
ORANGE

Designers/Submitters:
Bishwajit Chakraborty, Mridul Nandi
Indian Statistical Institute, Kolkata

bishu.math.ynwa@gmail.com, mridul.nandi@gmail.com

September 20, 2019

1

1 Introduction

This work proposes ORANGE, a variant of sponge authenticated encryption and sponge hash which can
absorb data in the optimum rate. In other words, it is an Optimum RAte spoNGE construction. In this
submission, we propose an authenticated encryption, named as ORANGE-Zest and a hash function, named
as ORANGISH based on a 256-bit permutation.

Underlying Permutation. Both construction use PHOTON256 as the underlying permutation. Among
the existing 256-bit permutations, PHOTON256 [6] is one of the lightest designs in the literature. It has been
well studied and well analysized. Moreover, PHOTON256 is also a part of ISO-IEC: 29192-5 standard, which
deal specifically with light-weight cryptography.

Hash Mode. The mode of hash function ORANGISH is very close to the JH hash function [13] which is
one of the finalists of SHA3-competition. JH mode allows us to absorb 128 bit data for each permutation
call. Thus, it has higher throughput compared with classical sponge hash function [1, 2]. The design of
ORANGISH is expected to provide collision and preimage security against all adversaries running in time 2112

(i.e. making 2112 permutation calls).

Authenticated Encryption Mode. The mode for ORANGE-Zest is a close variant of sponge with full
state absorption. The full state absorption is possible as we hold another state of size 128-bits, a part of
the output of previous execution of the underlying permutation. We use this dynamic secret state to mask
a part of the ciphertext. This mode can be easily generalized to a design based on a permutation with 2n
bit state. In our case, n = 128. To summarize the performance of our AE mode, it has 3n bit state with 2n
bit rate. To process 2n bit blocks, we apply 4n-bit XOR, in addition to one permutation call. The design of
ORANGE is expected to provide privacy and confidentiality against all adversaries running in time 2128 (i.e.
making 2128 permutation calls) having at most 264 data.

2 Notations and Conventions

We use {0, 1}+ and {0, 1}n to denote the set of all non-empty (binary) strings, and n-bit strings, respectively.
λ denotes the empty string and {0, 1}∗ = {0, 1}+ ∪ {λ}. For all practical purposes: we use little-endian
format of indexing, and assume all binary strings are byte-oriented, i.e. belong in ({0, 1}8)∗. For any string
B ∈ {0, 1}+, |B| denotes the number of bits in B, and for 0 ≤ i ≤ |B| − 1, bi denotes the i-th bit of
B, i.e. B = b|B|−1 · · · b0. where b0 is the least significant bit (LSB) and b|B|−1 is the most significant bit
(MSB). Given a nonempty bit string B of size x < n, we denote pad(B) as 0n−x−11B. Thus we always
pad the extra bits from MSB side. When x = n, we define pad(B) as B itself. The chop function chops
either the most significant or least significant bits. For k ≤ n, and B ∈ {0, 1}n, bBck := Bk−1 . . . B0 and
dBek := Bn−1 . . . Bn−k.

For B ∈ {0, 1}+, (B`−1, . . . , B0)
n← B, denotes the n-bit block parsing of B into (B`−1, . . . , B0), where

|Bi| = n for 0 ≤ i ≤ `−2, and 1 ≤ |B`−1| ≤ n. For A,B ∈ {0, 1}+, and |A| = |B|, A⊕B denotes the “bitwise
XOR” operation on A and B. For A,B ∈ {0, 1}+, A‖B denotes the “string concatenation” operation on A
and B. For any B ∈ {0, 1}+ and a non-negative integer s, B � s and B ≪ s denote the “left shift by s” and
“circular left shift by s” operations on B, respectively. The notations for right shift and circular right shift
are analogously defined using � and ≫, respectively. Given two matrices Mm×l and Nl×n, M ·N denotes
the matrix multiplication of M and N .

We will use a compact representation of if-else statement by the following expression P ? b : c where P is
some mathematical statement. This evaluates to b if P is true and c otherwise. P1 & P2 ? b1 : b2 : b3 : b4
evaluates to b1 if both P1 and P2 are true, to b2 if only P1 is true, to b3 if only P2 is true and to b4 if none
of P1 , P2 are true.

Field Multiplication . It is well known that x128 + x7 + x2 + x + 1 is a primitive polynomial over the
finite field of order 2. We define a constant a := 012010000111. Given B ∈ {0, 1}128, the α-multiplication on
an 128 bit string B := b127 · · · b1b0, denoted by α ·B, is defined as (B � 1)⊕ a if b127 = 1, B � 1, otherwise.
For a c ∈ Z≥0, αc ·B denotes c times repeated α-multiplication of B.

2.1 Our Recommendation

ORANGE is primarily parameterized by its underlying Permutation P. We choose P to be PHOTON256 as
described in Algorithm 2. We propose a hash function, called ORANGISH, and authenticated encryption
ORANGE-Zest. Description of both are given in 1. Our proposal of ORANGE-Zest uses a nonce-size of
128−bits and a key-size of 128−bits to produce a 128-bit tag. It is clear from the description that the
hash function ORANGISH is very close to the process of associated data in ORANGE-Zest. So a combined
implementation of both ORANGISH and ORANGE-Zest would be optimized.

2

Y

S

X

ρ Pad

M C

Y

S

X

ρ Pad

M C

S ≪

Chop

Feedbackenc or (FB+) Feedbackdec or (FB−)

ρ
V

KeyStream

Figure 1: Feedback process for ORANGE-Zest: KeyStream module or the function ρ describes how the key-stream
is defined. Feedback functions describe to define the next input X for the block cipher and the ciphertext (for
encryption feedback) and message (for decryption feedback). The black circular dot represents the mult operation
which is nothing but the αδM -multiplication to the most significant half of Y (the previous block cipher output).
Note that δM = 0, 1, 2 for imtermediate block, complete last block, partial last block respectively .The gray circular
dot represents the mult operation which is nothing but the α-multiplication to S. Here, Pad and Chop, pads and
chops appropriate amounts of bits from MSB or LSB sides. The exact definitions of these process can be found in
Algorithm 1

3 PHOTON256 Permutation

We use PHOTON256 [6] as our underlying 256-bit permutation in our mode. We use exactly same permutation
without changing any part of the definition as it has been well studied. However, for the sake of completeness
we provide a brief description of the permutation in this section (see Algorithm 2). It is applied on a state
of 64 elements of 4 bits each, which is represented as a (8× 8) matrix X. Let X[i, j] denote the element at
i-th row and j-th column of X.

PHOTON256 is composed of 12 rounds. Each round applies four layers of functions AddConstant, SubCells,
ShiftRows and MixColumnSerial on the state in a sequence. The description of these functions are given in
Algorithm2. Informally, AddConstant adds fixed constants to the cells of the internal state. SubCells applies
an 4-bit S-Box (see Table. 1) to each of the 64 4-bit cells. ShiftRows rotates the position of the cells in
each of the rows and MixColumnSerial linearly mixes all the columns independently using a serial matrix
multiplication. The multiplication with the coefficients in the matrix is in GF (24) with x4 + x+ 1 being the
irreducible polynomial.

We represent a serial matrix Serial[a0, a1, a2, a3, a4, a5, a6, a7] by

Serial[a0, a1, a2, a3, a4, a5, a6, a7] :=

0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

a0 a1 a2 a3 a4 a5 a6 a7

.

Table 1: The PHOTON S-box

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S-box C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

3

Algorithm 1 ORANGE-Zest and ORANGISH and their main modules. Here, ⊥ and > denote the abort and
accept symbols respectively.

