific construction) with strong security arguments against differential
and linear attacks. The intention of the TWEAKEY framework was to obtain beyond
birthay-bound secure tweakable block ciphers and to consider key and tweak as the similar
type of input (called the tweakey) such that the separation into key and tweak can be
done by the user in a flexible way.

It is natural to employ a beyond-birthday secure tweakable block cipher in a mode
following the TAE (resp., ΘCB3) framework in order to exploit its full strength. The third-
round CAESAR candidate Deoxys-I [22] is an already existing example following this
design principle.

Our Modifications. In comparison to other modes of operation, we have decided to
replace the usual block counter by an LFSR, which can be implemented with just a few
operations. There is indeed no reason to use the increment function x 7→ x+ 1 over the
integers, as the security simply relies on the function having a maximal cycle. The same
argument has been made for instance in the original OCB mode where Gray codes have
been suggested to derive inner tweak values. Here in our AEAD mode, we adopted LFSRs
with maximal periods and which can be easily implemented in both hardware and software
as block counters.

4.3 Rationale for the Hash Function Scheme

We use the well-known sponge construction, originally presented in [10], that is also adopted
in the NIST standard SHA-3 [15] so that SKINNY-Hash can inherit its elegant features.
Here, we give some arguments for our design choices with respect to the following points:

1. the sponge construction using a cryptographic function as a building block,
2. the sizes of rate and capacity, and
3. our constructions of the 256- and 384-bit functions.

Function-Based Sponge. Although a lot of existing designs following the sponge frame-
work use a cryptographic permutation as an underlying primitive, the designers do not
restrict the underlying primitive to be a permutation and show a lot of analysis for the
case that the underlying primitive is a function (see [11] for a detailed documentation on
cryptographic sponges and several of its variants). There does not exist any significant
disadvantage to base an entire construction on a function instead of a permutation. For
example, the bounds for the indifferentiability and the collision resistance are almost
identical between those two constructions.

In some case, the function-based sponge constructions is more difficult to attack than
the permutation based sponge constructions, because the adversary does not have access to
the inverse oracle for the function based constructions. This makes a significant difference
of the security against second-preimage attacks. For permutation-based constructions,
second preimages can be found by generating collisions on the inner part between queries
to f and f−1, which allows a generic attack with a cost of 2c/2. For function-based designs
on the other hand, the best strategy is performing a similar second-preimage attack against
Merkle-Damg̊ard constructions [23] that requires (2c)/L where L is the number of blocks
included in the first preimage.

Choices of Rate and Capacity. We adopt the most natural choice for SKINNY-tk3-Hash.
The 256-bit capacity ensures 128-bit indifferentiability. Hence, no particular attack can be
performed under 2128 computational cost.

35

The choice for SKINNY-tk2-Hash is very optimized for lightweight use-cases. The 224-
bit capacity in the absorption phase ensures the minimum requirement of 112-bit security.
We change the rate and capacity for the squeezing phase to reduce the number of function
calls in the squeezing phase. The security in this situation is analyzed in [35]. Let c and c′

be the capacity in the absorption and the squeezing phases, respectively. It was shown
that c′ can be enlarged with preserving O(2c/2) security for indifferentiability as long
as c′ ≥ c/2 + log2 c. We are aiming at 112-bit security, hence the suitable size for c′ is
c′ ≥ 224/2 + log2 224 ≈ 119.8. Because we cannot produce 256-bit hash digest in a single
block, we set c′ = 128 so that the 256-bit hash digest can be produced with two blocks.

The results in [35] are for permutation-based schemes, however we confirmed that
almost the same bound can be obtained for the function-based schemes. Strictly speaking,
the bound is slightly better for the function-based schemes because the adversary cannot
access to the inverse oracle.

Rationale of F256 and F384. The function F256 is indifferentiable from a 256-bit random
function up to O(2128) queries. Very intuitively, the only way to indifferentiate F256 from
an ideal object is to find the case that two simulators of Ẽtk2 in the ideal world, one is for
the plaintext 0 and the other is for the plaintext 1, return the same output value under
the same tweakey input. This occurs with probability 2−128.

The same intuitive argument applies to F384. However, the bound is worse than the one
for F256 by a factor of 3 because the adversary now has three ways to indifferentiate the
real and ideal worlds: collision of the simulators output between the first and the second
simulators, between the first and third simulators, and between the second and the third
simulators.

5 Security Analysis of the SKINNY Tweakable Block Cipher

We claim security of the SKINNY family of tweakable block ciphers in the related-tweakey
model. We now provide an analysis of its security and then mention the best cryptanalytic
results published to date.

5.1 Differential/Linear Cryptanalysis

In order to argue for the resistance of SKINNY against differential and linear attacks, we
computed lower bounds on the minimum number of active Sboxes, both in the single-key
and related-tweakey models. We recall that, in a differential (resp. linear) characteristic,
an Sbox is called active if it contains a non-zero input difference (resp. input mask). In
contrast to the single-key model, an attacker is allowed to introduce differences (resp.
masks) within the tweakey state in the related-tweakey model. We considered the three
cases of choosing input differences in TK1 only, both TK1 and TK2, and in all of the
tweakey states TK1, TK2 and TK3, respectively. Table 7 presents lower bounds on the
number of active Sboxes for up to 30 rounds. For computing the bounds, we generated a
Mixed-Integer Linear Programming (MILP) model following the approach in [34,45].

For lower bounding the number of linear active Sboxes we used the same approach
by considering the inverse of the transposed linear transformation, i.e., M>. However,
for the linear case, we only considered the single-key model as there is no cancellation
of active Sboxes in linear characteristics, see [26]. Note that those bounds are for single
characteristic only and do not quantify any potential clustering into differentials (resp.
linear hulls).

36

Table 7: Lowerbounds on the number of active Sboxes in SKINNY. Note that the bounds
on the number of linear active Sboxes in the single-key model are also valid in the related-
tweakey model. In case the MILP optimization was too long, we provide upper bounds
between parentheses. The bounds indicated by ? were obtained from [2], in which the
authors used Matsui’s algorithm for obtaining the minimum number of active Sboxes.

Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SK 1 2 5 8 12 16 26 36 41 46 51 55 58 61 66

TK1 0 0 1 2 3 6 10 13 16 23 32 38 41 45 49

TK2 0 0 0 0 1 2 3 6 9 12 16 21 25 31 35

TK3 0 0 0 0 0 0 1 2 3 6 10 13 16 19 24

SK Lin 1 2 5 8 13 19 25 32 38 43 48 52 55 58 64

Model 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SK 75 82 88 92 96 102 108 112? 116? 124? 128? 132? 136? 142? 148?

