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1 Introduction

This document specifies and presents Grain-128AEAD, an authenticated encryp-

tion algorithm with support for associated data. The specification is closely based

on Grain-128a, introduced in 2011, which has, already for several years, been an-

alyzed in the literature. To benefit from the maturity of the Grain family, our

strategy in the design of Grain-128AEAD is to have the changes made to Grain-

128a as small as possible. This allows us to argue for the security of the cipher,

based on previous results on Grain-128a.

Grain-128a is in turn based on Grain v1 and Grain-128, which have both

been extensively analyzed, providing much insight into the security of the design

approach. All Grain stream ciphers also allow the throughput to be increased by

adding additional copies of the Boolean functions involved.

1.1 NIST requirements

This section provides a mapping of the requirements given by NIST [44] to the

respective sections in this document and supporting files.

1.1.1 Cover Sheet

The cover sheet with the name of the submission, name of the submitters, in-

cluding contact information for the corresponding submitter and a backup point

of contact is provided as the first page of this document.

1.1.2 Algorithm Specification and Supporting Documentation

The documentation requirements are provided in [44, Section 2.2].

• The complete written specification of the algorithm is given in Section 2.

• The design rationale and an explanation for the different design decisions

are given in Section 3. This also includes specific constants that are used

in the algorithm.

• The submission describes a single AEAD algorithm, denoted Grain-128AEAD

that takes a 128-bit key and a 96-bit nonce. It does not implement hashing

functionality.
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• Grain-128AEAD has been designed with 128-bit security in mind. Thus,

referring to the NIST requirements [44, Section 3.1], we expect that crypt-

analytic attacks requires at least 2112 computations on a classical computer

in a single key setting.

• Known cryptanalytic attacks, using attacks on Grain-128a as a reference

point, on the algorithm are specified in Section 4.

• Advantages and limitations of Grain-128AEAD are given in Section 6.

• References given in Section 4 provide a list of published materials that

analyze the security of the very similar Grain-128a.

1.1.3 Source Code and Test Vectors

These requirements are provided in [44, Section 2.3]. Source code of a reference

implementation is provided separately from this document. Test vectors from the

reference implementation are provided in Section 7.

1.1.4 AEAD Requirements

The AEAD requirements are provided in [44, Section 3.1].

• Grain-128AEAD takes a variable-length plaintext, variable-length associ-

ated data, a fixed-length nonce (IV) of size 96 bits, and a fixed-length key

of size 128 bits. The output is a variable length ciphertext. The plaintext

is recovered from a valid ciphertext. An invalid ciphertext does not return

a plaintext.

• For a single key, the nonce must be unique. If the nonce is not unique, i.e.,

it is repeated for the same key, the algorithm leaks information about the

two plaintext, and the MAC can be forged.

• The Grain-128AEAD is one algorithm with the only supported parameters

are 128-bit key and 96-bit nonce.

• Grain-128AEAD is a bit oriented stream cipher and it thus also allows byte

string inputs. The message padding of one ’1’ bit, can in an environment

that only operates with bytes, be replaced by a ’1’ followed by seven ’0’s.

This will not affect the MAC result.
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• Grain-128AEAD has a keystream limitation of 280 bits, i.e., a pre-output

stream limitation of 281 bits.

1.2 Acknowledgments

We wish to thank Alexander Maximov and Martin Ågren, who have been involved

in designing previous variants in the Grain family of stream ciphers. Their work

has been valuable to the understanding of the cipher and design choices made to

Grain-128AEAD have used inspiration from their work.
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2 Algorithm Specification

Grain-128AEAD consists of two main building blocks. The first is a pre-output

generator, which is constructed using a Linear Feedback Shift Register (LFSR),

a Non-linear Feedback Shift Register (NFSR) and a pre-output function, while

the second is an authenticator generator consisting of a shift register and an

accumulator. The design is very similar to Grain-128a, but has been modified to

allow for larger authenticators and to support AEAD. Moreover, the modes of

usage have been updated.

2.1 Building Blocks and Functions

The pre-output generator generates a stream of pseudo-random bits, which are

used for encryption and the authentication tag. It is depicted in Fig. 1. The

LFSR

Accumulator

Register

NFSR

g f

hh

7 2 7

6524

mi

z'i zi

y384+t

...

Figure 1: An overview of the building blocks in Grain-128AEAD.

content of the 128-bit LFSR is denoted St = [st0, s
t
1, . . . , s

t
127] and the content

of the 128-bit NFSR is similarly denoted Bt = [bt0, b
t
1, . . . , b

t
127]. These two shift

registers represent the 256-bit state of the pre-output generator.

The primitive feedback polynomial of the LFSR, defined over GF(2) and de-

noted f(x), is defined as

f(x) = 1 + x32 + x47 + x58 + x90 + x121 + x128.
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The corresponding update function of the LFSR is given by

st+1
127 = st0 + st7 + st38 + st70 + st81 + st96

= L(St).

The nonlinear feedback polynomial of the NFSR, denoted g(x) and also defined

over GF(2), is defined as

g(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60 + x61x125

+ x63x67 + x69x101 + x80x88 + x110x111 + x115x117

+ x46x50x58 + x103x104x106 + x33x35x36x40

and the corresponding update function is given by

bt+1
127 = st0 + bt0 + bt26 + bt56 + bt91 + bt96 + bt3b

t
67 + bt11b

t
13

+ bt17b
t
18 + bt27b

t
59 + bt40b

t
48 + bt61b

t
65 + bt68b

t
84

+ bt22b
t
24b

t
25 + bt70b

t
78b

t
82 + bt88b

t
92b

t
93b

t
95

= st0 + F(Bt).

Nine state variables are taken as input to a Boolean function h(x). Two of

these bits are taken from the NFSR and seven are taken from the LFSR. The

function is defined as

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8,

where the variables x0, . . . , x8 correspond to, respectively, the state variables

bt12, s
t
8, s

t
13, s

t
20, b

t
95, s

t
42, s

t
60, s

t
79 and st94.