1: function ORANGE-Zest[P].enc(K,N,A,M)

2: (Aa−1, . . . , A0)
n← A

3: (Mm−1, . . . ,M0)
n←M

4: if a = 0,m = 0 then

5: (T, ∗)← P((K ⊕ 2)‖N)

6: return (λ, T)

7: if a = 0,m 6= 0 then

8: (C,U)← proc txt(K, (K ⊕ 1)‖N,M,+)

9: return (C, proc tg(U))

10: C ← λ

11: if a 6= 0 then U ← proc hash(K‖N,A, 1, 2)

12: if a 6= 0,m 6= 0 then (C,U)← proc txt(K,U,M,+)

13: return (C, proc tg(U))

14: function ORANGISH(D)

15: (Dd−1, . . . , D0)
n← D

16: Dd ← (n - |Dd−1|)? 0n−210 : 0n−11

17: Dd−1 ← pad(Dd−1)

18: X ← (0n||D0)

19: for i = 0 to d− 1 do

20: Ai ← (Di‖Di+1)

21: Z ← proc hash(X, (Ad−1‖ . . . ‖, A0), 0, 0)

22: Z1 ← P(Z)

23: Z2 ← P(Z1)

24: return bZ2cn‖bZ1cn

25: function proc txt(S0, U0, D, dir)

26: (Dd−1, . . . , D0)
2n← D

27: for i = 0 to d− 1 do

28: Vi ← P(Ui)

29: if i = d− 1 then

30: c← (2n | |Dd−1|)?1 : 2

31: Vi ← mult(c, Vi)

32: KSi ← ρ(Si, Vi)

33: D′i ← Di ⊕ bKSic|Di|
34: if dir = ” + ” then Di ← D′i

35: Si+1 ← dVien
36: Ui+1 ← Vi ⊕ pad(Di)

37: return (D′, Ud)

1: function ORANGE-Zest[P].dec(K,N,A,C, T)

2: (Aa−1, . . . , A0)
n← A

3: (Cm−1, . . . , C0)
n← C, M ← λ

4: if a = 0,m = 0 then (T ′, ∗)← P((K ⊕ 2)‖N)

5: if a = 0,m 6= 0 then

6: (M,U)← proc txt(K, (K ⊕ 1)‖N,C,−)

7: T ′ ← proc tg(U)

8: if a 6= 0 then U ← proc hash(N‖K,A, 1, 2)

9: if a 6= 0,m 6= 0 then (M,U)← proc txt(K,U,C,−)

10: T ′ ← proc tg(U)

11: if T 6= T ′ then

12: return ⊥
13: else

14: return (M,>)

15: function proc hash(X,D, c0, c1)

16: (Dd−1, . . . , D0)
2n← D

17: X0 ← X

18: for i = 0 to d− 2 do

19: Yi ← P(Xi)

20: Xi+1 ← Yi ⊕Di
21: c← (2n | |Dd−1|)?c0 : c1
22: Yd−1 ← P(Xd−1)

23: Yd−1 ← mult(c, Yd−1)

24: Xd ← Yd−1 ⊕ pad(Dd−1)

25: return Xd

26: function ρ(S, Y)

27: (Y b, Y t)
n← Y

28: Z ← (Y b ⊕ αS)‖(Y t ≪ 1)

29: return Z

30: function mult(c, V)

31: (V b, V t)
n← V

32: return αc · V b ‖ V t

33: function proc tg(U)

34: (Ub, Ut)
n← U

35: return P(Ut‖Ub)

4 Security of ORANGE

Here we describe some possible strategies to attack the ORANGE mode, and give a rough estimate on the
amount of data and time required to mount those attacks (see Table 2). In the following discussion:

• D denotes the data complexity of the attack. This parameter quantifies the online resource require-
ments, and includes the total number of blocks (among all messages and associated data) processed
through the underlying permutation for a fixed master key. Note that for simplicity we also use D to
denote the data complexity of forging attempts.

• T denotes the time complexity of the attack. This parameter quantifies the offline resource requirements,
and includes the total time required to process the off line evaluations of the underlying permutation.
Since one call of the permutation can be assumed to take a constant amount of time, we generally take
T as the total number of off line calls to the permutation.

Security Data complexity Time complexity
Model (log2D) (log2 T)

IND-CPA 64 128
INT-CTXT 64 128

Table 2: Security Claims of ORANGE-Zest. We remark that the given values indicate the amount of data or time
required to make the attack advantage close to 1.

4

Algorithm 2 PHOTON256 Modules. Note that we view the state X as a matrix and M8 · X in
MixColumnSerial represents the matrix multiplication in the underlying field GF (24) defined over the ir-
reducible polynomial x4 + x+ 1.

1: function AddConstant(X,K)

2: RC[12]← {1, 3, 7, 14, 13, 11, 6, 12, 9, 2, 5, 10}
3: IC[8]← {0, 1, 3, 7, 15, 14, 12, 8}
4: for i = 0 to 7 do

5: X[i, 0]← X[i, 0]⊕ RC[k]⊕ IC[i]

6: return X

7: function SubCells(X)

8: for i = 0 to 7 j=0 to 7 do

9: X[i, j]← S-box(X[i, j])

10: return X

11: function ShiftRows(X)

12: for i = 0 to 7 j = 0 to 7 do

13: X′[i, j]← X[i, (j + i)%4]

14: return X′

1: function MixColumnSerial(X)

2: M ← Serial[2, 4, 2, 11, 2, 8, 5, 6]

3: M8 ·X
4: return X

5: function PHOTON256(X)

6: for i = 0 to 11 do

7: X ← AddConstant(X)

8: X ← SubCells(X)

9: X ← ShiftRows(X)

10: X ← MixColumnSerial(X)

11: return X

Table 3: Security of Hash Function Family ORANGISH.

Mode Security Time complexity security (in bits)
ORANGISH Collision 112
ORANGISH Pre-image 128

4.1 IND-CPA and INT-CTXT Security of ORANGE-Zest

The privacy security of a permutation based construction relies on no collision of the inputs among online
and offline permutation calls. Note that both top and bottom part of the input of a permutation call during
the computation of an encryption query has full entropy due to two previous outputs. Hence a collision would
happen with probability at most 1/2−256. The privacy claim of our design follows from this observation.

Note that the tag verification algorithm is almost same as that of Beetle [3]. Hence, a similar argument
follows.

4.2 Collision Security of ORANGISH

To mount a collision attack on ORANGISH, suppose an adversary can make q many permutation calls.
Suppose all the states reachable from the initial state (we define the initial state as 0256) using the permutation
calls are called reachable states. The adversary can set up the queries in an adaptive way to make all the
query inputs (and hence query outputs) reachable states. We claim that the number of reachable state can
be at most nq (by using multi-collision argument, details will be provided later). Hence, finding a collision
pair has probability at most n2q2/2256. This leads to our claim on the collision security.

4.3 Preimage Security of ORANGISH

In ORANGISH we set the tag size as 256 bits and the tag squeeze rate as 128 bits. So given a preimage target
T2‖T1, an adversary needs to find a Z such that PHOTON256(Z‖T1) = ?‖T2 or PHOTON−1

256(Z‖T2) = ?‖T1.
It is easy to see that the probability of this event can be bounded by q

2128 where q is the number of P and
P−1 call.

5 Existing Analysis of PHOTON256

Basic security analysis for PHOTON256 has been provided explicitly in the original paper [6]. PHOTON is
an ISO standard with a comfortable security margin. As we have used PHOTON256 we only report briefly
the known analysis of it.

5

A rebound-like attack [6] allows us to distinguish 8 rounds of PHOTON256 from an ideal permutation
of the same size with time complexity 216 (and later reduced to 210.8[8]) and memory complexity of 28. In
[7] Jean et al. presented a distinguisher for 9 round PHOTON256 with time complexity of 2184 and memory
complexity of 232. Some other attacks are improved Indifferentiable [10] and statistical Integral distinguisher
[5]. Recently, Wang et al. [12] presented the first full round distinguishers on PHOTON256 based on zero-sum
partitions of size 2184.