TK1 54 59 62 66 70 75 79 83 85 88 95 102 (108) (112) (120)

TK2 40 43 47 52 57 59 64 67 72 75 82 85 88 92 96

TK3 27 31 35 43 45 48 51 55 58 60 65 72 77 81 85

SK Lin 70 76 80 85 90 96 102 107 (110) (118) (122) (128) (136) (141) (143)

5.2 Other Attacks

In the original design document [7,8], we also analyzed the security of SKINNY with regard
to meet-in-the-middle attacks, impossible differential attacks, integral attacks, slide attacks,
invariant subspace cryptanalysis, and algebraic attacks. In this document, we provide a
brief summary of the results. For details, we refer the reader to the original documents.

Meet-in-the-Middle Attacks We used the property that full diffusion is achieved after
six rounds (both in forward and backward direction) to estimate that meet-in-the middle
attacks might work up to at most 22 rounds.

Impossible Differential Attacks We constructed an 11-round truncated impossible
differential which can be used for a 16-round key-recovery attack on SKINNY-128 with data,
time, and memory complexities of 288.5 in the single-key model.

Integral Attacks We constructed a 10-round integral distinguisher and used it for a
14-round key-recovery attack.

Slide Attacks The distinction between the rounds is ensured by the round constants and
thus the straightforward slide attacks cannot be applied. However, due to the small state
of the LFSR, round constants can collide in different rounds.

We took into account all possible sliding numbers of rounds and deduced what is the
difference in the constants that is obtained every time. As these constant differences might
impact the best differential characteristic, we experimentally checked the lower bounds on
the number of active Sboxes for all these constant differences by using MILP.

In the single-key setting, by allowing any starting round for each value of the slid pair,
the lower bounds on the number of active Sboxes reach 36 after 11 rounds, and 41 after 12
rounds. We thus expect that slide attacks do not threaten the security of SKINNY.

37

Invariant Subspace Attacks The non-trivial key schedule already provides a good
protection against such attacks for a larger number of rounds. The main concern that
remains are large-dimensional subspaces that propagate invariant through the Sbox. We
checked that no such invariant subspaces exist. Moreover, we computed all affine subspaces
of dimension larger than two that get mapped to (different) affine subspaces and checked
if those can be chained to what could be coined a subspace characteristic. It turns out that
those subspaces can be chained only for a very small number of rounds. To conclude, the
non-trivial key schedule and the use of round-constants seem to sufficiently protect SKINNY
against those attacks.

Algebraic Attacks The Sbox S8 of SKINNY-128 has an algebraic degree of 6 and thus,
algebraic attacks do not seem to be a threat.

5.3 Third-Party Cryptanalysis

Since the publication of the cipher in 2016, there has been lots of cryptanalysis by external
researchers. To the best of our knowledge, we provide a complete list of published results
related to (mathematical) cryptanalysis of SKINNY, as of December 2018. We found 20
such papers in total.

Twelve of those, namely [3, 4, 5, 16, 19, 36, 40, 44, 48, 49, 50, 51], only consider the variant
of SKINNY with a block size of 64 bit and we do not mention their results here. We briefly
mention the results of the remaining 8 papers in the following.

In [31], the authors conduct cryptanalysis on various variants of SKINNY in the related-
tweakey model. For SKINNY-128-256 (resp. SKINNY-128-384), they obtain a 23-round
(resp. 27-round) related-tweakey impossible differential attack with time complexity 2251.47

(resp. 2378), data of 2124.47 (resp. 2126.03) chosen plaintexts and 2248 (resp. 2368) memory.
The impossible differential attack uses a truncated related-tweakey impossible differential
over 12 rounds (resp. 16 rounds for the impossible differential attack on SKINNY-128-384).
Those complexities were improved under the assumption that the public tweak is loaded
in TK-1. For SKINNY-128-384 (resp. SKINNY-128-256), they obtain a 27-round (resp.
22-round) related-tweakey rectangle attack with time complexity 2331 (resp. 2251.03), data
of 2112 (resp. 2118.92) chosen plaintexts and 2144 (resp. 2120) memory. The rectangle attacks
use actual differential trails with their exact probability. The results indicate that the
actual probability of the best differential trails gets lower than estimated by the number
of active Sboxes as the number of rounds increases.

In [39], the authors analyze different SKINNY variants with regard to zero-correlation
and related-tweakey impossible differential attacks. For SKINNY-128-256, they obtain
a related-tweakey impossible differential attack on 23 rounds with time complexity of
2243.41, data of 2124.41 chosen plaintexts and 2155.41 memory. They utilize a 15-round
related-tweakey impossible differential.

In [46], the authors apply impossible differential cryptanalysis on SKINNY in the single-
key model. They utilize the 11-round impossible differential described in the design
document. They obtain a key-recovery attack of 20 rounds SKINNY-128-256 with time
complexity 2245.72, data of 292.1 chosen plaintexts and memory 2147.1. They further attack
22 rounds of SKINNY-128-384 with time complexity 2373.48, data 292.22 and memory 2147.22.

In [42], the authors used constrained programming for applying the Demirci-Selcuk
meet-in-the-middle attack. The authors find an 10.5-round distinguisher and a 22-round
key-recovery attack on SKINNY-128-384 with time complexity 2382.46, data complexity of
296 chosen plaintexts and memory complexity of 2330.99.

In [13], the authors introduce the Boomerang Connectivity Table (BCT) that quantify
the boomerang switching effect in Sboxes wit regard to the boomerang attack. They apply
their method to SKINNY and show that the probabilities of the attacks presented in [31]
are not precise.

38

In [1], the authors proposed a method to model the actual DDT of large S-boxes in
order to compute exact probabiliites of differential trails. Applied to SKINNY-128, the
authors showed that the probability of any 14-round (single-key) differential trail is upper
bounded by 2−128, while the designers proved a lower bound of 61 active S-boxes (ensuring
only a probability upper bounded by 2−122).

In [29], the authors present algorithms for finding subspace trails. They find 5-round
subspace trails for both SKINNY-64 and SKINNY-128.

In [2], the authors conduct an exhaustive search over all possible word permutations to
be used as a replacement for the ShiftRows permutation and derived the minimum number
of active S-boxes with regard to differential cryptanalysis using Matsuis branch-and-bound
algorithm. Their results show that the ShiftRows permutation used in SKINNY is actually
among the best permutations. By using Matsuis algorithm, they computed the bounds for
up to 40 rounds in the single-key setting, while the designers only gave bounds for up to
22 rounds. Table 7 is updated with their improved bounds starting from 23 rounds.