The output of the pre-output generator, is then given by the pre-output func-

tion

yt = h(x) + st93 +
∑
j∈A

btj,

where A = {2, 15, 36, 45, 64, 73, 89}.
The authenticator generator consists of a shift register, holding the most re-

cent 64 odd bits from the pre-output, and an accumulator. Both are of size 64 bits.

We denote the content of the accumulator at instance i as Ai = [ai0, a
i
1, . . . , a

i
63].

Similarly, the content of the shift register is denoted Ri = [ri0, r
i
1, . . . , r

i
63].
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2.2 Key and Nonce Initialization

Before the pre-output can be used as keystream and for authentication, the in-

ternal state of the pre-output generator and the authenticator generator registers

are initialized with a key and nonce. Denote the key bits as ki, 0 ≤ i ≤ 127

and the nonce (IV) bits as IV i, 0 ≤ i ≤ 95. Then the state is initialized

as follows. The 128 NFSR bits are loaded with the bits of the key b0i = ki,

0 ≤ i ≤ 127 and the first 96 LFSR elements are loaded with the nonce bits,

s0i = IVi, 0 ≤ i ≤ 95. The last 32 bits of the LFSR are filled with 31 ones and

a zero, s0i = 1, 96 ≤ i ≤ 126, s0127 = 0. Then, the cipher is clocked 256 times,

feeding back the pre-output function and XORing it with the input to both the

LFSR and the NFSR, i.e.,

st+1
127 = L(St) + yt, 0 ≤ t ≤ 255,

bt+1
127 = st0 + F(Bt) + yt, 0 ≤ t ≤ 255.

Once the pre-output generator has been initialized, the authenticator generator

is initialized by loading the register and the accumulator with the pre-output

keystream as

a0j = y256+j, 0 ≤ j ≤ 63,

r0j = y320+j, 0 ≤ j ≤ 63.

When the register and the accumulator are initialized, the key is simultaneously

shifted into the LFSR,

st+1
127 = L(St) + kt−256, 256 ≤ t ≤ 383,

while the NFSR is updated as

bt+1
127 = st0 + F(Bt), 256 ≤ t ≤ 383.

Thus, when the cipher has been fully initialized the LFSR and the NFSR

states are given by S384 and B384, respectively, and the register and accumulator

are given by R0 and A0, respectively. The initialization procedure is summarized

in Fig 2.
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LFSR

Accumulator

Register

NFSR

t = 0 .. 255

t = 0 .. 255

t = 256 .. 383t = 256 .. 383

g f

hh

7 2 7

6524

yt

ki
...

Figure 2: An overview of the initialization in Grain-128AEAD. Note that, in
hardware, the accumulator initialization is realized by first loading 64 pre-output
bits into the register, followed by moving them to the accumulator.

2.3 Operating Mode

For a message m of length L, denoted m0,m1, . . . ,mL−1, set mL = 1 as padding

in order to ensure that m and m‖0 have different tags.

After initializing the pre-output generator, the pre-output is used to generate

keystream bits zi for encryption and authentication bits z′i to update the register

in the accumulator generator. The keystream is generated as

zi = y384+2i,

i.e., every even bit (counting from 0) from the pre-output generator is taken as a

keystream bit. The authentication bits are generated as

z′i = y384+2i+1,

i.e., every odd bit from the pre-output generator is taken as an authentication

bit. The message is encrypted as

ci = mi ⊕ zi, 0 ≤ i < L.
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The accumulator is updated as

ai+1
j = aij +mir

i
j, 0 ≤ j ≤ 63, 0 ≤ i ≤ L,

and the shift register is updated as

ri+1
63 = z′i,

ri+1
j = rij+1, 0 ≤ j ≤ 62.

2.4 Keystream Limitation

Grain stream ciphers have been designed to allow for encrypting large chunks of

data using the same key/nonce pair. Grain-128AEAD restricts the number of

keystream bits for each key/nonce to 280. Thus, the number of pre-output bits

that can be generated under one key/nonce pair is 281.

2.5 Authenticated Encryption with Associated Data

An AEAD scheme allows for data that is authenticated, but unencrypted. Grain-

128AEAD achieves this simply by explicitly forcing y384+2i to zero for bits that

should not be encrypted, but should still be authenticated. This means that it

is possible to control the associated data on bit level, and this data can appear

anywhere in the message.

In more detail, we define an AEAD mask, denoted

d = d0, d1, . . . , dL−1,

which specifies which bits should be encrypted. If the mask contains only ones

(no associated data), the encryption is done as given above. But if the AEAD

mask contains zeros, then the encryption is instead done as

ci = mi ⊕ zi · di, 0 ≤ i < L,

and decryption in the obvious way. The AEAD mask should be predetermined

and fixed for the protocol using Grain-128AEAD. The use of such a mask includes

great flexibility, as it allows unencrypted data not only as the initial part of a

transmitted packet of bits, but one can actually have unencrypted data in any

positions of a packet. This provides flexibility in protocol design. The small
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cost to pay for this is the fact that the cipher is producing some pre-output bits

that are not used (those corresponding to unencrypted bits). But since there is

essentially no additional cost to handle the introduction of unencrypted data in

the construction, we believe that this is an efficient solution.

In the case of variable length associated data, as in the specified NIST API,

one has to be a bit careful. If we assume that the first X bits of the data should

be unencrypted and the remaining L − X bits encrypted, then di = 0 if i < X

and di = 1 otherwise, and the ciphertext is generated accordingly. If a ciphertext

of the form (ad,ad length X, message, MAC) given by

((m0,m1, . . . ,mx−1), x, (mx,mx+1, . . .), t)

is replaced by a ciphertext

((m0,m1, . . . ,mx−1,mx), x+ 1, (mx+1,mx+2, . . .), t)

then this is also a valid ciphertext as the MAC is generated from the same binary

string. When variable length associated data is used, we assume that attacks

as the one exemplified above are handled by the protocol layer above when it is

relevant.

