///////////////////////////////////////////////////////////////////////////////
// sparkle_avr.S: AVR Assembler implementation of the SPARKLE permutation. //
// This file is part of the SPARKLE submission to NIST's LW Crypto Project. //
// Version 1.0.0 (2019-03-29), see for updates. //
// Authors: The SPARKLE Group (C. Beierle, A. Biryukov, L. Cardoso dos //
// Santos, J. Groszschaedl, L. Perrin, A. Udovenko, V. Velichkov, Q. Wang). //
// License: GPLv3 (see LICENSE file), other licenses available upon request. //
// Copyright (C) 2019 University of Luxembourg . //
// ------------------------------------------------------------------------- //
// This program is free software: you can redistribute it and/or modify it //
// under the terms of the GNU General Public License as published by the //
// Free Software Foundation, either version 3 of the License, or (at your //
// option) any later version. This program is distributed in the hope that //
// it will be useful, but WITHOUT ANY WARRANTY; without even the implied //
// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the //
// GNU General Public License for more details. You should have received a //
// copy of the GNU General Public License along with this program. If not, //
// see . //
///////////////////////////////////////////////////////////////////////////////
#include "avr/io.h"
// 32-bit word registers
#define WR0 R0,R1,R2,R3
#define WR1 R4,R5,R6,R7
#define WR2 R8,R9,R10,R11
#define WR3 R12,R13,R14,R15
#define WR4 R16,R17,R18,R19
#define WR5 R20,R21,R22,R23
// Temporary registers
#define t0 R16
#define t1 R17
#define t2 R18
#define t3 R19
// Other register names
#define ZERO R20
#define NS R22
#define SCNT R23
#define NB R24
#define BCNT R25
// 32-bit offset values
#define OF0 0,1,2,3,
#define OF1 4,5,6,7
#define OF2 8,9,10,11
#define OF3 12,13,14,15
// Program flash data section (in code memory space)
.section .text
///////////////////////////////////////////////////////////////////////////////
/////////////////////// ROUND CONSTANTS (IN BIG ENDIAN) ///////////////////////
///////////////////////////////////////////////////////////////////////////////
// .global RCON
.type RCON, @object
RCON:
.word 0x5162, 0xB7E1, 0x5880, 0xBF71
.word 0xDA56, 0x38B4, 0x7738, 0x324E
.word 0x85EB, 0xBB11, 0x7B57, 0x4F7C
.word 0xA1C8, 0xCFBF, 0x293D, 0xC2B3
///////////////////////////////////////////////////////////////////////////////
///////////// MACROS FOR 32-BIT ARITHMETIC AND LOGICAL OPERATIONS /////////////
///////////////////////////////////////////////////////////////////////////////
// Addition of two 32-bit words: A = A + B
.macro ADDWORD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
ADD \a0, \b0
ADC \a1, \b1
ADC \a2, \b2
ADC \a3, \b3
.endm
// Bitwise AND of two 32-bit words: A = A AND B
.macro ANDWORD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
AND \a0, \b0
AND \a1, \b1
AND \a2, \b2
AND \a3, \b3
.endm
// Bitwise XOR of two 32-bit words: A = A XOR B
.macro XORWORD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
EOR \a0, \b0
EOR \a1, \b1
EOR \a2, \b2