As a summary, Table 8 shows the maximum number of rounds that can be attacked so
far. Both of the underlying primitives SKINNY-128-256 and SKINNY-128-384 still offer a
security margin above 50%.

Table 8: Number of rounds of SKINNY that can be attacked by the best key-recovery
attacks (in the related-tweakey model) known so far.

SKINNY-128-256 SKINNY-128-384

23/48 27/56

47.9% 48.2%

6 Performance

6.1 Estimating Area and Performances

In order to discuss the rationale of our design, we first quickly describe an estimation in
Gate Equivalent (GE) of the ASIC area cost of several simple bit operations (for IBM
130 nm): a NOR/NAND gate costs 1 GE, a OR/AND gate costs 1.25 GE, a XOR/XNOR
gate costs 2 GE and a NOT gate costs 0.75 GE. Finally, one memory bit can be estimated
to 5.5 GE (scan flip-flop). Of course, these numbers depend on the library used, but it will
give us at least some rough and easy evaluation of the design choices we will make.

Besides, even though many tradeoffs exist, we distinguish between a serial implemen-
tation, a round-based implementation and a low-latency implementation. In the latter,
the entire ciphering process is performed in a single clock cycle, but the area cost is
then quite important as all rounds need to be directly implemented. For a round-based
implementation, an entire round of the cipher is performed in a single clock cycle, thus
ending with the entire ciphering process being done in r cycles and with a moderate area
cost (this tradeoff is usually a good candidate for energy efficiency). Finally, in a serial
implementation, one reduces the datapath and thus the area to the minimum (usually a few
bits, like the Sbox bit size), but the throughput is greatly reduced. The ultimate goal of a
good lightweight encryption primitive is to use lightweight components, but also to ensure
that these components are compact and efficient for all these tradeoffs. This is what SIMON
designers have managed to produce, but sacrificing a few security guarantees. SKINNY offers
similar (sometimes even better) performances than SIMON, while providing much stronger
security arguments with regard to classical differential or linear cryptanalysis.

39

Considering such tradeoffs, several implementations of SKINNY based on different design
architectures are available and publicly accessible on the official website [6]. Notably, its
structure enables conducting the operations in a bit-wise fashion [20]. More precisely, it
is possible to slide the state register one bit per clock cycle and partially perform the
operations. This leads to smallest area requirement (of around 800 GE) with expectedly
higher latency compared to other design architectures. This can even be scaled with sliding
and updating 2 or 4 bits at every clock cycle, contributing to the area-latency tradeoff.

6.2 Comparing Theoretical Performance

After some minimal security guarantee, the second design goal of SKINNY was to minimize
the total number of operations. We provide in Table 9 a comparison of the total number
of operations per bit for SKINNY and for other lightweight block ciphers, as well as some
quality grade regarding its ASIC area in a round-based implementation.

Table 9: Total number of operations and theoretical performance of SKINNY and various
lightweight block ciphers. N denotes a NOR gate, A denotes a AND gate, X denotes a
XOR gate.

Cipher nb. of gate cost (per bit per round) nb. of op. nb. of op. round-based

rds int. cipher key sch. total w/o key sch. w/ key sch. impl. area

SKINNY
36

1 N 1 N 3.25× 36 3.875× 36 1 + 2.67× 2.875

-64-128 2.25 X 0.625 X 2.875 X = 117 = 139.5 = 8.68

SIMON
44

0.5 A 0.5 A 2× 44 3.5× 44 0.67 + 2.67× 3

-64/128 1.5 X 1.5 X 3.0 X = 88 = 154 = 8.68

PRESENT
31

1 A 0.125 A 1.125 A 4.75× 31 5.22× 31 1.5+ 2.67× 4.094

-128 3.75 X 0.344 X 4.094 X = 147.2 = 161.8 = 12.43

PICCOLO
31

1 N 1 N 5.25× 31 5.25× 31 1 + 2.67× 4.25

-128 4.25 X 4.25 X = 162.75 = 162.75 = 12.35

KATAN
254

0.047 N 0.047 N 0.141× 254 3.141× 254 0.19+2.67×3.094

-64-80 0.094 X 3 X 3.094 X = 35.81 = 797.8 = 8.45

SKINNY
40

1 N 1 N 3.25× 40 3.25× 40 1 + 2.67× 2.25

-128-128 2.25 X 2.25 X = 130 = 130 = 7.01

SIMON
68

0.5 A 0.5 A 2× 68 3× 68 0.67 + 2.67× 2.5

-128/128 1.5 X 1 X 2.5 X = 136 = 204 = 7.34

NOEKEON
16

0.5 (A + N) 0.5 (A + N) 1 (A + N) 6.25× 16 12.5× 16 2.33+ 2.67× 10.5

-128 5.25 X 5.25 X 10.5 X = 100 = 200 = 30.36

AES
10

4.25 A 1.06 A 5.31 A 20.25× 10 24.81× 10 7.06+ 2.67× 19.5

-128 16 X 3.5 X 19.5 X = 202.5 = 248.1 = 59.12

SKINNY
48

1 N 1 N 3.25× 48 3.81× 48 1 + 2.67× 2.81

-128-256 2.25 X 0.56 X 2.81 X = 156 = 183 = 8.5

SIMON
72

0.5 A 0.5 A 2× 72 3.5× 72 0.67 + 2.67× 3

-128/256 1.5 X 1.5 X 3.0 X = 144 = 252 = 8.68

AES
14

4.25 A 2.12 A 6.37 A 20.25× 14 29.37× 14 8.47 + 2.67× 23

-256 16 X 7 X 23 X = 283.5 = 411.2 = 69.88

One can see from the Table 9 that SIMON and SKINNY compare very favorably to
other candidates, both in terms of number of operations and theoretical area grade for
round-based implementations. This seems to confirm that when it comes to lightweight
block ciphers, SIMON is probably the strongest competitor as of today. Besides, SKINNY

40

has the best theoretical profile among all the candidates presented here, even better than
SIMON for area. For speed efficiency, SKINNY outperforms SIMON when the key schedule is
taken in account. This scenario is arguably the most important in practice: as remarked
in [9], it is likely that lightweight devices will cipher very small messages and thus the
back-end servers communicating with millions of devices will probably have to recompute
the key schedule for every small message received.

In addition to its smaller key size, we note that KATAN-64-80 [12] theoretical area grade
is slightly biased here as one round of this cipher is extremely light and such a round-based
implementation would actually look more like a serial implementation and will have a very
low throughput (KATAN-64-80 has 254 rounds in total).