2.6 Using Grain-128AEAD with NIST API

This section will describe how the core Grain-128AEAD algorithm described

above is used in NISTs API. To clarify the use of notation, by m we mean the

message sent to the API that is subject to encryption, and m′ is used to denote the

complete string that is used by the core Grain-128AEAD algorithm. Similarly,

c is the ciphertext that includes the encrypted string and the authentication

information, while c′ denotes the bitstring that is decrypted by the core algorithm

(thus also including the associated data). It can be noted that the NIST API is

byte oriented. This does not pose any significant restrictions to Grain-128AEAD,

but the padding bit is here given as 0x80 instead of ’1’. Due to the design of the

authenticator, these two paddings are equivalent.

2.6.1 Encryption and MAC Generation with NIST API

So for the specific case of the NIST software API, we propose to map the bytewise

input (ad, ad length, message, message length) to a bitstring m′ in the following
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Algorithm 1: AEAD Encrypt with NIST API

Input: ad, adlen, m, mlen, k, nonce
Output: c

1 Initialize generator with k and nonce
2 Construct m′ = (Encode(adlen)‖ad‖m‖0x80)
3 Let
4 M = bit length of Encode(adlen)‖ad
5 di = 0, (0 ≤ i ≤M − 1)
6 di = 1, (M ≤ i ≤M +mlen− 1)
7 Encrypt using c′i = m′i ⊕ zidi, (0 ≤ i ≤M +mlen− 1)
8 Authenticate using z′i and generate AM+mlen+1

9 c = (c′M , c
′
M+1, . . . , c

′
M+mlen−1)‖AM+mlen+1

10 return 0

way. The bitstring is constructed as

m′ = Encode(ad length)||ad||m||0x80,

where Encode() = y denotes a length encoding similar to the definite form used in

DER encoding in, e.g., X.509. If the first byte in y starts with a 0, the remaining

7 bits is an encoding of the number of bytes in the associated data (up to 127

bytes). If the first byte in y starts with a 1, the remaining 7 bits are instead an

encoding of the number of forthcoming bytes that are used to describe the length

(in bytes) of the associated data. In y, this first byte is then followed by the bytes

describing the length.

We then encrypt and authenticate m′ in AEAD mode by setting the AEAD

mask di = 0 for all bits i < M , where M denotes the bit length of the string

Encode(ad length)||ad. For i ≥ M , we set di = 1. A summary of the AEAD

encryption algorithm, as used with the NIST API, is given by Algorithm 1.

2.6.2 Decryption and MAC Verification with NIST API

On the receiver side, the received MAC has to be verified and decryption has

to be performed. The API takes as input the associated data and a ciphertext

c which is the encrypted message concatenated with the MAC. Together with

the encoding of the ad length and the padding, the bitstring c′ is formed. The

bitstring m′ is determined by computing m′i = c′i ⊕ zi · di, 0 ≤ i < L. This

also includes recomputing the MAC from m′ as in the encryption. The receiver
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Algorithm 2: AEAD Decrypt with NIST API

Input: ad, adlen, c, clen, k, nonce
Output: m

1 Initialize generator with k and nonce
2 Construct c′ = (Encode(adlen)‖ad‖c0, . . . , cclen−65‖0x80)
3 Let
4 M = bit length of Encode(adlen)‖ad
5 mlen = clen− 64
6 di = 0, (0 ≤ i ≤M − 1)
7 di = 1, (M ≤ i ≤M + mlen− 1)
8 Decrypt using m′i = c′i ⊕ zidi, (0 ≤ i ≤M + mlen− 1)
9 Authenticate using z′i and generate AM+mlen+1

10 Set m = m′M , . . . ,m
′
M+mlen−1

11 if (cclen−64, . . . , cclen−1) == AM+mlen+1

12 return 0
13 else
14 return -1

side contains a comparison between the two 64 bit MAC values, resulting in a

flag value with value 0 if the two MAC values are equal and -1 otherwise. This

comparison is part of the core implementation. Further possible checks, like

nonce reuse checks, depends on the application and is considered to take place

outside the core implementation. A summary of the AEAD decryption and MAC

verification is given in Algorithm 2. Again, note the 0x80 padding, which is due

to the byte oriented nature of the NIST API.
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3 Design Rationale

This section presents a short overview of the Grain stream ciphers and how the

design has evolved through the different versions. It also enumerates and discusses

the differences between Grain-128a and the proposed Grain-128AEAD.

3.1 Short History of the Grain Family of Stream Ciphers

The Grain family of stream ciphers are based on the idea behind the nonlinear

filter generator. In a nonlinear filter, an LFSR is used to provide a sequence

with large period, and a nonlinear function, taking parts of the LFSR sequence

as input, is used to add nonlinearity to the keystream sequence. Much work has

been put into analyzing the nonlinear filter generator and it is clear that it is very

difficult to design a secure nonlinear filter generator with a reasonable hardware

footprint [13]. In particular algebraic attacks have been shown to be very strong

against this design, see e.g., [16, 42].