We believe that all these distinguishers have no impact on the security of our construction as these attacks
are much more costlier than the security target we are aiming.

6 Design Rational

6.1 Choice of the Mode

Our primary goal is to design a lightweight cipher that has optimum throughput. No such sponge variant
is known so far which can absorb message at the rate of the state of the permutation. Our design achieves
this at the cost of an additional state. So it is optimum in rate. We also use JH variant of hash which also
absorbs much higher data compared with classical sponge hash.

6.2 Need of an additional state

A b-bit permutation with r bit rate leaks r bit information about the permutation outputs. So when r = b,
all the state value would be leaked and the key can be computed easily. Thus we need additional state to
keep some amount of secret. We find that 128 bit additional state (chosen dynamically) provides the desired
security.

6.3 Choice of the Permutation

PHOTON is an ISO-standard lightweight permutation which also provides sufficient amount of security level.

7 Figures of ORANGE for Different Cases

N

K + 2
P

T

Figure 2: ORANGE-Zest encryption (|A| = 0, |M | = 0).

N

K

A0 Aa−1

N

K
P P P P

T

αδA multiplication to the most significant half. (X1‖X0 ↔ X0‖X1)

Figure 3: ORANGE-Zest encryption (|M | = 0, |A| 6= 0, δA = 1/2 for complete-last/ partial block).

6

N

K + 1
P

K
FB+

M0M0

C0

P
Y 1

0

FB+

M1

C1

Mm−1

Cm−1

Y 1
m−2

FB+ P

T

Figure 4: ORANGE-Zest encryption (|A| = 0, |M | 6= 0). Here Y 1 = dY en
2

.

N

K

A0 Aa−1

N

K
P P P X0

X0

P
K

Y0

FB+

M0M0

C0

P
Y 1

0

FB+

M1

C1

Mm−1

Cm−1

Y 1
m−2

FB+ P

T

Figure 5: ORANGE-Zest encryption (|A| 6= 0, |M | 6= 0)

0 P P

H0 H1

Figure 6: ORANGISH output (|M | = 0). The final hash output is defined as H1‖H0.

M0

0
P

M0

M1

P P

Mm−1

Mm−2

P

δM

Mm−1

P

H0

P

H1

Figure 7: ORANGISH output (|M | 6= 0, δM = 1/2 for complete/ partial input). The final hash output is defined as
H1‖H0.

8 Background for Proof of ORANGE-Zest

8.1 H-coefficient Technique

Consider a computationally unbounded and deterministic adversary A that tries to distinguish the real
oracle, say O1, from the ideal oracle, say O0. We denote the query-response tuple of A ’s interaction with
its oracle by a transcript ω. Sometimes, this may also include any additional information that the oracle
chooses to reveal to the distinguisher at the end of the query-response phase of the game. We will consider
this extended definition of transcript. We denote by Θ1 (res. Θ0) the random transcript variable when A

7

interacts with O1 (res. O0). The probability of realizing a given transcript ω in the security game with an
oracle O is known as the interpolation probability of ω with respect to O. Since A is deterministic, this
probability depends only on the oracle O and the transcript ω. A transcript ω is said to be attainable if
Pr [Θ0 = ω] > 0. In this paper, O1 = (encK, decK, f

±), O0 = (Γ,⊥, f±), and the adversary is trying to
distinguish O1 from O0 in AEAD sense. Now we state a simple yet powerful tool due to Patarin [11], known
as the H-coefficient technique (or simply the H-technique).

Theorem 1 (H-coefficient technique [11]). Let Ω be the set of all realizable transcripts. For some εbad, εratio >
0, suppose there is a set Ωbad ⊆ Ω satisfying the following:

• Pr [Θ0 ∈ Ωbad] ≤ εbad;

• For any ω /∈ Ωbad,
Pr [Θ1 = ω]

Pr [Θ0 = ω]
≥ 1− εratio.

Then for any adversary A , we have the following bound on its AEAD distinguishing advantage:

AdvaeadO1
(A) ≤ εbad + εratio.

A proof of this theorem is available in multiple papers including [11, 4, 9].

8.2 Some Results on Multicollision

8.2.1 Expected multicollition in an uniform sample

Let X1, . . . ,Xq ←$D where |D| = N . For notational simplicity, we write log2N as n. We denote the maximum
multicollision random variable for the sample as mcq,N . More precisely, mcq,N = maxa |{i : Xi = a}|. For
any integer ρ ≥ 2,

Pr[mcq,N ≥ ρ] ≤
∑
a∈D

Pr[|{i : Xi = a}| ≥ ρ]

≤ N ·
(
q
ρ

)
Nρ

≤ N · qρ

Nρρ!

≤ N ·
(
qe

ρN

)ρ
We justify the inequalities in the following way: The first inequality is due to the union bound. If there are
at least ρ indices for which Xi takes value a, we can choose the first ρ indices in

(
q
ρ

)
ways. This justifies the

second inequality. The last inequality follows from the simple observation that eρ ≥ ρρ/ρ!. Thus, we have

Pr[mcq,N ≥ ρ] ≤ N ·
(
qe

ρN

)ρ
. (1)

For any positive integer valued random variable Y bounded by q:

Ex [Y] ≤
q∑
i=0

Pr[Y ≥ i]

≤ (ρ− 1) +

q∑
i=ρ

Pr[Y ≥ i]

≤ (ρ− 1) + ρ

d qρ e∑
j=1

Pr[Y ≥ j · ρ]

≤ (ρ− 1) + ρ

d qρ e∑
j=1

N ·
(

qe

j · ρN

)j·ρ
substituting Eq (1)

≤ (ρ− 1) + ρN

d qρ e∑
j=1

(
qe

ρN

)j·ρ

8

Now if
(
qe
ρN

)
< 1 then we have

d qρ e∑
j=1

(
qe

ρN

)j·ρ
≤
∞∑
j=1

(
qe

ρN

)j·ρ
≤

(
qe
ρN

)ρ
1−

(
qe
ρN

)ρ
Hence if

(
qe
ρN

)
< 1

Ex [Y] ≤ (ρ− 1) + ρN ·

(
qe
ρN

)ρ
1−

(
qe
ρN

)ρ (2)

Using Eq. (1), and Eq. (2) we can prove the following results for the expected value of maximum
multicollision. We write mcoll(q,N) to denote Ex [mcq,N].

Proposition 1. mcoll(q,N) <

4n

logn if q = N,n ≥ 16

4n if q = nN, n ≥ 4

4nd q
nN e if q ≥ nN, n ≥ 4

4 log q if q < N, n ≥ 16

Proof. First let q = N. Substituting q in Eq. 2 we have

Ex [Y] ≤ (ρ− 1) + ρN ·

(
e
ρ

)ρ
1−

(
e
ρ

)ρ
Now Let ρ = 4n

logn , n ≥ 16 Then e
ρ <

1
2 and Hence 1−

(
e
ρ

)ρ
> e

ρ . Hence

Ex [Y] < (ρ− 1) + ρN ·
(
e

ρ

)ρ−1

Now by substituting the value of ρ in ρN ·
(
e
ρ

)ρ−1

and by taking logarithm it can be easily shown that

ρN ·
(
e
ρ

)ρ−1

≤ 1 and hence Ex [Y] < 4n
logn , n ≥ 16.

Let q = nN, ρ = 4n. Substituting q, ρ in Eq. 2 we have

Ex [Y] ≤ (4n− 1) + 4nN ·
(
e
4

)4n
1−

(
e
4

)4n
Now let n ≥ 4 then we have 4n ≤ N and hence

4nN ·
(
e
4

)4n
1−

(
e
4

)4n ≤ N2 ·
(
e
4

)4n
1−

(
e
4

)4n
Notice that for n ≥ 2 we have(

e
4

)4n
1−

(
e
4

)4n < (e4) 18
5 n

=

[(e
4

) 18
5

]n
≤
(

1

4

)n
=

1

N2

The first ineqality follows from the facts that for n ≥ 2

1−
(e

4

)4n

≥ 1−
(e

4

)8

> 9/10 and
(e

4

) 2
5n ≤

(e
4

) 4
5

<
3

4
=⇒ 1−

(e
4

)4n

>
(e

4

) 2
5n

Hence Ex [Y] < 4n, n ≥ 4.
When q ≥ nN , we can group them into dq/nNe samples each of size exactly nN (we can add more

samples if required). This would prove the result when q ≥ nN .