While Table 9 is only a rough indication of the efficiency of the various designs, we
observe that the ratio between the SIMON and SKINNY best software implementations, or
the ratio between the smallest SIMON and SKINNY round-based hardware implementations
actually match the results from the table.

6.3 Hardware Implementations of SKINNY-AEAD and SKINNY-Hash Members

We also provide performance results and area footprints of SKINNY-AEAD and SKINNY-Hash

when implemented on a hardware platform. To this end, in addition to the tk3 and tk2 con-
structions of SKINNY-Hash, we realized two sets of implementations for each SKINNY-AEAD

variant: one as encryption-only and the other one supporting both encryption and de-
cryption functionalities. We further considered two different instances of the underlying
SKINNY module: a round-based implementation performing every cipher round in a clock
cycle, and a byte-serial implementation mainly processing a single byte per clock cycle.
The corresponding results are depicted in Table 10 and Table 12, respectively, where the
area footprint (in GE), maximum clock frequency, and maximum throughput for two
standard cell libraries IBM 130 and UMC 90 are reported. In order to achieve the maximum
throughput, we simulated the SKINNY-AEAD implementations with 100 blocks of 16-byte
associated data A and 100 blocks of 16-byte message M , thereby obtaining the required
number of clock cycles. Note that the number of clock cycles is independent of the value
of the given associated data and the message as our implementations are constant-time
preventing any leakage through the timing side channel. For SKINNY-Hash we obtained
the number of required clock cycles by simulating the implementation with a message of
100 blocks of 16-byte (for SKINNY-tk3-Hash) and a message of 100 blocks of 4-byte (for
SKINNY-tk2-Hash).

We further realized the side-channel protected variants of all aforementioned implemen-
tations. We applied a masking countermeasure with 2 shares and made use of the concept of
Domain-Oriented Masking (DOM) [17] to provide secure implementations. It is noteworthy
that due to the special construction of the SKINNY Sbox, its SCA-protected version by
DOM does not require any fresh randomness. Therefore, in all variants of SKINNY-AEAD,
it is sufficient to present the entire inputs and output (including the associated data,
message, key, tag and output) by two uniformly-masked additive shares. It also holds for
SKINNY-Hash, while SKINNY-tk3-Hash requires an additional 384-bit of initial mask used
to initialize the state S384 in a shared way with 2 shares. Trivially, SKINNY-tk3-Hash also
needs such an initial mask (of 256 bits). The performance results and the area footprint of
all implementations are given in Table 11 and Table 13.

7 Intellectual Property

SKINNY is not patented and is free for use in any application. We note that since
SKINNY-AEAD uses a mode that presents similarities with the generic ΘCB3 framework, it
is unclear if patents relative to OCB (such as United States Patent No. 7,949,129; United
States Patent No.8,321,675) apply to our proposal.

41

Table 10: Unprotected, round-based ASIC implementations of our SKINNY-AEAD and
SKINNY-Hash members using IBM 130 and UMC 90 standard cell libraries.

IBM 130 UMC 90

Area Freq. Throughput Area Freq. Throughput

GE MHz MBit/s GE MHz MBit/s

SKINNY-AEAD-M1-Enc 7627 184 406 7808 269 594

SKINNY-AEAD-M2-Enc 7595 181 400 7808 287 633

SKINNY-AEAD-M3-Enc 7100 189 418 7291 267 589

SKINNY-AEAD-M4-Enc 7069 164 363 7266 233 514

SKINNY-AEAD-M5-Enc 6512 171 428 6636 298 743

SKINNY-AEAD-M6-Enc 5953 208 519 6099 288 720

SKINNY-AEAD-M1-Enc-Dec 10370 158 349 10239 227 501

SKINNY-AEAD-M2-Enc-Dec 10318 166 367 10210 240 530

SKINNY-AEAD-M3-Enc-Dec 9817 167 368 9671 244 539

SKINNY-AEAD-M4-Enc-Dec 9772 164 362 9564 202 447

SKINNY-AEAD-M5-Enc-Dec 8844 166 416 8894 268 670

SKINNY-AEAD-M6-Enc-Dec 8290 166 414 8332 222 555

SKINNY-tk3-Hash 8622 212 154 8894 285 207

SKINNY-tk2-Hash 5730 211 66 6019 304 95

Table 11: SCA-protected (2 shares), round-based ASIC implementations of our
SKINNY-AEAD and SKINNY-Hash members using IBM 130 and UMC 90 standard cell
libraries.

IBM 130 UMC 90

Area Freq. Throughput Area Freq. Throughput

GE MHz MBit/s GE MHz MBit/s

SKINNY-AEAD-M1-Enc 13812 427 192 14481 885 398

SKINNY-AEAD-M2-Enc 13787 427 192 14445 885 398

SKINNY-AEAD-M3-Enc 12716 427 192 13422 885 398

SKINNY-AEAD-M4-Enc 12692 427 192 13383 885 398

SKINNY-AEAD-M5-Enc 12653 435 228 13263 885 464

SKINNY-AEAD-M6-Enc 11555 422 221 12203 885 464

SKINNY-AEAD-M1-Enc-Dec 18817 446 201 20534 909 409

SKINNY-AEAD-M2-Enc-Dec 18768 444 200 20460 917 413

SKINNY-AEAD-M3-Enc-Dec 17723 446 201 19474 909 409

SKINNY-AEAD-M4-Enc-Dec 17675 444 200 19400 917 413

SKINNY-AEAD-M5-Enc-Dec 17285 435 228 18888 820 430

SKINNY-AEAD-M6-Enc-Dec 16180 448 235 17828 820 430

SKINNY-tk3-Hash 18388 429 64 19178 787 118

SKINNY-tk2-Hash 12404 405 26 13041 794 52

42

Table 12: Unprotected, byte-serial ASIC implementations of our SKINNY-AEAD and
SKINNY-Hash members using IBM 130 and UMC 90 standard cell libraries.