In order to better withstand algebraic attacks, and to make the relation be-

tween state/key and keystream more complex, Grain adds an NFSR to the non-

linear combiner. The initial submission to the ECRYPT eSTREAM project was

analyzed in [35, 10], showing that the nonlinear functions required higher re-

siliency and nonlinearity. The modified design was subsequently published as

Grain v1 [27] and was later selected for the final portfolio in eSTREAM. Grain

v1 uses an 80-bit key, and a 128-bit key variant was proposed in [26]. Based on

previous results on the Grain construction, Grain-128 was more aggressively de-

signed, making the nonlinear NFSR feedback function of degree 2, but with high

nonlinearity and resiliency. The relatively small functions compensated for the

fact that the shift registers were increased to 128 bits each, which increased the

hardware footprint. The low degree functions were exploited in [3, 46] in order

to cryptanalyze a significant number of initializations rounds. These results sug-

gested that the nonlinear functions needed a higher security margin. Grain-128a

was proposed in [56], and in addition to increasing the degree of the nonlinear

feedback function, an optional authentication mode was added. Work on Grain-

128 were subsequently improved [19, 18, 20, 33], emphasizing the need for more

complex Boolean functions, and Grain-128 is considered broken and should not

be used. The design proposed in this paper, Grain-128AEAD, is closely based

on Grain-128a, using the same feedback and output functions. However, slight

modifications have been made in order to add security and make it resistant to
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the attack proposed in [49].

3.2 Differences Between Grain-128AEAD and Grain-128a

Grain-128AEAD takes Grain-128a as starting point, but introduces a number

of slight modifications. The modifications are primarily motivated by the NIST

Lightweight Cryptography Standardization Process, but inspiration also comes

from recent results in [49, 24].

3.2.1 Larger MACs

The register and the authenticator has been increased to 64 bits (instead of 32

bits) in order to allow for authentication tags (MACs) of size 64 bits.

3.2.2 No Encryption-only Mode

Grain-128a allowed for an operation mode with only encryption, where the au-

thentication was removed. This mode resulted in smaller hardware footprint since

the two additional registers, and their associated logic, could be left out from an

implementation. The encryption-only mode was also more efficient since the ini-

tialization process does not include initializing the register and the accumulator,

and every pre-output bit was used as keystream. The proposed Grain-128AEAD

is a pure authenticated encryption algorithm, and authentication of data is always

supported. Thus, there is only one mode of operation.

3.2.3 Initialization Hardening

Based on the ideas in [24] and used in Lizard [25], Grain-128AEAD re-introduces

the key into the internal state during the initialization clock cycles. More specif-

ically, it is serially shifted into the LFSR in parallel to the initialization of the

register and the accumulator. Several variants can be considered here, including

where and when to add the key. The LFSR is chosen due to the fact that if the

LFSR is recovered (e.g., in a fast correlation attack as in [49]), it is comparably

easy to recover the NFSR state. Moreover, since the LFSR output is XORed

with the NFSR input, the key bits will continue to affect also the NFSR during

pre-output generation. As for when, we choose to re-introduce it during the last

128 clocks of the initialization. This provides maximum separation between its

first introduction in the key loading part, where the key is loaded into the NFSR,
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and when it is re-introduced. Relations between keys are e.g., more difficult to

exploit if the key is properly mixed into the state before the key is re-introduced.

By introducing the key as the last part of the initialization, we achieve the

attractive effect that a state recovery attack does not immediately imply key

recovery, as was the case for previous versions of Grain. While a state recovery

would still render the cipher to be considered broken, the practical effect to

deployed devices is highly limited. Recovering the state will only compromise the

security of the current message, and not all messages using the same key.

3.2.4 Keystream Limitation

Grain stream ciphers have been designed to allow for encrypting large chunks

of data using the same key/nonce pair. Previously, the Grain ciphers have not

had any explicit limitation on the keystream length. However, to rule out attacks

that use very large keystream sequences, Grain-128AEAD restricts the number of

keystream bits for each key/nonce to 280. We believe that this is well above what

will be needed in the foreseeable future. Restricting the number of keystream bits

will also make attacks that use linear approximations more difficult, e.g., [49].

3.3 Design Choices for Individual Building Blocks

In this section we motivate design choices for the individual building blocks in

Grain-128AEAD. We also specify any security relevant properties for the involved

building blocks.

3.3.1 LFSR and NFSR

The key size of Grain-128a is 128 bits. Due to Time/memory/Data tradeoff

attacks, the usual strategy is to have a state size that is at least twice the key

size. Imposing restrictions on the keystream could make it possible to relax

this requirement. However, a redesign of the shift registers would also require

a redesign of the involved functions. Such a significant redesign would make it

more difficult to re-use the built up knowledge from previous analysis of the Grain

ciphers, in particular Grain-128AEAD.

3.3.2 Increasing the Throughput

The throughput of Grain-128AEAD, similar to the other Grain ciphers, can be

easily increased by adding more copies of the Boolean functions f , g, and h. To
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simplify the implementation of the throughput increase up to a factor 32, the

Boolean functions do not use the 31 right-most taps of the LFSR and NFSR.

The effect of the additional hardware does not necessarily give a linear increase

in throughput when clocking at maximum frequency, as can be seen in Section 5,

but for moderate clock frequencies, the increase is linear.

3.3.3 Choice of f

The feedback polynomial of the LFSR has two main requirements. First, it

must be a primitive polynomial, and second, it must have enough taps to resist

correlation attacks, but few taps in order to minimize the hardware cost. To meet

these requirements we choose a primitive polynomial of weight 7, i.e., the linear

recurrence relation of the generated sequence consists of 7 bits.

3.3.4 Choice of g

The feedback function for the NFSR is used to create nonlinear relations be-

tween state bits. Its degree must be high enough to resist cube attacks and its

nonlinearity and resiliency must be high enough so that linear approximations

have small bias and also consists of many terms. Due to cube attacks on Grain-

128 [18], it seems not enough to have a function of degree 2. Thus, the degree

used in Grain-128AEAD (as in Grain-128a) is increased to 4. The function

b(x) = x0x1 + x2x3 + x4x5 + x6x7 + x8x9 + x10x11 + x12x13

+x14x15x16 + x17x18x19 + x20x21x22x23,

has nonlinearity 8356352. The resiliency of the function is strengthened by adding

5 linear terms. As a result, the NFSR feedback function g(x) is balanced, has

nonlinearity 25 · 8356352 = 267403264, and resiliency 4. There are 214 linear

approximations of g with bias εg = 63 · 2−15 < 2−9.