Finally, when q < N , we can simply bound Ex [mcq,N] < 4 log q.

When n ≥ 16, for all q, we can write the bounds into one single form:

mcoll(q,N) < nq/N (3)

9

8.2.2 Expected Maximum Multicollision in a Non-uniform Random Sample

Now we bound expectation of maximum multicollision in a sample X1, . . . ,Xq (can be arbitrarily dependent)
which is not completely uniform random. However, it satisfies the following property for all distinct i1, . . . , iρ
for any integer ρ ≥ 2:

Pr(Xi1 = a, · · ·Xiρ = a) ≤ 1

N ′r
(4)

Then, we can actually perform the same analysis as before. For any integer ρ ≥ 2, it can be shown that

Pr[mcq,N ≥ ρ] ≤ N ·
(
qe

ρN ′

)ρ
(5)

Using it, we can prove the following results for expected value of maximum multicollision.

Proposition 2. Ex [mcq,N] <

4 log q if q < N ′

4n
logn if N ′ ≤ q < N ′n
4q
N ′ if q ≥ N ′n

In the non-random case, we denote Ex [mcq,N] by mcoll′(q,N) As before, when n ≥ 16, we have

mcoll′(q,N) ≤ nq/N ′ (6)

8.3 Multichain Security game

Let L = ((u1, v1), . . . , (ut, vt)) be a list of pairs of b-bit elements such that ∀i 6= j, ui 6= uj , vi 6= vj . For any
such list we define domain(L) = {u1, . . . , ut} and range(L) = {v1, . . . , vt}.

Given a list L we define a directed graph GL as follows: range(L) is the set of vertices of GL. There are
to types of edges:

Given any i, j ∈ [t], there exist a directed edge vi
x−→ vj where x = vi ⊕ uj .

Given any i, j ∈ [t] there exist a directed edge vi −→
x
vj ⇐⇒ uj = (bxcr ⊕ bvicr)‖(dxec ⊕ αδx · dviec)

similarly we can extend this definition to define a labled walk W from ω0 to ωk by

W : ω0
x1−→ ω1

x2−→ ω2 · · ·ωk−1
xk−→ ωk

We simple denote this by ω0
x−→ ωk where x = (x1, . . . , xk). k is the length of the walk. Similary by

w0
x−→
y
wk+1 we denote the walk ω0

x−→ ωk −→
y
ωk+1.

8.3.1 Multichain Structure

Definition 1. Let r, τ ≤ b be some parameters. We say that a set of labled walks {W1, . . . ,Wp} forms a

multi-chain of a given lable x = (x1, x2, . . . , xk) in the graph GL if ∀1 ≤ i ≤ p We have Wi : ui
(x1,...,xk−1)−−−−−−−−→

xk
vi

such that ∀1 ≤ i, j ≤ p; buicr = bujcr; bvicτ = bvjcτ . We call it a multi-chain of length k.

Let Wk denote the maximum size of a multi-chain of length k (of a given lable x) induced by L.
Now consider an adversary A interacting at most t times with f±. Let (xi, diri) denote ith query where

xi ∈ {0, 1}b and diri is either + or − (representing forward or inverse query). If diri = +, it gets response yi
as f(xi), else the response yi is set as f−1(xi). After t many interactions, we define a list L of pairs (ui, vi)i
where (ui, vi) = (xi, yi) if diri = +, and (ui, vi) = (yi, xi) otherwise. So we have f(ui) = vi for all i. We
call the tuple of triples θ := ((u1, v1, dir1), . . . , (ut, vt, dirt)) the transcript of the adversary A interacting
with f±. We also write θ′ = ((u1, v1), . . . , (ut, vt)) which only stores the information about the random
permutation. We write

µk,A := Ex [Wk].

Here Wk is defined for the labeled graph induced by the list θ′ as defined above and expectation is defined
over the randomness of the random permutation f and the random coin of the adversary A . Finally, we
define µk,t = maxA µk,A where maximum is taken over all adversaries making at most t queries.

10

9 Security Proof of ORANGE-Zest

Recently, Dobraunig et al. came up with a practical forgery attack on ORANGE-Zest. Hence, we claim that
the ORANGE-Zest at it’s original version is not secure. The forgery attack exploits the fact that the initial
input of the extra state, while processing the first message block, is always set to be K, and hence it is nonce
independent. However, this attack can be avoided, simply by taking the initial extra state input in such a
way that it depends on the nonce. In this regard, we propose to set the value as the most significant half of
the permutation output received before processing the last associated data block. To ensure that this can be
done in all the cases, when |A| = 0 and |M | 6= 0, the associated data is padded by 0n−11 and is treated as
a partial block. We note that if applying the above modification, we can take the same initial chain input
K‖N for all the cases where |A| 6= 0 or |M | 6= 0. .

For the sake of completeness, we provide a complete algorithm implementing the above modifications and
then give a security proof for the modified design.

Algorithm 3 The Modified algorithm for ORANGE-Zest.

1: function ORANGE-Zest[P].enc(K,N,A,M)

2: (Aa−1, . . . , A0)
n← A

3: (Mm−1, . . . ,M0)
n←M

4: if a = 0,m = 0 then

5: (T, ∗)← P((K ⊕ 2)‖N)

6: return (λ, T)

7: if a = 0,m 6= 0 then

8: U ← P (K‖N)

9: S ← dUen
10: U ← mult(2, U)⊕ 1

11: (C,U)← proc txt(S, U,M,+)

12: return (C, proc tg(U))

13: C ← λ

14: if a 6= 0 then (U, S)← proc hash(K‖N,A, 1, 2)

15: if a 6= 0,m 6= 0 then (C,U)← proc txt(S, U,M,+)

16: return (C, proc tg(U))

17: function ORANGISH(D)

18: (Dd−1, . . . , D0)
n← D

19: Dd ← (n - |Dd−1|)? 0n−210 : 0n−11

20: Dd−1 ← pad(Dd−1)

21: X ← (0n||D0)

22: for i = 0 to d− 1 do

23: Ai ← (Di‖Di+1)

24: (Z, ?)← proc hash(X, (Ad−1‖ . . . ‖, A0), 0, 0)

25: Z1 ← P(Z)

26: Z2 ← P(Z1)

27: return bZ2cn‖bZ1cn

28: function proc txt(S0, U0, D, dir)

29: (Dd−1, . . . , D0)
2n← D

30: for i = 0 to d− 1 do

31: Vi ← P(Ui)

32: if i = d− 1 then

33: c← (2n | |Dd−1|)?1 : 2

34: Vi ← mult(c, Vi)

35: KSi ← ρ(Si, Vi)

36: D′i ← Di ⊕ bKSic|Di|
37: if dir = ” + ” then Di ← D′i

38: Si+1 ← dVien
39: Ui+1 ← Vi ⊕ pad(Di)

40: return (D′, Ud)

1: function ORANGE-Zest[P].dec(K,N,A,C, T)

2: (Aa−1, . . . , A0)
n← A

3: (Cm−1, . . . , C0)
n← C, M ← λ

4: if a = 0,m = 0 then (T ′, ∗)← P((K ⊕ 2)‖N)

5: if a = 0,m 6= 0 then

6: U ← P (K‖N)

7: S ← dUen
8: U ← mult(2, U)⊕ 1

9: (M,U)← proc txt(S, U,C,−)