IBM 130 UMC 90

Area Freq. Throughput Area Freq. Throughput

GE MHz MBit/s GE MHz MBit/s

SKINNY-AEAD-M1-Enc 7270 532 57 7253 1124 121

SKINNY-AEAD-M2-Enc 7238 532 57 7237 1124 121

SKINNY-AEAD-M3-Enc 6723 418 45 6709 654 71

SKINNY-AEAD-M4-Enc 6690 418 45 6707 654 71

SKINNY-AEAD-M5-Enc 6157 439 55 6199 1429 180

SKINNY-AEAD-M6-Enc 5601 478 60 5669 1429 180

SKINNY-AEAD-M1-Enc-Dec 9554 291 31 9038 327 35

SKINNY-AEAD-M2-Enc-Dec 9485 228 25 8939 340 37

SKINNY-AEAD-M3-Enc-Dec 9002 284 31 8516 392 42

SKINNY-AEAD-M4-Enc-Dec 8947 258 28 8428 524 57

SKINNY-AEAD-M5-Enc-Dec 8002 264 33 7702 412 52

SKINNY-AEAD-M6-Enc-Dec 7456 267 34 7179 422 53

SKINNY-tk3-Hash 8406 485 17 8405 741 26

SKINNY-tk2-Hash 5554 402 6 5484 538 8

Table 13: SCA-protected (2 shares), byte-serial ASIC implementations of our SKINNY-AEAD
and SKINNY-Hash members using IBM 130 and UMC 90 standard cell libraries.

IBM 130 UMC 90

Area Freq. Throughput Area Freq. Throughput

GE MHz MBit/s GE MHz MBit/s

SKINNY-AEAD-M1-Enc 13289 287 8 13939 424 11

SKINNY-AEAD-M2-Enc 13265 287 8 13913 424 11

SKINNY-AEAD-M3-Enc 12195 287 8 12881 424 11

SKINNY-AEAD-M4-Enc 12171 287 8 12852 424 11

SKINNY-AEAD-M5-Enc 12143 274 9 12756 448 14

SKINNY-AEAD-M6-Enc 11048 274 9 11694 448 14

SKINNY-AEAD-M1-Enc-Dec 17115 342 9 18452 478 13

SKINNY-AEAD-M2-Enc-Dec 17065 342 9 18369 478 13

SKINNY-AEAD-M3-Enc-Dec 16019 342 9 17394 478 13

SKINNY-AEAD-M4-Enc-Dec 15968 342 9 17309 478 13

SKINNY-AEAD-M5-Enc-Dec 15528 248 8 16719 610 19

SKINNY-AEAD-M6-Enc-Dec 14432 248 8 15660 610 19

SKINNY-tk3-Hash 17698 265 2 18793 505 4

SKINNY-tk2-Hash 11827 292 1 12514 348 1

43

References

1. Abdelkhalek, A., Sasaki, Y., Todo, Y., Tolba, M., Youssef, A.M.: MILP modeling for (large)
s-boxes to optimize probability of differential characteristics. IACR Trans. Symmetric Cryptol.
2017(4) (2017) 99–129

2. Alfarano, G.N., Beierle, C., Isobe, T., Kölbl, S., Leander, G.: ShiftRows alternatives for AES-
like ciphers and optimal cell permutations for Midori and Skinny. IACR Trans. Symmetric
Cryptol. 2018(2) (2018) 20–47

3. Ankele, R., Banik, S., Chakraborti, A., List, E., Mendel, F., Sim, S.M., Wang, G.: Related-key
impossible-differential attack on reduced-round Skinny. In Gollmann, D., Miyaji, A., Kikuchi,
H., eds.: Applied Cryptography and Network Security - 15th International Conference, ACNS
2017, Kanazawa, Japan, July 10-12, 2017, Proceedings. Volume 10355 of Lecture Notes in
Computer Science., Springer (2017) 208–228

4. Ankele, R., Kölbl, S.: Mind the gap - A closer look at the security of block ciphers against
differential cryptanalysis. [14] 163–190

5. Beierle, C., Canteaut, A., Leander, G., Rotella, Y.: Proving resistance against invariant
attacks: How to choose the round constants. In Katz, J., Shacham, H., eds.: Advances in
Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 20-24, 2017, Proceedings, Part II. Volume 10402 of Lecture Notes
in Computer Science., Springer (2017) 647–678

6. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich,
P., Sim, S.M.: SKINNY family of block ciphers, website https://sites.google.com/site/

skinnycipher/home.

7. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim,
S.M.: The SKINNY family of block ciphers and its low-latency variant MANTIS. In Robshaw,
M., Katz, J., eds.: Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings, Part II.
Volume 9815 of Lecture Notes in Computer Science., Springer (2016) 123–153

8. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P.,
Sim, S.M.: The SKINNY family of block ciphers and its low-latency variant MANTIS. IACR
Cryptology ePrint Archive 2016 (2016) 660

9. Benadjila, R., Guo, J., Lomné, V., Peyrin, T.: Implementing lightweight block ciphers on x86
architectures. In Lange, T., Lauter, K.E., Lisonek, P., eds.: Selected Areas in Cryptography
- SAC 2013 - 20th International Conference, Burnaby, BC, Canada, August 14-16, 2013,
Revised Selected Papers. Volume 8282 of Lecture Notes in Computer Science., Springer (2013)
324–351

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions. In: ECRYPT hash
workshop. (2007)

11. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V.: Cryptographic sponge functions.
http://sponge.noekeon.org/ (2011)

12. Cannière, C.D., Dunkelman, O., Knezevic, M.: KATAN and KTANTAN - A family of small
and efficient hardware-oriented block ciphers. In Clavier, C., Gaj, K., eds.: Cryptographic
Hardware and Embedded Systems - CHES 2009, 11th International Workshop, Lausanne,
Switzerland, September 6-9, 2009, Proceedings. Volume 5747 of Lecture Notes in Computer
Science., Springer (2009) 272–288

13. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: Boomerang connectivity table: A new
cryptanalysis tool. In Nielsen, J.B., Rijmen, V., eds.: Advances in Cryptology - EUROCRYPT
2018 - 37th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Tel Aviv, Israel, April 29 - May 3, 2018 Proceedings, Part II. Volume 10821 of
Lecture Notes in Computer Science., Springer (2018) 683–714

14. Cid, C., Jr., M.J.J., eds.: Selected Areas in Cryptography - SAC 2018 - 25th International
Conference, Calgary, AB, Canada, August 15-17, 2018, Revised Selected Papers. Volume
11349 of Lecture Notes in Computer Science., Springer (2019)

15. Dworkin, M.J.: SHA-3 standard: Permutation-based hash and extendable-output functions.
Federal Inf. Process. Stds.(NIST FIPS)-202 (2015)

16. Eskandari, Z., Kidmose, A.B., Kölbl, S., Tiessen, T.: Finding integral distinguishers with ease.
[14] 115–138

44

https://sites.google.com/site/skinnycipher/home
https://sites.google.com/site/skinnycipher/home

17. Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: Compact masked hardware
implementations with arbitrary protection order. In Bilgin, B., Nikova, S., Rijmen, V., eds.:
Proceedings of the ACM Workshop on Theory of Implementation Security, TIS@CCS 2016
Vienna, Austria, October, 2016, ACM (2016) 3

18. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED block cipher. In: Cryp-
tographic Hardware and Embedded Systems - CHES 2011 - 13th International Workshop,
Nara, Japan, September 28 - October 1, 2011. Proceedings. Volume 6917 of Lecture Notes in
Computer Science., Springer (2011) 326–341

19. Hall-Andersen, M., Vejre, P.S.: Generating graphs packed with paths. IACR Trans. Symmetric
Cryptol. 2018(3) (2018) 265–289

20. Jean, J., Moradi, A., Peyrin, T., Sasdrich, P.: Bit-sliding: A generic technique for bit-serial
implementations of spn-based primitives - applications to aes, PRESENT and SKINNY.
In: Cryptographic Hardware and Embedded Systems - CHES 2017 - 19th International
Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings. Volume 10529 of Lecture
Notes in Computer Science., Springer (2017) 687–707

21. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: The TWEAKEY framework.
In Sarkar, P., Iwata, T., eds.: Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II. Volume 8874 of Lecture Notes in
Computer Science., Springer (2014) 274–288

22. Jean, J., Nikolić, I., Peyrin, T., Seurin, Y.: Deoxys v1.41 (2016) Submission to CAESAR,
available via https://competitions.cr.yp.to/round3/deoxysv141.pdf.

23. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less than 2n work.
In Cramer, R., ed.: Advances in Cryptology - EUROCRYPT 2005, 24th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark,
May 22-26, 2005, Proceedings. Volume 3494 of Lecture Notes in Computer Science., Springer
(2005) 474–490

24. Khoo, K., Peyrin, T., Poschmann, A.Y., Yap, H.: FOAM: searching for hardware-optimal
SPN structures and components with a fair comparison. In Batina, L., Robshaw, M., eds.:
Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th International Workshop,
Busan, South Korea, September 23-26, 2014. Proceedings. Volume 8731 of Lecture Notes in
Computer Science., Springer (2014) 433–450

25. Kölbl, S., Leander, G., Tiessen, T.: Observations on the SIMON block cipher family. In
Gennaro, R., Robshaw, M., eds.: Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I.
Volume 9215 of Lecture Notes in Computer Science., Springer (2015) 161–185

26. Kranz, T., Leander, G., Wiemer, F.: Linear cryptanalysis: Key schedules and tweakable block
ciphers. IACR Trans. Symmetric Cryptol. 2017(1) (2017) 474–505

27. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption modes. In
Joux, A., ed.: Fast Software Encryption - 18th International Workshop, FSE 2011, Lyngby,
Denmark, February 13-16, 2011, Revised Selected Papers. Volume 6733 of Lecture Notes in
Computer Science., Springer (2011) 306–327

28. Krovetz, T., Rogaway, P.: OCB (v1.1) (2016) Submission to CAESAR, available via https:

//competitions.cr.yp.to/round3/ocbv11.pdf.

29. Leander, G., Tezcan, C., Wiemer, F.: Searching for subspace trails and truncated differentials.
IACR Trans. Symmetric Cryptol. 2018(1) (2018) 74–100

30. Liskov, M., Rivest, R.L., Wagner, D.A.: Tweakable block ciphers. In Yung, M., ed.: Advances
in Cryptology - CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 2002, Proceedings. Volume 2442 of Lecture Notes in
Computer Science., Springer (2002) 31–46

31. Liu, G., Ghosh, M., Song, L.: Security analysis of SKINNY under related-tweakey settings
(long paper). IACR Trans. Symmetric Cryptol. 2017(3) (2017) 37–72

32. McGrew, D., Viega, J.: The Galois/Counter mode of operation (GCM). Submission to NIST.
http://csrc. nist. gov/CryptoToolk it/modes/proposedmodes/gcm/gcm-spec. pdf (2004)

33. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: A very compact
and a threshold implementation of AES. In Paterson, K.G., ed.: Advances in Cryptology -
EUROCRYPT 2011 - 30th Annual International Conference on the Theory and Applications

45

https://competitions.cr.yp.to/round3/deoxysv141.pdf
https://competitions.cr.yp.to/round3/ocbv11.pdf
https://competitions.cr.yp.to/round3/ocbv11.pdf

of Cryptographic Techniques, Tallinn, Estonia, May 15-19, 2011. Proceedings. Volume 6632
of Lecture Notes in Computer Science., Springer (2011) 69–88

34. Mouha, N., Wang, Q., Gu, D., Preneel, B.: Differential and linear cryptanalysis using mixed-
integer linear programming. In Wu, C., Yung, M., Lin, D., eds.: Information Security and
Cryptology - 7th International Conference, Inscrypt 2011, Beijing, China, November 30 -
December 3, 2011. Revised Selected Papers. Volume 7537 of Lecture Notes in Computer
Science., Springer (2011) 57–76

35. Naito, Y., Ohta, K.: Improved indifferentiable security analysis of PHOTON. In Abdalla, M.,
Prisco, R.D., eds.: Security and Cryptography for Networks - 9th International Conference,
SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceedings. Volume 8642 of Lecture Notes in
Computer Science., Springer (2014) 340–357

36. Posteuca, R., Negara, G.: New related-key attacks and properties of SKINNY-64-128 cipher.
Proceedings of the Romanian Academy, Series A 18, Special Issue 2017 (2017) 333–350

37. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to modes OCB
and PMAC. In Lee, P.J., ed.: Advances in Cryptology - ASIACRYPT 2004, 10th International
Conference on the Theory and Application of Cryptology and Information Security, Jeju
Island, Korea, December 5-9, 2004, Proceedings. Volume 3329 of Lecture Notes in Computer
Science., Springer (2004) 16–31

38. Rogaway, P., Bellare, M., Black, J., Krovetz, T.: OCB: a block-cipher mode of operation for
efficient authenticated encryption. In Reiter, M.K., Samarati, P., eds.: CCS 2001, Proceedings
of the 8th ACM Conference on Computer and Communications Security, Philadelphia,
Pennsylvania, USA, November 6-8, 2001., ACM (2001) 196–205

39. Sadeghi, S., Mohammadi, T., Bagheri, N.: Cryptanalysis of reduced round SKINNY block
cipher. IACR Trans. Symmetric Cryptol. 2018(3) (Sep. 2018) 124–162