EOR \a3, \b3
.endm
// Moving 32-bit word B to 32-bit word A: A = B
.macro MOVWORD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
MOVW \a0, \b0
MOVW \a2, \b2
.endm
// ELL-Operation of a 32-bit word: A = ELL(B)
.macro ELLWORD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
MOVW t0, \b2
MOVW \a2, \b0
MOVW \a0, t0
EOR \a0, \a2
EOR \a1, \a3
.endm
///////////////////////////////////////////////////////////////////////////////
////////// MACROS FOR LOADING/STORING STATE WORDS AND ROUND CONSTANTS /////////
///////////////////////////////////////////////////////////////////////////////
// Load 32-bit word via X-pointer from RAM using post-increment addressing mode
.macro LDXINCR a0:req, a1:req, a2:req, a3:req
LD \a0, X+
LD \a1, X+
LD \a2, X+
LD \a3, X+
.endm
// Load 32-bit word via Z-pointer from RAM using displacement addressing mode
.macro LDZDISP a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
LDD \a0, Z+\b0
LDD \a1, Z+\b1
LDD \a2, Z+\b2
LDD \a3, Z+\b3
.endm
// Load 32-bit word via Z-pointer from RAM using post-increment addressing mode
.macro LDZINCR a0:req, a1:req, a2:req, a3:req
LD \a0, Z+
LD \a1, Z+
LD \a2, Z+
LD \a3, Z+
.endm
// Load 32-bit word from program memory using post-increment addressing mode
.macro LDZPCMI a0:req, a1:req, a2:req, a3:req
LPM \a0, Z+
LPM \a1, Z+
LPM \a2, Z+
LPM \a3, Z+
.endm
// Store 32-bit word via X-pointer to RAM using pre-decrement addressing mode
.macro STXDECR a0:req, a1:req, a2:req, a3:req
ST -X, \a3
ST -X, \a2
ST -X, \a1
ST -X, \a0
.endm
// Store 32-bit word via X-pointer to RAM using post-increment addressing mode
.macro STXINCR a0:req, a1:req, a2:req, a3:req
ST X+, \a0
ST X+, \a1
ST X+, \a2
ST X+, \a3
.endm
// Store 32-bit word via Z-pointer to RAM using pre-decrement addressing mode
.macro STZDECR a0:req, a1:req, a2:req, a3:req
ST -Z, \a3
ST -Z, \a2
ST -Z, \a1
ST -Z, \a0
.endm
// Store 32-bit word via Z-pointer to RAM using displacement addressing mode
.macro STZDISP a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
STD Z+\b0, \a0
STD Z+\b1, \a1
STD Z+\b2, \a2
STD Z+\b3, \a3
.endm
// Store 32-bit word via Z-pointer to RAM using post-increment addressing mode
.macro STZINCR a0:req, a1:req, a2:req, a3:req
ST Z+, \a0
ST Z+, \a1
ST Z+, \a2
ST Z+, \a3
.endm
///////////////////////////////////////////////////////////////////////////////
////// MACROS FOR RIGHT-ROTATION OF A 32-BIT WORD FOLLOWED BY ADD OR XOR //////
///////////////////////////////////////////////////////////////////////////////
// A = A + (B >>> 31)
.macro RR31ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
// Move word B to temporary word T
MOVW t0, \b0
MOVW t2, \b2
// Rotate word T one bit to the left
ADD t0, t0
ADC t1, t1
ADC t2, t2
ADC t3, t3
ADC t0, ZERO
// Add word T to word A
ADD \a0, t0
ADC \a1, t1
ADC \a2, t2
ADC \a3, t3
.endm
// A = A XOR (B >>> 31)
.macro RR31XOR a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
// Move word B to temporary word T
MOVW t0, \b0
MOVW t2, \b2
// Rotate word T one bit to the left
ADD t0, t0
ADC t1, t1
ADC t2, t2
ADC t3, t3
ADC t0, ZERO
// XOR word T to word A
EOR \a0, t0