10: T ′ ← proc tg(U)

11: if a 6= 0 then (U, S)← proc hash(K‖N,A, 1, 2)

12: if a 6= 0,m 6= 0 then (M,U)← proc txt(S, U,C,−)

13: T ′ ← proc tg(U)

14: if T 6= T ′ then

15: return ⊥
16: else

17: return (M,>)

18: function proc hash(X,D, c0, c1)

19: (Dd−1, . . . , D0)
2n← D

20: X0 ← X

21: for i = 0 to d− 2 do

22: Yi ← P(Xi)

23: Xi+1 ← Yi ⊕Di
24: c← (2n | |Dd−1|)?c0 : c1
25: Yd−1 ← P(Xd−1)

26: S ← dYd−1en
27: Yd−1 ← mult(c, Yd−1)

28: Xd ← Yd−1 ⊕ pad(Dd−1)

29: return (Xd, S)

30: function ρ(S, Y)

31: (Y b, Y t)
n← Y

32: Z ← (Y b ⊕ αS)‖(Y t ≪ 1)

33: return Z

34: function mult(c, V)

35: (V b, V t)
n← V

36: return αc · V b ‖ V t

37: function proc tg(U)

38: (Ub, Ut)
n← U

39: return P(Ut‖Ub)

11

N

K

At1

Ab1

Ata−1

Aba−1

Ata

Aba

X0

W0

X1

W1

Xa−2

Wa−2

Xa−1

Wa−1

Xa

Wa

P P P P

Y0

Z0

Y1

Z1

Ya−2

Za−2

Ya−1

Za−1

P FB+ P P FB+ P
Xa

Wa

Ya

Za

Za−1

Xa+1

Wa+1

Ya+m−1

Za+m−1

Za+m−2

Xa+m

Wa+m

M1

C1

Mm

Cm

T

Figure 8: modified-ORANGE-Zest. Note that this is a representation of Figure 5 where the b-bit chains are separately
shown as two b

2
-bit chains with the only modification that the first extra state input is Za−1 instead of K.

We fix a deterministic non-repeating query making distinguisher A that interacts with either (1) the real
oracle (Of , f) or (2) the ideal oracle ($f , f) making at most,

1. qe encryption queries (N i, Ai,M i)i∈(qe] with an aggregate of total σe many blocks.

2. qf offline or direct forward queries (U i, V i,+)i∈(qf] to f .

3. qb direct backward queries (U i, V i,−)i∈(qb] to f .

4. attempts to forge with qv many queries (N?i, A?i, C?i, T ?i)i∈(qv] having a total of σv many blocks.

We assume qp = qf +qb to be the total number of offline or direct queries to f . Also for simplicity assume
that, ∀i,M i and Ai have mi and 0 many blocks respectively and C?i and A?i have mi and 0 many blocks
respectively. Let X?, Y ?, Z?,W ? corresponds to the imtermidiate variables of the forging queries. Let E ,D
denotes the sets of indices of the encryption and decryption queries.

Theorem 2. For any (qp, qe, qv, σe, σv)− adversary A we have

AdvaeadORANGE-Zest(A) ≤ qp
2κ

+
5σeqp

2b
+

4σvqp
2b

+
2qv
2τ

+
2rqpσe

2b
+

4σeσv
2c

+
∑
i∈D

µmi,qp
2c

+
rqpσvσe

2b+c

9.1 The Ideal World and Bad Transcript

In the ideal world there are three types of oracle queries, namely primitive query, encryption query and
decryption query.

Primitive Queries The ideal world simulates Q± queries honestly and maintain a list ωp of the query
responce of Q as a partial injective list. More precisely

ωp = ((U1, V 1, dir1), (U2, V 2, dir2), . . .)

where diri = +1 for a direct forward query and −1 for a direct backward query. We keep ωp as a list
of direct forward queries. i.e. f(U i) = V i for all i. Let ωp′ = (((U1, V 1), (U2, V 2), . . .) i.e. ωp without
considering the sign of the query.

Encryption Queries When the i-th query is an encryption query (N i,M i) where andM i = M i
mi‖ · · · ‖M

i
2‖M i

1

it first defines

δij =

0 for j < mi

1 for j = mi, |M i
mi | = b

2 otherwise

12

Then it samples (Y i−1, Y
i
0 , . . . , Y

i
mi)

$←− {0, 1}r and (Zi−1, Z
i
0, . . . , Z

i
mi)

$←− {0, 1}c , and returns T = bZimi‖Y
i
micτ

and Ci = Cimi‖ · · · ‖C
i
2‖Ci1 where for 1 ≤ j ≤ m

Cirj = M i
rj ⊕ lRot(Y

i
j−1);

Cicj = M i
cj ⊕ α

δij · Zij−1 ⊕ α · Zij−2

Cij = Cicj‖C
i
rj

The intermidiate values Xi
j ,W

i
j are calculated as follows:

Xi
j =

bK‖Ncr for j = −1

Y i−1 ⊕ 1 for j = 0

Y ij−1 ⊕ Cirj for 1 < j < mi

αδ
i
miZimi−1 ⊕ Cicmi for j = mi

W i
j =

dK‖Nec for j = −1

α2.Zi−1 for j = 0

Zij−1 ⊕ Cicj for j < mi

Y imi−1 ⊕ Cirmi for j = mi

Decryption Queries When the i-th query is a decryption query of the form (N∗i, C∗i, T ∗i) it always returns

M∗i =⊥. The decryption transcript ωd = (M∗i)i∈D where M∗i =⊥ for all i ∈ D
Offline Queries After all the above queries, finally the oracle returns all the X,Y, Z,W values defined

above. Let ωe := (Xi
j , Y

i
j , Z

i
j ,W

i
j)i∈E,j∈[mi] . The transcript of the ideal oracle is (ωp, ωe, ωd).

Intermediate Values of the decryption queries Given the i-th decryption query (N∗i, C∗i, T ∗i), i ∈ D we
define pi as follows.

pi =

−1 if N∗i 6= N i′∀i′ ∈ E
li if ∃i′ ∈ E 3 N∗i = N i′ ;C∗ij = Ci

′

j ∀1 ≤ j ≤ li < mi;C
∗i
li+1 6= Ci

′

li+1

li − 1 otherwise

Given a statement P let

χ(P) =

{
1 if P is true

0 otherwise

Let
xij = χ(j 6= mi)Y

∗i
j−1 ⊕ χ(j = mi)α

δimiZ∗ij−1.

wij = χ(j = mi)Y
∗i
j−1 ⊕ χ(j 6= mi)Z

∗i
j−1.

For any i ∈ D we define, ∀0 ≤ j ≤ pi

X∗ij = Xi′

j ;Y ∗ij = Y i
′

j ;Z∗ij = Zi
′

j ;W ∗ij = W i′

j

Now we further extend X,Y, Z,W values using primitive transript wherever possible. For notational
simplicity let cij := χ(j 6= mi)C

∗i
j ⊕ χ(j = mi)bC∗ij cr‖dC∗ij ec,∀pi < j ≤ mi. If there exist a labeled walk in

the labled directed graph induced by ωp from Z∗ipi‖Y
∗i
pi with lable (cipi+1, . . . , c

i
j), j < mi, then we denote the

end node as Z∗ij ‖Y ∗ij .

Z∗ipi‖Y
∗i
pi

(cipi+1,...,c
i
j)−−−−−−−−→ Z∗ij ‖Y ∗ij

given i ∈ D let p′i < mi be the maximum possible value of such j.
For all such i ∈ D and pi < j ≤ p′i + 1 define

X∗ij = xij ⊕ bcijcr

W ∗ij = wij ⊕ dcijec

13

9.2 Identifying bad events

We say that an ideal world transcript ω = (ωp, ωe, ωd) is bad if any one of the following conditions holds:

Bad events due to encryption and primitive transcript:

B1: For some (U, V) ∈ ωp, K = dUeκ.