40. Sasaki, Y., Todo, Y.: New impossible differential search tool from design and cryptanalysis
aspects - revealing structural properties of several ciphers. In Coron, J., Nielsen, J.B., eds.:
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part III. Volume 10212 of Lecture Notes in Computer Science. (2017) 185–215

41. Schroeppel, R.: The Hasty Pudding Cipher. NIST AES proposal (1998)
42. Shi, D., Sun, S., Derbez, P., Todo, Y., Sun, B., Hu, L.: Programming the demirci-selçuk

meet-in-the-middle attack with constraints. In Peyrin, T., Galbraith, S.D., eds.: Advances
in Cryptology - ASIACRYPT 2018 - 24th International Conference on the Theory and
Application of Cryptology and Information Security, Brisbane, QLD, Australia, December 2-6,
2018, Proceedings, Part II. Volume 11273 of Lecture Notes in Computer Science., Springer
(2018) 3–34

43. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: An ultra-
lightweight blockcipher. In: Cryptographic Hardware and Embedded Systems - CHES 2011
- 13th International Workshop, Nara, Japan, September 28 - October 1, 2011. Proceedings.
Volume 6917 of Lecture Notes in Computer Science., Springer (2011) 342–357

44. Sun, S., Gerault, D., Lafourcade, P., Yang, Q., Todo, Y., Qiao, K., Hu, L.: Analysis of AES,
SKINNY, and others with constraint programming. IACR Trans. Symmetric Cryptol. 2017(1)
(2017) 281–306

45. Sun, S., Hu, L., Song, L., Xie, Y., Wang, P.: Automatic security evaluation of block ciphers
with s-bp structures against related-key differential attacks. In Lin, D., Xu, S., Yung, M.,
eds.: Information Security and Cryptology - 9th International Conference, Inscrypt 2013,
Guangzhou, China, November 27-30, 2013, Revised Selected Papers. Volume 8567 of Lecture
Notes in Computer Science., Springer (2013) 39–51

46. Tolba, M., Abdelkhalek, A., Youssef, A.M.: Impossible differential cryptanalysis of reduced-
round SKINNY. In Joye, M., Nitaj, A., eds.: Progress in Cryptology - AFRICACRYPT 2017
- 9th International Conference on Cryptology in Africa, Dakar, Senegal, May 24-26, 2017,
Proceedings. Volume 10239 of Lecture Notes in Computer Science. (2017) 117–134

47. Vaudenay, S., Vizár, D.: Under pressure: Security of caesar candidates beyond their guarantees.
IACR Cryptology ePrint Archive 2017 (2017) 1147

48. Yang, D., Qi, W., Chen, H.: Impossible differential attacks on the SKINNY family of block
ciphers. IET Information Security 11(6) (2017) 377–385

49. Zhang, P., Zhang, W.: Differential cryptanalysis on block cipher skinny with MILP program.
Security and Communication Networks 2018 (2018) 3780407:1–3780407:11

46

50. Zhang, W., Rijmen, V.: Division cryptanalysis of block ciphers with a binary diffusion layer.
IET Information Security (August 2018)

51. Zheng, Y., Wu, W.: Biclique attack of block cipher SKINNY. In Chen, K., Lin, D., Yung, M.,
eds.: Information Security and Cryptology - 12th International Conference, Inscrypt 2016,
Beijing, China, November 4-6, 2016, Revised Selected Papers. Volume 10143 of Lecture Notes
in Computer Science., Springer (2016) 3–17

A The 8-bit Sbox for SKINNY

/* SKINNY Sbox */
uint8_t S8[256] = {
0x65 ,0x4c ,0x6a ,0x42 ,0x4b ,0x63 ,0x43 ,0x6b ,0x55 ,0x75 ,0x5a ,0x7a ,0x53 ,0x73 ,0x5b ,0x7b ,
0x35 ,0x8c ,0x3a ,0x81 ,0x89 ,0x33 ,0x80 ,0x3b ,0x95 ,0x25 ,0x98 ,0x2a ,0x90 ,0x23 ,0x99 ,0x2b ,
0xe5 ,0xcc ,0xe8 ,0xc1 ,0xc9 ,0xe0 ,0xc0 ,0xe9 ,0xd5 ,0xf5 ,0xd8 ,0xf8 ,0xd0 ,0xf0 ,0xd9 ,0xf9 ,
0xa5 ,0x1c ,0xa8 ,0x12 ,0x1b ,0xa0 ,0x13 ,0xa9 ,0x05 ,0xb5 ,0x0a ,0xb8 ,0x03 ,0xb0 ,0x0b ,0xb9 ,
0x32 ,0x88 ,0x3c ,0x85 ,0x8d ,0x34 ,0x84 ,0x3d ,0x91 ,0x22 ,0x9c ,0x2c ,0x94 ,0x24 ,0x9d ,0x2d ,
0x62 ,0x4a ,0x6c ,0x45 ,0x4d ,0x64 ,0x44 ,0x6d ,0x52 ,0x72 ,0x5c ,0x7c ,0x54 ,0x74 ,0x5d ,0x7d ,
0xa1 ,0x1a ,0xac ,0x15 ,0x1d ,0xa4 ,0x14 ,0xad ,0x02 ,0xb1 ,0x0c ,0xbc ,0x04 ,0xb4 ,0x0d ,0xbd ,
0xe1 ,0xc8 ,0xec ,0xc5 ,0xcd ,0xe4 ,0xc4 ,0xed ,0xd1 ,0xf1 ,0xdc ,0xfc ,0xd4 ,0xf4 ,0xdd ,0xfd ,
0x36 ,0x8e ,0x38 ,0x82 ,0x8b ,0x30 ,0x83 ,0x39 ,0x96 ,0x26 ,0x9a ,0x28 ,0x93 ,0x20 ,0x9b ,0x29 ,
0x66 ,0x4e ,0x68 ,0x41 ,0x49 ,0x60 ,0x40 ,0x69 ,0x56 ,0x76 ,0x58 ,0x78 ,0x50 ,0x70 ,0x59 ,0x79 ,
0xa6 ,0x1e ,0xaa ,0x11 ,0x19 ,0xa3 ,0x10 ,0xab ,0x06 ,0xb6 ,0x08 ,0xba ,0x00 ,0xb3 ,0x09 ,0xbb ,
0xe6 ,0xce ,0xea ,0xc2 ,0xcb ,0xe3 ,0xc3 ,0xeb ,0xd6 ,0xf6 ,0xda ,0xfa ,0xd3 ,0xf3 ,0xdb ,0xfb ,
0x31 ,0x8a ,0x3e ,0x86 ,0x8f ,0x37 ,0x87 ,0x3f ,0x92 ,0x21 ,0x9e ,0x2e ,0x97 ,0x27 ,0x9f ,0x2f ,
0x61 ,0x48 ,0x6e ,0x46 ,0x4f ,0x67 ,0x47 ,0x6f ,0x51 ,0x71 ,0x5e ,0x7e ,0x57 ,0x77 ,0x5f ,0x7f ,
0xa2 ,0x18 ,0xae ,0x16 ,0x1f ,0xa7 ,0x17 ,0xaf ,0x01 ,0xb2 ,0x0e ,0xbe ,0x07 ,0xb7 ,0x0f ,0xbf ,
0xe2 ,0xca ,0xee ,0xc6 ,0xcf ,0xe7 ,0xc7 ,0xef ,0xd2 ,0xf2 ,0xde ,0xfe ,0xd7 ,0xf7 ,0xdf ,0xff