3.3.5 Choice of Pre-output Function

The pre-output function takes input from both the NFSR and LFSR. Similarly

to g, the output function consists of one nonlinear (h) and one linear part. The

nonlinear function h has nonlinearity 240, and adding 8 variables linearly gives

a total nonlinearity of the pre-output function of 28 · 240 = 61440. There are in

total 28 linear approximations with the highest bias εh = 2−5.
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3.3.6 Authentication of Messages

The authentication mechanism in Grain-128AEAD is based on universal hash

functions, introduced in [53]. The sender and the receiver agrees on a hash

function from a family of hash functions and hashes the message with this hash

function. Then, the hash is encrypted. The actual implementation of this au-

thentication mechanism dates back to the work of Krawczyk in [37], and further

discussed in [55]. For hashing, the message is multiplied by a Toeplitz matrix

defined by an ε-biased sequence.
t0
t1
...

tw−1

 =


k−1 k0 k1 . . . kL−2
k−2 k−1 k0 . . . kL−3

...
...

...
. . .

...

k−w k−w+1 k−w+2 . . . kL−1−w



m0

m1

...

mL−1


The Toeplitz matrix multiplication is implemented using the shift register R and

the accumulator A as follows. Interpret the matrix columns as

R0 = [k−w, . . . , k−1], R1 = [k−w+1, . . . , k0], . . . , RL−1 = [kL−1−w, . . . , kL−2].

Then, all w entries in R0 are multiplied by m0, all w entries in R1 are multiplied

by m1 etc. Moreover, Ri is just Ri−1 shifted left by one step. Thus, we can

implement this using a shift register with starting state R0 = [k−w, . . . , k−1] and

an accumulator A as

A← A⊕Rimi,

i.e., if the message bit mi is one, we update the accumulator by adding the shift

register content, otherwise we do nothing. Then we shift in the next keystream

bit into the register. A 64-bit keystream block, here seen as a “one-time pad”,

is added to the accumulator in order to encrypt the hash. Instead of taking this

from the end of the keystream, this is extracted as part of the initialization phase

of the cipher, i.e., when the accumulator is initialized with keystream bits.

It is well known, see [37, 55], that if the sequence defining the Toeplitz matrix

is ε-biased, then the substitution probability for the MAC is PS ≤ 2−w + 2ε,

where w is the size of the tag. This provides a provable bound for the security

of the MAC, as well as a straight-forward hardware implementation of the au-

thentication mechanism. In Grain-128AEAD, the sequence defining the Toeplitz

matrix is taken from the pre-output sequence. Alternative approaches would be

to take this sequence as part of the state, thereby removing the need for the
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extra shift register R. Yet another approach would be to compute an additional

output function used for the authentication. This would double the speed as we

would not have to take every second output bit for authentication and encryption

respectively. However, using the pre-output allows us to relate the security of the

MAC to the security of the stream cipher.
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4 Security Analysis and Cryptanalytic Attacks

The security of the Grain family of stream ciphers has been investigated by a

large number of third party analysts, publishing various analysis results on the

different variants of Grain. Since its first introduction in 2005, much have been

learned about the construction and the design approach. There have also been

several published ciphers inspired by the design, e.g., Sprout [2] and its successor

Plantlet [43]. Also Fruit [22] and Fruit-80 [1] are based on the same design idea.

These ciphers have in common that they attempt to realize extremely resource

constrained encryption. To minimize the hardware footprint, the key is assumed

to be stored in non-volatile memory (NVM) on a device, and this memory is

made part of the cryptographic algorithm. Since the key needs to be stored on a

device anyway, using the key directly from NVM in the algorithm does not impose

additional hardware to the construction. This is not the case for Grain, as we

allow the key to be updated in the device, and the key storage is not a part of the

cipher. Still, the fact that the above mentioned ciphers use the Grain design idea

shows that the design seems to be very suitable for lightweight cryptography.

4.1 General Security Analysis

A main class of attacks on stream ciphers is the Time/Memory/Data tradeoff

(TMD-TO) attack, an efficient method of finding either the key or the state

of ciphers by balancing between time, memory and keystream data. This can

sometimes be much more efficient and more practically applicable than a simple

exhaustive key search attack. Some stream ciphers are vulnerable to TMD-TO

attacks and their effective key lengths could then be reduced. This typically

happens if the state size is too small. A famous practical TMD-TO attack on

A5/1 was given in [12].

A TMD-TO attack consists of two parts. The first is a preprocessing phase,

during which a table is constructed. The mapping of different keys or internal

states to some keystream segment is computed and stored in the table. It is sorted

on keystream segments and this process is assumed to use time complexity P

and memory M . In the second (real-time) phase, the attacker has intercepted D

keystream segments and search for a collision with the table with time complexity

T . A collision will recover the corresponding input. By a trade-off between

parameters P,D,M , and T , attackers can devise attacks according to available

time, memory and data. Examples of tradeoffs are Babbage-Golic (BG) [4, 23]
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and Biryukov-Shamir (BS) [11] with curves TM = N , P = M with T ≤ D; and

MT 2D2 = N2, P = N/D with T ≥ D2, where N is the input space, respectively.

For Grain-128AEAD, attackers have no direct way to reconstruct the internal

state, since the cipher has an internal state of size 256 bits (128-bit LFSR +

128-bit NFSR), i.e. N = 2256. The best attack complexity achieved under BG

tradeoff is with T = M = D = N1/2 = 2128, which is not favourable compared to

exhaustive key search. Also the BS tradeoff does not give complexity parameters

of particular interest. Some improvements to TMD-TO attacks can be achieved

through so-called BSW sampling [12] and the performance of such an approach

is characterized by the sampling resistance of the stream cipher. Various gener-

alizations of the concept of sampling resistance can be considered, e.g. [32], but

it seems unlikely that this will lead to an attack with better performance than a

standard Hellman-type time-memory tradeoff attack on the keyspace, a generic

attack applicable to any cipher. Also, our limit on the length of keystreams

affects such attacks.