B2: For some i ∈ E , j ∈ [mi], Z
i
j‖Y ij ∈ range(ωp), (in other words, range(ωe) ∩ range(ωp) 6= ∅)

B3: For some i ∈ E , j ∈ [mi], W
i
j‖Xi

j ∈ domain(ωp), (in other words, domain(ωe) ∩ domain(ωp) 6= ∅)

B4: For some (i ∈ E , j ∈ [mi]) 6= (i′ ∈ E , j′ ∈ [mi′]), Z
i
j‖Y ij = Zi

′

j′‖Y i
′

j′ ,

B5: For some (i ∈ E , j ∈ [mi]) 6= (i′ ∈ E , j′ ∈ [mi′]), W
i
j‖Xi

j = W i′

j′ ‖Xi′

j′ ,

Bad events due to decryption transcript:

B6: For some i ∈ D 3 pi ≤ mi − 1, (i′ ∈ E , j′ ∈ [mi′]), W
∗i
pi+1‖X∗ipi+1 = W i′

j′ ‖Xi′

j′ ,

B7: For some i ∈ D with pi ≥ 0, p′i = mi − 1 and (W ∗imi‖X
∗i
mi , ∗‖T

∗i) ∈ ωp,

B8: For some i ∈ D with pi ≥ 0 and p′i ≥ pi + 1, W ∗ip′i+1‖X∗ip′i+1 ∈ domain(ωe).

We write BAD to denote the event that the ideal world transcript Θ0 is bad. Then, with a slight abuse
of notations, we have

BAD = ∪8
i=1Bi

Lemma 1.

Pr [BAD] ≤ qp
2κ

+
5σeqp

2b
+

2rqpσe
2b

+
4σeσv

2c
+
∑
i∈D

µmi,qp
2c

+
rqpσvσe

2b+c

9.3 The Real World and Good Transcript Analysis

The real world has the oracle f±. The AE encryption and decryption queries and direct primitive queries
are faithfully responded based on f±. Like the ideal, after completion of interaction, the ideal oracle returns
all Y, Z -values corresponding to the encryption queries only. Note that a decryption query may return M i

which is not ⊥.
Now consider a good transcript ω = (ωp, ωe, ωd). The understanding of the bad events will becoe clear

from understanding of the good transcript. Suppose for all 1 ≤ j ≤ p′i, Y
∗i
j , Z∗ij and X∗ij+1,W

∗i
j+1 have been

defined as described above. Then observe the following:

1. The tuples ωe is permutation compatible and disjoint from ωp. So union of tuples ωe ∪ ωp is also
permutation compatible.

2. For all i ∈ D we have either p′i = mi − 1 and (W ∗imi‖X
∗i
mi , ?‖T

∗i) ∈ ωp ∪ ωe (Type-1 decryption query)
or p′i < mi − 1 but (W ∗ip′i+1‖X∗ip′i+1 /∈ ωp ∪ ωe(Type-2 decryption query). Type-1 decryption queries

would be e straightaway rejected. Type-2 decryption query can be computed based on ωp ∪ ωe until
(W ∗ip′i+1‖X∗ip′i+1 which is fresh. So f(W ∗ip′i+1‖X∗ip′i+1) is random over a large set. This would ensure with

high probability we reject those decryption queries also.

Based on the above observations we perform our analysis of the good transcripts.

Good Transcript Analysis: Now fix a good transcript ω. Let Θ0 and Θ1 denote the transcript random variable
obtained in the ideal world and real world respectively. As noted before, all the input-output pairs for the
underlying permutation are compatible. In the ideal world, all the Y,Z values are sampled uniform at
random; the list ωp is just the partial representation of f ; and all the decryption queries are degenerately
aborted; whence we get

Pr [Θ0 = w] ≤ 1

2bσe(2b)qp

Here σe denotes the total number of blocks present in all encryption queries including nonce. In notation
σe = qe +

∑
imi.

14

In the real world, for ω we denote the encryption query, decryption query, and primitive query tuples by
ωe, ωd and ωp, respectively. Then, we have

Pr[Θ1 = ω] = Pr[Θ1 = (ωe, ωp, ωd)]

= Pr[ωe, ωp] · Pr[ωd | ωe, ωp]
= Pr[ωe, ωp] · (1− Pr[¬ωd | ωe, ωp])

≤ Pr[ωe, ωp] ·

(
1−

∑
i∈D

Pr[¬ωd,i | ωe, ωp]

)
(7)

Here we have slightly abused the notation to use ¬ωd,i to denote the event that the i-th decryption query
successfully decrypts and and ¬ωd is the union ∪i∈D¬ωd,i (i.e. at least one decryption query successfully
decrypts). The encryption and primitive queries are mutually permutation compatible, so we have

Pr
Θ1

(ωe, ωp) = 1/(2b)σe+qp ≥ Pr
Θ0

(ωe, ωp).

Now we show an upper bound PrΘ1(¬ωd,i | ωe, ωp) ≤ mi(σe+qp)
2b−σe−qp + 1

2τ for every type-2 decryption query. Recall

that W ∗ip′i+1‖X∗ip′i+1 is fresh. If W ∗ij ‖X∗ij is the last input block then f(W ∗ij ‖X∗ij) = ∗‖T ∗i with probability

at most 2/2τ (provided σe + qp ≤ 2b−1 which can be assumed, since otherwise our bound is trivially true).
Suppose W ∗ij ‖X∗ij is not the last block, then the next input block may collide with some encryption or

primitive input block with probability at most
σe+qp

2b
. Applying this same argument for all the successive

blocks till the last one, we get the probability at most
mi(σe+qp)
2b−σe−qp , the last block input would be fresh. Hence

the probability that the tag matches is at most 2/2τ . Now, by union bound we have

Pr[¬ωd | ωe, ωp] ≤
∑
i∈D

mi(σe + qp)

2b − σe − qp
+

2

2τ

≤ 2σv(σe + qp)

2b
+

2qv
2τ

≤ 4σvqp
2b

+
2qv
2τ

.

We have Theorem 2. follows from Equation 7, Lemma 1 and Theorem 1.

9.4 Bounding bad events(Proof of Lemma 1)

bounding Pr [B1] : Fix i ∈ (qp].Since K is randomly chosen, probability of (U i, V i) ∈ ωp s.t. bU icκ = K is

bounded by 1
2κ . Hence bounding over all i, we have

Pr [B1]] ≤ qp
2κ

.
bounding Pr [B2] : This event can be analysed by deviding in the following cases

Case 1. ∃i, j, a;Zij‖Y ij = Va. Encryption after primitive query : This case can be bounded by probability at

most 1
2b

. Running over qp many primitive queries and σe many blocks we have

Pr [Case1] ≤ qp · σe
2b

Case 2. ∃i, j, a;Zij‖Y ij = Va, dira = +. Encryption before primitive query This can be bounded by probabil-

ity atmost 1
2b−a+1

Running over σe many encryption blocks and qf many a indices we have

Pr [Case2] ≤ qf · σe
2b − a+ 1

Case 3. ∃i, j, a;Zij‖Y ij = Va, dira = −. Encryption before primitive query Here the adversary has access to

Y ij as it has already been released. Let Φout denote the number of multicollision in Y ij .