EOR \a1, t1
EOR \a2, t2
EOR \a3, t3
.endm
// A = A + (B >>> 24)
.macro RR24ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
// Add word B with implicit 24-bit right-rotation to word A
ADD \a0, \b3
ADC \a1, \b0
ADC \a2, \b1
ADC \a3, \b2
.endm
// A = A XOR (B >>> 24)
.macro RR24XOR a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
// XOR word B with implicit 24-bit right-rotation to word A
EOR \a0, \b3
EOR \a1, \b0
EOR \a2, \b1
EOR \a3, \b2
.endm
// A = A + (B >>> 17)
.macro RR17ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
// Move word B to temporary word T
MOVW t0, \b0
MOVW t2, \b2
// Rotate word T one bit to the right
BST t0, 0
ROR t3
ROR t2
ROR t1
ROR t0
BLD t3, 7
// Add word T with implicit 16-bit right-rotation to word A
ADD \a0, t2
ADC \a1, t3
ADC \a2, t0
ADC \a3, t1
.endm
// A = A XOR (B >>> 17)
.macro RR17XOR a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
// Move word B to temporary word T
MOVW t0, \b0
MOVW t2, \b2
// Rotate word T one bit to the right
BST t0, 0
ROR t3
ROR t2
ROR t1
ROR t0
BLD t3, 7
// XOR word T with implicit 16-bit right-rotation to word A
EOR \a0, t2
EOR \a1, t3
EOR \a2, t0
EOR \a3, t1
.endm
// A = A + (B >>> 16)
.macro RR16ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
// Add word B with implicit 16-bit right-rotation to word A
ADD \a0, \b2
ADC \a1, \b3
ADC \a2, \b0
ADC \a3, \b1
.endm
// A = A XOR (B >>> 16)
.macro RR16XOR a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
// XOR word B with implicit 16-bit right-rotation to word A
EOR \a0, \b2
EOR \a1, \b3
EOR \a2, \b0
EOR \a3, \b1
.endm
// A = A + (B >>> 15)
.macro RR15ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
// Move word B to temporary word T
MOVW t0, \b0
MOVW t2, \b2
// Rotate word T one bit to the left
ADD t0, t0
ADC t1, t1
ADC t2, t2
ADC t3, t3
ADC t0, ZERO
// Add word T with implicit 16-bit right-rotation to word A
ADD \a0, t2
ADC \a1, t3
ADC \a2, t0
ADC \a3, t1
.endm
// A = A XOR (B >>> 15)
.macro RR15XOR a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
// Move word B to temporary word T
MOVW t0, \b0
MOVW t2, \b2
// Rotate word T one bit to the left
ADD t0, t0
ADC t1, t1
ADC t2, t2
ADC t3, t3
ADC t0, ZERO
// XOR word T with implicit 16-bit right-rotation to word A
EOR \a0, t2
EOR \a1, t3
EOR \a2, t0
EOR \a3, t1
.endm
// A = A + (B >>> 8)
.macro RR08ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
// Add word B with implicit 8-bit right-rotation to word A
ADD \a0, \b1
ADC \a1, \b2
ADC \a2, \b3
ADC \a3, \b0
.endm
// A = A XOR (B >>> 8)
.macro RR08XOR a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
// XOR word B with implicit 8-bit right-rotation to word A
EOR \a0, \b1
EOR \a1, \b2
EOR \a2, \b3
EOR \a3, \b0
.endm
// A = A + (B >> 16)
.macro RS16ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req
// Add word B with implicit 16-bit right-shift to word A
ADD \a0, \b2
ADC \a1, \b3
ADC \a2, ZERO
ADC \a3, ZERO
.endm
///////////////////////////////////////////////////////////////////////////////
//////////////////// PROLOGUE: PUSH CALLEE-SAVED REGISTERS ////////////////////