Another class of general attacks are algebraic attacks, where the attacker

derives a system of nonlinear equations in unknown key bits or unknown state bits

and then solves the system. In general, solving a system of nonlinear equations

is not known to be solvable in polynomial time, but there might be special cases

that can be solved efficiently [15]. Due to the NFSR, the degree of the equations

will gradually increase and it does not look promising to try to derive a system

of nonlinear equations due to this property as well as the algebraic degree of the

h function.

A general cryptanalytic technique is a guess-and-determine attack, where one

guesses parts of the state and then from the keystream tries to determine other

parts of the state. The goal is to guess as few positions as possible and determine

as many as possible from equations involving the keystream. Again, since the

dependence between a keystream symbol and the state includes many different

positions in the state and some of them in nonlinear expressions, one has to guess

a large portion of state variables in order to use an equation to determine a single

state variable.

Being a binary additive stream cipher, Grain-128AEAD does not allow reuse

of a key/nonce pair since this will leak information about the corresponding

plaintexts. Moreover, since Grain-128AEAD closely resembles Grain-128a, a

key/nonce pair used in one cipher may also not be reused in the other. Such

cross-cipher key/nonce reuse in a related cipher model is outside the security

model of Grain-128AEAD.
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In the subsequent subsections, we now describe the attacks that we consider

as the main threat against lightweight stream ciphers in general and Grain-

128AEAD in particular.

4.2 Linear Approximations

It is always possible to find a linear combination or the output bits that is unbal-

anced. In [41], it was shown that by using linear approximations of the functions

g and h in Grain, an expression for the bias of a linear combination of output bits

can be given. For sake of simplicity, we here include all bits in the output function

when we refer to the function h. Let εg and εh be the bias of the two nonlinear

functions, and let Ag and Ah be linear approximations of the two functions, i.e.,

Pr{Ag = g} = 1/2 + εg,

Pr{Ah = h} = 1/2 + εh.

Then, a time invariant linear combination of keystream bits and LFSR bits can

be found that, using the piling-up lemma [40], has the bias

ε = 2(η(Ah)+η(Ag)−1) · εη(Ah)
g · εη(Ag)

h ,

where η(Ag) and η(Ah) denotes the number of NFSR state variables that are

used in the approximations Ag and Ah respectively. In order to get an expression

involving only keystream bits, shifted versions of this function (according to the

LFSR recurrence relation) can be added. This will again lower the bias according

to the piling-up lemma. Finding and using a low-weight multiple of the LFSR

polynomial can be used to improve the bias (see e.g., [50]).

Since it is always possible to find a biased linear approximation of the Boolean

functions g and h, biased relations in keystream bits will always exist. The

functions in Grain-128AEAD have thus been designed to make this bias low. For

the function g, we have εg < 2−9 and η(Ag) = 5, and for the function h (including

the linearly added bits), we have εh < 2−5 and η(Ah) = 7. This will give ε < 2−77

for this linear approximation (which also includes LFSR bits).

4.3 Correlation Attacks

Grain-128a was designed to resist conventional (fast) correlation attacks that

exploit correlations between the state of the LFSR and the corresponding key
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stream. There has been devised a fast correlation attack on small state Grain-

like stream ciphers in [54]. Due to a much bigger state, this attack does not

apply to Grain-128a. On the other hand, a recent paper [49] reveals that there

are multiple linear approximations in Grain-128a that together with a viewpoint

based on a finite field allow a fast correlation attack on the raw encryption mode

of Grain-128a (and on the other members of the Grain family), where every

keystream bit is assumed to be accessible by an opponent. This attack recovers

the state of Grain-128a with data and time complexity of about 2114. The data

needs to come from the same secret key and the same nonce.

It should be noted that this fast correlation attack does not apply to Grain-

128a in authentication mode, as then only every second key stream bit may be

accessible to an opponent. In addition, Grain-128AEAD limits the keystream

length to 280 bits for a same secret key and nonce. Thus, these fast correlation

attacks do not apply to Grain-128AEAD.

4.4 Chosen IV Attacks

A variety of chosen IV attacks on Grain have been proposed, in both fixed key

scenario as well as in the related key setting, and either for distinguishing purpose

or for key recovery. In a fixed key scenario, chosen IV attacks have been devised

on reduced-round versions using conditional differentials and using cube attacks,

or combinations of both [36, 38, 21, 39]. On Grain-128, a dynamic cube attack

has been developed that succeeds in finding the secret key for the full 256-round

initialization for a fraction of keys, [18]. Dynamic cube attacks have not been

successful on Grain-128a thus far. Most of these results are experimental in

nature, and do work only if the computational effort is practically feasible.

More recently, division property has been developed to improve cube attacks.

Division property is an iterated technique for integral distinguishers introduced

by Todo, in [48] and was applied initially to block ciphers. It turned out that it

also applies to the initialization of stream ciphers, not only for distinguishers but

also for key recovery. As opposed to conventional cube attacks, it can provide

theoretical results. The latest result on Grain-128a in this direction is a key

recovery on 184 initialization rounds, [51]. The data complexity is 295, and the

computational complexity corresponds to about 2110 operations.

An attack that reaches the largest number of initialization rounds of Grain-

128a in a fixed key scenario thus far is a conditional differential distinguishing

attack and reaches 195 initialization rounds, but it works only for a fraction of
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all keys, [39].

As a result, there exist no chosen IV attacks on full round initialization of

Grain-128a in a single key scenario. The strengthened initialization procedure of

Grain-128AEAD is expected to prevent such attacks even further.