15

Pr [Case3] =
∑
Φout

Pr [Case3 ∧ Φout]

=
∑
Φout

Pr [Case3|Φout] · Pr [Φout]

≤
∑
Φout

Φout.qb
2c

Pr [Φout]

≤ qp
2c

∑
Φout

ΦoutPr [Φout]

≤ Ex[Φout] ·
qp
2c

=
qp ·mcoll(σe, 2

r)

2c

Since the three Cases are mutually exclusive, we have,

Pr [B2] ≤ 2 · qp · σe
2b

+
qp ·mcoll(σe, 2

r)

2c

bounding Pr [B3¬B1] : Case 1: ∃i, j, a, W i
j‖Xi

j = Ua, encryption after primitive: This case can be bounded

by probability at most 1/2b, as Y ij−1 and Zij−1 are chosen uniformly at random and hence Xi
j and W i

j are
determined randomly . We have at most σe many (i, j) pairs and qp many a indices. Thus this can be
bounded by at most σeqp/2

b.
Case 2: ∃i, j, a, W i

j‖Xi
j = Ua, dira = −, encryption before primitive: This case can be bounded by probabil-

ity at most 1/(2b − a + 1). We have at most σe many (i, j) pairs and qb many a indices. Thus this can be
bounded by at most σeqb/(2

b − a+ 1).
Case 3: ∃i, j, a, W i

j‖Xi
j = Ua, dira = +, encryption before primitive: Let Φin denote the number of multi-

collisions on Xi
j .

With a similar analysis on the multicollision of output values, we have Pr[Case 3] ≤ Ex [Φ]in
qb
2c . Since

the three cases are mutually exclusive, we have

Pr[B3¬B1] ≤ 2σeqp
2b

+
qpmcoll(σe, 2

r)

2c
.

Bounding Pr[B4]: The probability of this event can be bounded in a straightforward manner by at most
σe(σe − 1)/2b+1.
Bounding Pr[B5]: This event is similar to B4, and the probability is bounded by at most σe(σe − 1)/2b+1.
Bounding Pr[B6]: Note that after the i-th online query the adversary knows the following values;

Y ij−1, X
i
j , Z

i
j−1⊕αZij−2 = Zij−1⊕αjZi−1 ∀1 ≤ j ≤ mi−1;Y imi−1,W

i
mi−1, α

δimiZmi−1⊕αZmi−2 = αδ
i
miZmi−1⊕

αmiZi−1, T.

Case 1. pi = mi − 1, j′ = mi′ ;W
i
mi‖X

i
mi = W i′

mi′
‖Xi′

mi′
: The values of W i

mi‖X
i
mi and W i′

mi′
‖Xi′

mi′
upto r-

most significant bits can be matched by adjusting bC∗ipi+1cr = bCi′mi′ cr ⊕ Y
∗i
mi−1 ⊕ Y i

′

mi′−1

Now We have bW i
mi‖X

i
micc = αδ

i
miZimi−1 ⊕ dC∗imiec and bW i′

mi′
‖Xi′

mi′
cc = α

δi
′
m
i′Zi

′

mi′−1 ⊕ dCi
′

mi′
ec

Hence Case 1 happens iff

dCi
′

mi′
ec = α

δi
′
m
i′Zi

′

mi′−1 ⊕ α
δimiZimi−1 ⊕ dC∗imiec == αmiZi−1 ⊕ αmi′Zi

′

−1 ⊕ dC∗imiec ⊕A

Where A is some known value. Now if N∗i 6= N i′ we have Zi
′

−1, Z
i
−1 are chosen indenendently at uniformly

random, hence, we have probability that the above holds is atmost 1
2c . If N∗i = N i′ then we must have

mi 6= mi′ and hence since Zi−1 is chosen at uniformly random, we have αmiZi−1 ⊕ αmi′Zi−1 is uniformly
random. Hence the probability is again atmost 1

2c . Varying over all i ∈ D and i′ ∈ E we have

Pr [Case 1] ≤ qvqe
2c

Case 2. pi = mi − 1, j′ < mi′ ;W
i
mi‖X

i
mi = W i′

j′ ‖Xi′

j′ :

We have W i
mi‖X

i
mi = (bC∗ipi+1cr ⊕ Y ∗imi−1)‖(αmiZi−1 ⊕ dC∗imiec ⊕A)

W i′

j′ ‖Xi′

j′ = (αj
′
Zi
′

−1 ⊕ dCi
′

j′ec ⊕B)‖(bCi′j′cr ⊕ Y i
′

j′−1). Where A and B are known values.

16

If r = c = b
2 it can be seen that Case 2 holds iff (αmiZi−1 ⊕ dC∗imiec) = (bCi′j′cr ⊕ Y i

′

j′−1) and (bC∗ipi+1cr ⊕
Y ∗imi−1) = (αj

′
Zi
′

−1 ⊕ dCi
′

j′ec) both holds. If N∗i 6= N i′ we have Zi
′

j′−1, Z
i
mi−1 are chosen independently

uniformly at random, we have for fix i, i′, j′ the probablity is bounded by 1
22c .

If N∗i = N i′ , We have since Zi−1 is chosen uniformly at random and since both the equations need to
hold independently we have again the probability is bounded by 1

22c .
Now varying over all i ∈ D, i′ ∈ E , j′ ∈ (m′i] we have

Pr [case 2] ≤ qvσe
22c

Case 3. pi < mi − 1, j′ = mi′ ;W
i
mi‖X

i
mi = W i′

j′ ‖Xi′

j′ : This can be bounded in the same way as in Case 2. by

Pr [case 3] ≤ qvqe
22c

Case 4. pi < mi − 1, j′ < mi′ ;W
i
pi+1‖Xi

pi+1 = W i′

j′ ‖Xi′

j′ :

Xi
mi and Xi′

j′ can be matched by adjusting bC∗ipi+1cr = bCi′j′cr ⊕ Y ∗ipi ⊕ Y
i′

j′−1

Now W i
mi and W i′

j′ matches iff

dCi
′

j′ec = Zipi ⊕ Z
i′

j′−1 ⊕ dC∗ipi+1ec = αpi+1Zi−1 ⊕ αj
′
Zi
′

−1 ⊕ dC∗ipi+1ec ⊕A

Where A is some known value.
Now We have if N∗i 6= N i′ then Zi−1 and Zi

′

−1 are independent and chosen uniformly at random. If

N∗i = N i′ then we must have pi + 1 6= j′ and hence αpi+1Zi−1 ⊕ αj
′
Zi−1 is uniformly random.

Hence, the probability that the above happen in the i-th query can be bounded by σe
2c and hence,

Pr [Case 4] ≤ qvσe
2c

Since all the above cases are mutually exclusive we have

Pr [B6] ≤ 4σeσv
2c

Bounding Pr[B7]: Let Wk(ωp′) denote the k-length multichain induced by ωp. Suppose the event holds for

the i-th decryption query and N∗i = N i′ . So Zi
′

pi‖Y
i′

pi must be the starting node of the multi-chain. Since

Zi
′

pi can be chosen randomly and independent of ωp we have the probability to hold B7 in the i-th decryption

query is atmost
Wmi

2c . So by union bound Pr [B7|ωp] ≤
∑
i∈D

Wmi

2c . Hence

Pr [B7] ≤
∑
i∈D

µmi,qp
2c

Bounding Pr [B8]: This event corresponds to the case when the first non-trivial decryption query block
matches a primitive query and after following some partial chain matches an encryption query block. The

probability of this event happening in the i-th decryption query is at most
qp
2c ×

m∗iΦin
2c . Taking expectation

we obtain

Pr [B8] ≤ qpσvmcoll(σe, 2
r)

22c

Lemma 1 can be proved by adding all the probabilities and bounding mcoll(σe, 2
r) by rσe

2r ,∀r ≥ 16.

9.5 Bounding Multichain

Theorem 3. We have,
µk,t ≤ mcoll(t, 2τ) + mcoll(t, 2r) + k ·mcoll′(t2, 2b)

Observation We have if vi
x−→ vj and vi

x−→ vk then vj = vk. Similarly if vi −→
x
vj and vi −→

x
vk then

vj = vk. and hence if vi
x−→
y
vj and vi

x−→
y
vk then vj = vk.

More Notations: LetW fwd,a denote the size of the set {i : diri = +, bvicτ = a} andW fwd = maxaW
fwd,a.