};

/* Inverse SKINNY Sbox */
uint8_t S8_inv [256] = {

0xac ,0xe8 ,0x68 ,0x3c ,0x6c ,0x38 ,0xa8 ,0xec ,0xaa ,0xae ,0x3a ,0x3e ,0x6a ,0x6e ,0xea ,0xee ,
0xa6 ,0xa3 ,0x33 ,0x36 ,0x66 ,0x63 ,0xe3 ,0xe6 ,0xe1 ,0xa4 ,0x61 ,0x34 ,0x31 ,0x64 ,0xa1 ,0xe4 ,
0x8d ,0xc9 ,0x49 ,0x1d ,0x4d ,0x19 ,0x89 ,0xcd ,0x8b ,0x8f ,0x1b ,0x1f ,0x4b ,0x4f ,0xcb ,0xcf ,
0x85 ,0xc0 ,0x40 ,0x15 ,0x45 ,0x10 ,0x80 ,0xc5 ,0x82 ,0x87 ,0x12 ,0x17 ,0x42 ,0x47 ,0xc2 ,0xc7 ,
0x96 ,0x93 ,0x03 ,0x06 ,0x56 ,0x53 ,0xd3 ,0xd6 ,0xd1 ,0x94 ,0x51 ,0x04 ,0x01 ,0x54 ,0x91 ,0xd4 ,
0x9c ,0xd8 ,0x58 ,0x0c ,0x5c ,0x08 ,0x98 ,0xdc ,0x9a ,0x9e ,0x0a ,0x0e ,0x5a ,0x5e ,0xda ,0xde ,
0x95 ,0xd0 ,0x50 ,0x05 ,0x55 ,0x00 ,0x90 ,0xd5 ,0x92 ,0x97 ,0x02 ,0x07 ,0x52 ,0x57 ,0xd2 ,0xd7 ,
0x9d ,0xd9 ,0x59 ,0x0d ,0x5d ,0x09 ,0x99 ,0xdd ,0x9b ,0x9f ,0x0b ,0x0f ,0x5b ,0x5f ,0xdb ,0xdf ,
0x16 ,0x13 ,0x83 ,0x86 ,0x46 ,0x43 ,0xc3 ,0xc6 ,0x41 ,0x14 ,0xc1 ,0x84 ,0x11 ,0x44 ,0x81 ,0xc4 ,
0x1c ,0x48 ,0xc8 ,0x8c ,0x4c ,0x18 ,0x88 ,0xcc ,0x1a ,0x1e ,0x8a ,0x8e ,0x4a ,0x4e ,0xca ,0xce ,
0x35 ,0x60 ,0xe0 ,0xa5 ,0x65 ,0x30 ,0xa0 ,0xe5 ,0x32 ,0x37 ,0xa2 ,0xa7 ,0x62 ,0x67 ,0xe2 ,0xe7 ,
0x3d ,0x69 ,0xe9 ,0xad ,0x6d ,0x39 ,0xa9 ,0xed ,0x3b ,0x3f ,0xab ,0xaf ,0x6b ,0x6f ,0xeb ,0xef ,
0x26 ,0x23 ,0xb3 ,0xb6 ,0x76 ,0x73 ,0xf3 ,0xf6 ,0x71 ,0x24 ,0xf1 ,0xb4 ,0x21 ,0x74 ,0xb1 ,0xf4 ,
0x2c ,0x78 ,0xf8 ,0xbc ,0x7c ,0x28 ,0xb8 ,0xfc ,0x2a ,0x2e ,0xba ,0xbe ,0x7a ,0x7e ,0xfa ,0xfe ,
0x25 ,0x70 ,0xf0 ,0xb5 ,0x75 ,0x20 ,0xb0 ,0xf5 ,0x22 ,0x27 ,0xb2 ,0xb7 ,0x72 ,0x77 ,0xf2 ,0xf7 ,
0x2d ,0x79 ,0xf9 ,0xbd ,0x7d ,0x29 ,0xb9 ,0xfd ,0x2b ,0x2f ,0xbb ,0xbf ,0x7b ,0x7f ,0xfb ,0xff

};

B Test Vectors for SKINNY-128-256 and SKINNY-128-384

/* Skinny -128 -256 */
Tweakey: 009 cec81605d4ac1d2ae9e3085d7a1f3

1ac123ebfc00fddcf01046ceeddfcab3
Plaintext: 3a0c47767a26a68dd382a695e7022e25
Ciphertext: b731d98a4bde147a7ed4a6f16b9b587f

/* Skinny -128 -384 */
Tweakey: df889548cfc7ea52d296339301797449

ab588a34a47f1ab2dfe9c8293fbea9a5
ab1afac2611012cd8cef952618c3ebe8

Plaintext: a3994b66ad85a3459f44e92b08f550cb
Ciphertext: 94 ecf589e2017c601b38c6346a10dcfa

47

	Introduction
	Specification
	Notations
	Parameter Sets
	The Tweakable Block Ciphers SKINNY-128-256 and SKINNY-128-384
	The AEAD Scheme SKINNY-AEAD
	The Hash Functionality SKINNY-Hash

	Security Claims
	Design Rationale
	Rationale for the Tweakable Block Ciphers
	Rationale for the AEAD scheme
	Rationale for the Hash Function Scheme

	Security Analysis of the SKINNY Tweakable Block Cipher
	Differential/Linear Cryptanalysis
	Other Attacks
	Third-Party Cryptanalysis

	Performance
	Estimating Area and Performances
	Comparing Theoretical Performance
	Hardware Implementations of SKINNY-AEAD and SKINNY-Hash Members

	Intellectual Property
	The 8-bit Sbox for SKINNY
	Test Vectors for SKINNY-128-256 and SKINNY-128-384