///////////////////////////////////////////////////////////////////////////////
// Push callee-saved registers on the stack
.macro PROLOGUE
PUSH R0
PUSH R2
PUSH R3
PUSH R4
PUSH R5
PUSH R6
PUSH R7
PUSH R8
PUSH R9
PUSH R10
PUSH R11
PUSH R12
PUSH R13
PUSH R14
PUSH R15
PUSH R16
PUSH R17
// initialize pointers and loop-counters
MOVW XL, R24
MOV NB, R22
MOV NS, R20
ADD NB, NB
ADD NB, NB
CLR ZERO
.endm
///////////////////////////////////////////////////////////////////////////////
///////////////////// EPILOGUE: POP CALLEE-SAVED REGISTERS ////////////////////
///////////////////////////////////////////////////////////////////////////////
// Pop callee-saved registers from the stack
.macro EPILOGUE
POP R17
POP R16
POP R15
POP R14
POP R13
POP R12
POP R11
POP R10
POP R9
POP R8
POP R7
POP R6
POP R5
POP R4
POP R3
POP R2
POP R0
CLR R1
.endm
///////////////////////////////////////////////////////////////////////////////
////////////////////// ADDITION OF STEP COUNTER TO STATE //////////////////////
///////////////////////////////////////////////////////////////////////////////
.macro ADD_STEP_CNT
LDI ZL, lo8(RCON)
LDI ZH, hi8(RCON)
MOV t0, SCNT
ANDI t0, 7
ADD t0, t0
ADD t0, t0
ADD ZL, t0
ADC ZH, ZERO
LDZPCMI WR0
ADIW XL, 4
LDXINCR WR1
XORWORD WR1, WR0
STXDECR WR1
SBIW ZL, 4
SUB ZL, t0
SBC ZH, ZERO
ADIW XL, 8
LD t0, X
EOR t0, SCNT
ST X, t0
SBIW XL, 12
.endm
///////////////////////////////////////////////////////////////////////////////
//////////////////////////////// ARXBOX LAYER /////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
.macro ARXBOX_LAYER
MOV BCNT, NB ; set branch-counter to NB
ARXLOOP1:
LDXINCR WR0 ; load state-word X
LDXINCR WR1 ; load state-word Y
LDZPCMI WR2 ; load round constant C
RR31ADD WR0, WR1 ; X = X + (Y >>> 31)
RR24XOR WR1, WR0 ; Y = Y XOR (X >>> 24)
XORWORD WR0, WR2 ; X = X XOR C
RR17ADD WR0, WR1 ; X = X + (Y >>> 17)
RR17XOR WR1, WR0 ; Y = Y XOR (X >>> 17)
XORWORD WR0, WR2 ; X = X XOR C
ADDWORD WR0, WR1 ; X = X + (Y >>> 0)
RR31XOR WR1, WR0 ; Y = Y XOR (X >>> 31)
XORWORD WR0, WR2 ; X = X XOR C
RR24ADD WR0, WR1 ; X = X + (Y >>> 24)
RR16XOR WR1, WR0 ; Y = Y XOR (X >>> 16)
XORWORD WR0, WR2 ; X = X XOR C
SBIW XL, 8 ; decrement X-pointer by 8
STXINCR WR0, ; store state-word X
STXINCR WR1, ; store state-word Y
SUBI BCNT, 4 ; decrement branch-counter by 4
CPSE BCNT, ZERO ; test whether branch-counter is 0
RJMP ARXLOOP1 ; if not then jump back to start
SUB XL, NB ; set X-pointer to address of state[nb]
SBC XH, ZERO ; propagate carry
SUB XL, NB ; set X-pointer to address of state[0]
SBC XH, ZERO ; propagate carry
.endm
///////////////////////////////////////////////////////////////////////////////
//////////////////////////////// LINEAR LAYER /////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
.macro LINEAR_LAYER
PUSH NS ; push NS to get one more register
PUSH SCNT ; push SCNT to get one more register
MOVW ZL, XL ; set Z-pointer to address of state[0]
LDXINCR WR0 ; WR0 = X[0] (WR0 contains tmpx)
MOVWORD WR1, WR0 ; WR1 = X[0] (WR1 contains x0)
LDXINCR WR2 ; WR2 = Y[0] (WR2 contains tmpy)
MOVWORD WR3, WR2 ; WR3 = Y[0] (WR3 contains y0)