This denotes the maximum number of multicollision in the τ - least significant bits of forward query responses.
Similarly define W bck,a = |{i : diri = −, buicr = a}| and W bck = maxaW

bck,a. This denotes the
maximum number of multicollisions in the r- least significant bits of backward query responses.

Now Let Wmitm,a = |{(i, j) : vi
a−→ vj or vi −⇀

a
vj}| and Wmitm = maxaW

mitm,a.

17

Lemma 2.
Wk ≤W fwd + wbck + k.Wmitm

Proof. Let p = Wk and {W1, . . . ,Wp} be k-chains such that:

∀1 ≤ i ≤ pWi : vi0
(x1,...,xk−1)−−−−−−−−→

xk
vik and

∀1 ≤ i ≤ p; bvi0cr = u; bvikcτ = v.

Define
ω0
p = |{Wi ∈ {W1, . . . ,Wp} | (ui0, v

i
0,−) ∈ θ}|

ωk+1
p = |{Wi ∈ {W1, . . . ,Wp} | (uik, v

i
k,+) ∈ θ}|

ωjp = |{Wi ∈ {W1, . . . ,Wp} | (uij−1, v
i
j−1,+) ∈ θ and (uij , v

i
j ,−) ∈ θ}| ∀1 ≤ j <≤ k

Then clearly By union bound ;

Wk ≤ ω0
p + ωk+1

p +

k∑
j=1

ωjp

Now by defininition of W fwd,W bck,Wmitm we have,

ω0
p ≤W fwd;ωk+1

p ≤W bck, ωjp ≤Wmitm,∀1 ≤ j ≤ k.

Proof. (Theorem 3)

Ex
[
W bck

]
= Ex [mct,2r] ≤ mcoll(t, 2r) ≤ rt

2r

Ex
[
W fwd

]
= Ex [mct,2τ] ≤ mcoll(t, 2τ) ≤ τt

2τ

Ex
[
Wmitm

]
= Ex

[
mct2,2b

]
≤ mcoll′(t2, 2b) ≤ bt2

2b
.

Combining Theorem 3 and Theorem 2 we get ,

Theorem 4. (Main Result)

AdvaeadORANGE-Zest(A) ≤ qp
2κ

+
5σeqp

2b
+

4σvqp
2b

+
2qv
2τ

+
2rqpσe

2b
+

4σeσv
2c

+
rqpσvσe

2b+c
+
τqvqp
2τ+c

+
rqvqp

2b
+
bσvq

2
p

2b+c
.

References

[1] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge functions. In ECRYPT
hash workshop, volume 2007. Citeseer, 2007.

[2] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche. On the indifferentiability of the
sponge construction. In Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, pages 181–197. Springer, 2008.

[3] Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle family of lightweight and
secure authenticated encryption ciphers. IACR Cryptology ePrint Archive, 2018:805, 2018.

[4] Shan Chen and John Steinberger. Tight security bounds for key-alternating ciphers. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, pages 327–350. Springer,
2014.

18

[5] Tingting Cui, Ling Sun, Huaifeng Chen, and Meiqin Wang. Statistical integral distinguisher with
multi-structure and its application on AES. In Information Security and Privacy - 22nd Australasian
Conference, ACISP 2017, Auckland, New Zealand, July 3-5, 2017, Proceedings, Part I, pages 402–420,
2017.

[6] Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON family of lightweight hash functions. In
Phillip Rogaway, editor, Advances in Cryptology - CRYPTO 2011 - 31st Annual Cryptology Conference,
Santa Barbara, CA, USA, August 14-18, 2011. Proceedings, volume 6841 of Lecture Notes in Computer
Science, pages 222–239. Springer, 2011.

[7] Jérémy Jean, Maŕıa Naya-Plasencia, and Thomas Peyrin. Improved rebound attack on the finalist
grøstl. In Anne Canteaut, editor, Fast Software Encryption - 19th International Workshop, FSE 2012,
Washington, DC, USA, March 19-21, 2012. Revised Selected Papers, volume 7549 of LNCS, pages 110–
126. Springer, 2012.

[8] Jérémy Jean, Maŕıa Naya-Plasencia, and Thomas Peyrin. Multiple limited-birthday distinguishers and
applications. In Selected Areas in Cryptography - SAC 2013 - 20th International Conference, Burnaby,
BC, Canada, August 14-16, 2013, Revised Selected Papers, pages 533–550, 2013.

[9] Bart Mennink and Samuel Neves. Encrypted davies-meyer and its dual: Towards optimal security using
mirror theory. In Annual International Cryptology Conference, pages 556–583. Springer, 2017.

[10] Yusuke Naito and Kazuo Ohta. Improved indifferentiable security analysis of PHOTON. In Security
and Cryptography for Networks - 9th International Conference, SCN 2014, Amalfi, Italy, September 3-5,
2014. Proceedings, pages 340–357, 2014.

[11] Jacques Patarin. Etude des generateurs de permutations pseudo-aleatoires bases sur le schema du d. E.
S. PhD thesis, Paris 6, 1991.

[12] Qingju Wang, Lorenzo Grassi, and Christian Rechberger. Zero-sum partitions of PHOTON permuta-
tions. In Topics in Cryptology - CT-RSA 2018 - The Cryptographers’ Track at the RSA Conference
2018, San Francisco, CA, USA, April 16-20, 2018, Proceedings, pages 279–299, 2018.

[13] Hongjun Wu. The hash function jh. Submission to NIST (round 3), 6, 2011.

Appendix A

Test vectors for ORANGE-Zest

Test vector 1:
Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E0F
PT =
AD = 00010203
CT = 84A4C553119EA342C50CCCCE43782567

Test vector 2:
Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E0F
PT =
AD =
CT = 5A65624E01D1349D2211EFBD52217976

Test vector 3:
Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E0F
PT = 000102030405060708090A0B0C0D0E0F101112131415161718191A
AD = 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D
CT = 06C8617CFB5C8CACA64F1F2B9460EADE7776AB0F814F4CFB0E561C621A
B9EB080D6CE0D200E80EE74E8C00

19

Test vectors for ORANGISH

Test vector 1:
Msg = 00010203
MD = 51390073EFBB1DEF2CEAD9688CC2C9D907F2EF6AC8C8D7E733
17EB2C28155226

Test vector 2:
Msg = 000102030405060708090A0B0C0D0E0F101112131415161718
191A1B1C1D1E1F202122232425262728292A2B2C2D2E2F3031323
33435363738393A3B3C3D3E3F404142434445464748494A4B4C4D4E4
F505152535455565758595A5B5C5D5E5F606162
MD = 7B1A8606FF708377BB612E0712C7E824921A8D78B9AD3258
A7B400E96AA349C3

Test vector 3:
Msg = 000102030405060708090A0B0C0D0E0F10111213141516171819
1A1B1C1D1E1F202122232425262728292A2B2C2D2E2F30313233343
5363738393A3B3C3D3E3F
MD = 85739793F2A59EC254488C3931447E86E0F3C0C919899DDA1B
F34B1639DFDCD8

20

	Introduction
	Notations and Conventions
	Our Recommendation

	PHOTON256 Permutation
	Security of
	IND-CPA and INT-CTXT Security of ORANGE-Zest
	Collision Security of ORANGISH
	Preimage Security of ORANGISH

	Existing Analysis of PHOTON256
	Design Rational
	Choice of the Mode
	Need of an additional state
	Choice of the Permutation

	Figures of for Different Cases
	 Background for Proof of ORANGE-Zest
	H-coefficient Technique
	Some Results on Multicollision
	Expected multicollition in an uniform sample
	Expected Maximum Multicollision in a Non-uniform Random Sample

	Multichain Security game
	Multichain Structure

	Security Proof of ORANGE-Zest
	The Ideal World and Bad Transcript
	Identifying bad events
	The Real World and Good Transcript Analysis
	Bounding bad events(Proof of Lemma 1)
	Bounding Multichain