The relevance of related key cryptanalysis of stream ciphers has been a subject

of debate. A related key attack on Grain-128a in [17] recovers the secret key with a

computational complexity 296, requiring 296 chosen IVs and about 2104 keystream

bits. It requires only 2 related keys. Another related key attack in [8] recovers

the secret key using 264 chosen IVs and 232 related keys, where these figures need

to be multiplied by some factor (about 28).

Due to the modified initialization procedure, related key attacks on Grain-

128AEAD are generally expected to become harder than those known on Grain-

128a. This refers in particular to attacks in the spirit of [17] and [8].

4.5 Fault Attacks

In the scenario of fault attacks on stream ciphers, the attacker is allowed to

inject faults into the internal state, which means either flipping a binary value in

memory or assigning a value to zero. By analyzing the difference in keystreams

for the faulty and the fault-free case, one attempts to deduce the complete or

some partial information about the internal state or the secret key. Fault attacks

on stream ciphers have recently received some attention, starting with the work of

Hoch and Shamir [28]. The most common methods of injecting faults is by using

laser or through clock glitches. Fault attacks usually rely on assumptions that is

beyond the model of cryptanalysis and for this reason one can often find rather

efficient fault attacks on most ciphers. In some scenarios they are, however, not

unrealistic and the exact complexity and the related requirements are of interest

to study.

Fault attacks on the Grain family of stream ciphers were studied in [14] and

[34]. More recently, there was a number of papers providing improved attacks,

[6, 45, 5, 7]. In [45] the model is the most realistic one as it considers that

the cipher has to be re-initialized only a few times and faults are injected to

any random location and at any random clock cycle. No further assumptions

are needed over location and timing for injections. In the attack one constructs

algebraic equations based on the description of the cipher by introducing new

variables so that the degrees of the equations do not increase. Following algebraic

cryptanalysis, such equations based on both fault-free and faulty key-stream bits
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are collected. Then a solving phase using the SAT Solver recovers the state of

any Grain member in minutes, For Grain v1, Grain-128 and Grain-128a, it uses

only 10, 4 and 10 injected faults, respectively.

We stress that we are not claiming resistance against fault attacks for Grain-

128AEAD. Rather, when fault attacks is a realistic threat, one has to implement

protection mechanisms against fault injection.

4.6 Security of the Authentication

As noted in Section 3.3.6, if the sequence defining the Toeplitz matrix is ε-biased,

then the substitution probability for the MAC is PS ≤ 2−w + 2ε, where w is the

size of the tag. Since the pre-output sequence is used both for encryption and

authentication, a substitution attack on the MAC is related to a finding linear

relations in the pre-output sequence. From Section 4.2, we know that a linear

relation involving pre-output and LFSR bits can be found that has bias around

2−77. This provides a comfortable security margin against substitution attacks

on the authentication. Given this, we claim that the success probability of a

substitution attack is close to 2−64, i.e., guessing the tag.

5 Hardware Implementation

Lightweight ciphers are important in constrained devices. A minimal design is

desirable, e.g., minimum area and very low power consumption since they often

must operate for an extended period of time, without a battery change. In some

cases, devices run without its own power supply, something that is often the case

with RFID tags.

Table 1: The gate count for different functions.

Function Gate Count

NAND2 1.0
NAND3 1.5
NAND4 2.0
XOR2 2.5
XOR3 6.5
Flip flop 8.0

Grain-128AEAD can be constructed using primitive hardware building blocks,
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such as NAND gates, XOR gates and flip flops. In order to get an idea of the

hardware footprint related to an implementation of the cipher, we implement the

stream cipher using 65 nm library from ST Microelectronics, stm065v536. For

synthesis and power simulation, the Synopsys Design Compiler 2013.12 is used.

It can be noted that the result is highly dependent on what kind of gates are

available and how the tool utilizes the standard cells. We define a 2-input NAND

gate to have a gate count of 1 and other gate counts are given in relation to this

NAND gate. An excerpt from the standard-cell library documentation is given

in Table 1.

Table 2: Gate count for the different building blocks, for different levels of par-
allelization, s.

Building Block
Gate Count

s = 1 s = 2 s = 32

LFSR 1024 1024 1024
NFSR 1024 1024 1024
f 19 38 608
g 62.5 125 2000
h 41.5 83 1328
Control logic 219.5 475.5 942.5
Accumulator 512 512 512
Register 512 512 512
Accumulator logic 224 224 4160

Total 3638.5 4017.5 12110.5

We synthesize the design and extract the gate count for each building block. A

summary of the gate count for each building block, and for different parallelization

levels, is given in Table 2. The control logic and accumulator logic is extra

circuitry and state machines for controlling the stream cipher, i.e., loading key

and nonce, multiplexing data, etc.

The gate count remains constant during synthesis, but the physical area,

power and speed changes based on the optimization techniques employed. First,

we synthesize the design at clock frequency 100 kHz. The design is synthesized for

three levels of parallelization; 1, 2, and 32 times. The result is given in Table 3.

We also synthesize for the maximum possible speed, to achieve maximum

throughput, without constraints on area. The results are given in Table 4.
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Table 3: Implementation results running at 100 kHz, for different levels of paral-
lelization.

Parallelization Area Power Throughput

1 4934 µm2 313 nW 50 kbit/s
2 5336 µm2 368 nW 100 kbit/s
32 16853 µm2 574 nW 1600 kbit/s

Table 4: Implementation results running at maximum possible speed, for different
levels of parallelization.

Parallelization Speed Area Power Throughput

1 1.12 GHz 5258 µm2 3.6 mW 560 Mbit/s
2 1.18 GHz 5629 µm2 4.3 mW 1.18 Gbit/s
32 662 MHz 17632 µm2 4.0 mW 10.59 Gbit/s

Note that we have not used any particular optimization techniques in the

implementation and we expect that these figures can be further improved.