MOV BCNT, NB ; set branch-counter to NB
SUBI BCNT, 8 ; first iteration of loop below is peeled off
LINLOOP1:
LDXINCR WR4 ; load state-word X[i]
XORWORD WR0, WR4 ; xor X[i] to tmpx
LDXINCR WR4 ; load state-word Y[i]
XORWORD WR2, WR4 ; xor Y[i] to tmpy
SUBI BCNT, 8 ; decrement branch-counter
BRNE LINLOOP1 ; jump back to start if branch-counter is not 0
ELLWORD WR0, WR0 ; perform ELL operation on tmpx
ELLWORD WR2, WR2 ; perform ELL operation on tmpy
ADIW XL, 8 ; X-pointer contains now address of state[j+nb]
MOV BCNT, NB ; set branch-counter to NB
SUBI BCNT, 8 ; last iteration of loop below is peeled off
LINLOOP2:
LDXINCR WR4 ; WR4 = state[j+nb]
XORWORD WR4, WR2 ; WR4 = state[j+nb] ^ tmpy
LDZDISP WR5, OF2 ; WR5 = state[j]
XORWORD WR4, WR5 ; WR4 = state[j+nb] ^ tmpy ^ state[j]
STXDECR WR5 ; state[j+nb] = WR5
STZINCR WR4 ; state[j-2] = WR4
ADIW XL, 4 ; increment X-pointer manually
LDXINCR WR4 ; WR4 = state[j+nb+1]
XORWORD WR4, WR0 ; WR4 = state[j+nb+1] ^ tmpx
LDZDISP WR5, OF2 ; WR5 = state[j+1]
XORWORD WR4, WR5 ; WR4 = state[j+nb+1] ^ tmpx ^ state[j+1]
STXDECR WR5 ; state[j+nb+1] = WR5
STZINCR WR4 ; state[j-1] = WR4
ADIW XL, 4 ; increment X-pointer manually
SUBI BCNT, 8 ; decrement branch-counter
BRNE LINLOOP2 ; jump back to start if branch-counter is not 0
MOVW XL, ZL ; X-pointer contains address of state[nb-1]
ADIW XL, 8 ; X-pointer contains address of state[nb]
LDXINCR WR4 ; WR4 = state[nb]
XORWORD WR4, WR2 ; WR4 = state[nb] ^ tmpy
XORWORD WR4, WR1 ; WR4 = state[j+nb] ^ tmpy ^ x0
STXDECR WR1 ; state[nb] = x0
STZINCR WR4 ; state[nb-2] = WR4
ADIW XL, 4 ; increment X-pointer manually
LDXINCR WR4 ; WR4 = state[nb+1]
XORWORD WR4, WR0 ; WR4 = state[nb+1] ^ tmpx
XORWORD WR4, WR3 ; WR4 = state[j+nb+1] ^ tmpx ^ y0
STXDECR WR3 ; state[nb+1] = y0
STZINCR WR4 ; state[nb-1] = WR4
SBIW XL, 4 ; decrement X-pointer manually
CLR ZERO ; ZERO register was "misused" above
SUB XL, NB ; restore original address of X-pointer
SBC XH, ZERO ; restore original address of X-pointer
POP SCNT ; restore original content of SCNT
POP NS ; restore original content of NS
.endm
///////////////////////////////////////////////////////////////////////////////
///////////////////////////// SPARKLE PERMUTATION /////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// Function prototype:
// -------------------
// void sparkle_avr(uint32_t *state, int nb, int ns)
//
// Parameters:
// -----------
// state: pointer to an uint32-array containing 2*nb state words
// nb: sumber of branches (the state consists of 2*nb 32-bit words)
// ns: number of steps
//
// Return value:
// -------------
// None
.global sparkle_avr
.type sparkle_avr, @function
.func sparkle_avr
sparkle_avr:
PROLOGUE ; push callee-saved registers
CLR SCNT ; clear step-counter
MAINLOOP:
ADD_STEP_CNT ; macro to add step counter to state
ARXBOX_LAYER ; macro for the arxbox layer
LINEAR_LAYER ; macro for the linear layer
INC SCNT ; increment step-counter
CPSE SCNT, NS ; test whether step-counter equals ns
RJMP MAINLOOP ; if not then jump back to start of loop
EPILOGUE ; pop callee-saved registers
RET
.end func