6 Advantages and Limitations

6.1 Suitability of Grain-128AEAD in IoT/Embedded Sys-

tems

Grain-128AEAD can be very suitable in Internet of things (IoT) and embedded

systems. Strong advantages of Grain-128AEAD and its precedent versions can

be seen in its industrial relevance.

Since around 2004, RFID systems which typically consist of tags, tag read-

ers, and servers, have become popular in various industry domains. Through the

eSTREAM competition process, the security and the performance of the Grain

family has been widely recognized. This has led to the development of the stan-

dard ISO/IEC 29167-13:2015 [30] specifying Grain-128a for RFID systems.

For the coming years, one of the most important embedded systems is automo-

tive system. Modern vehicles provide services based on subsystems. One example

is the automotive Passive Keyless Entry and Start (PKES) systems where the

key fob communicate with one of the Electronic Control Unit (ECU)s when the

driver approaches his vehicle.
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Since 2010, various kind of attacks [47] have been mounted on PKES employed

in real-world vehicles. To ensure the security against these attacks, we need cryp-

tography. In case that the developers implement cryptography for vehicles of

new or future models, it is reasonably expected that a cryptographic primitive is

implemented in hardware on the key fob (RFID tag) and is implemented in em-

bedded software on an in-vehicle ECU, which means the cryptographic primitive

has to meet both hardware requirement and embedded software requirement.

We expect that Grain-128AEAD can be a very good option in this respect,

given its competitive performance in hardware, reported in this document, as well

as remarkable performance in embedded software. In fact, the passive IT70 RFID

tag [29] that Honeywell has designed for automotive applications implements the

ISO/IEC 29167-13:2015 standard. On the other hand, it was reported at the FSE

2018 rump session [52] that Grain-128a requires 164 byte of RAM and takes 385

µs for 16-byte input data on ARM Cortex-M3, which is significantly better than

AES and faster than the lightweight SKINNY-128-128 block cipher.

Another advantage of Grain-128AEAD for IoT applications can be seen in its

use of the mask. In 2017, the IoT security standard ITU-T X.1362 [31] specify-

ing the Encryption with Associated Mask Data (EAMD) protocols for IoT has

been published. It aims to meet severe realtime requirement in IoT/embedded

systems by using the similar idea of mask to the mask used in Grain-128AEAD.

The advantage of Grain-128AEAD over EAMD can be that Grain-128AEAD has

less overhead than EAMD because Grain-128AEAD incorporate a mask at the

primitive level while EAMD use the mask at the protocol level.

6.2 Other Aspects

• Grain-128AEAD is closely based on Grain-128a, which has been extensively

analyzed by third parties. Also its predecessors, Grain v1 and Grain-128

have been thoroughly analyzed since the first introduction of Grain in 2005.

This provides confidence in the design and can be seen as an advantage.

• Distinguishing attacks are not explicitly mentioned in the submission re-

quirements from NIST. We note that many block cipher modes of operation

allows for distinguishing attacks using roughly 2b/2 keystream blocks, where

b is the block size in bits. Grain has been designed to resist distinguishing

attacks that use much longer keystream sequences than this fundamental

bound. Thus, if resistance against distinguishing attacks is to be consid-

ered a security property, Grain-128AEAD provides a security advantage
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over block ciphers.

• In [9], it was shown that lightweight stream ciphers are typically more suit-

able than lightweight block ciphers for energy optimization when encrypting

longer messages, in particular when the speed can be increased at the ex-

pense of moderate extra hardware. Thus, in these cases, Grain-128AEAD

can provide authenticated encryption with low energy consumption.

• Compared to e.g., Sprout [2], Plantlet [43], Fruit [22] and Fruit-80 [1],

Grain-128AEAD does not store the key in non-volatile memory. This has

the limitation that the internal state size is larger than for those ciphers,

but at the same time it has the advantage that the key can be updated in

the device, making it usable for a wider range of use cases.

• Grain-128AEAD, as well as the other ciphers in the Grain family, are de-

signed to explicitly and easily increase the throughput at the expense of

additional hardware. This provides a wide range of use cases, from situ-

ations where hardware footprint is of highest concern, to situations where

throughput is more important.

7 Test Vectors

In this section, we give test vectors for two different combinations of key, nonce,

and message. The Grain family of stream ciphers are bit-oriented and in a byte-

oriented implementation, as required in the NIST defined API, a decision re-

garding how to interpret the order of bits needs to be made. We stress that

this decision is up to the protocol/application designer since the most suitable

interpretation can be situation specific. The test vectors below, as well as the

reference implementation, assume that the least significant bit (LSB) of each byte

is read first. Thus, the hexadecimal representation of the test vectors below are

bytewise reversed. The key

0x01234FFFFFFFFFFFFFFFFFFFFFFFFFFF

corresponds to

(k0, k1, ..., k127) =

(1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1..., 1).
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The message, the associated data and the registers are interpreted similarly. To

simplify debugging, the test vectors are given in three stages:

• Directly after loading the key and nonce

• After the initialization of Grain-128AEAD

• The final result with the tag and ciphertext

The first test vector is given below. It uses a zero key/nonce pair and an empty

message.

Key: 0x00000000000000000000000000000000

Nonce: 0x000000000000000000000000

AD:

PT:

After Loading

NFSR: 0x00000000000000000000000000000000

LFSR: 0x000000000000000000000000ffffff7f

ACC: 0x0000000000000000

REG: 0x0000000000000000

After Initialization

NFSR: 0x5499d7ab3dd190299b746e868fd3409e

LFSR: 0xcf19b05a3892a28ad3f6b1bfb4203bbb

ACC: 0x0304fe446806a6d0

REG: 0x56a95447a661c8f6

Ciphertext and Tag

CT:

Tag: 0xaa50b9e209ce50f0

The second test vector is given below.

Key: 0x000102030405060708090a0b0c0d0e0f

Nonce: 0x000102030405060708090a0b

AD: 0x0001020304050607

PT: 0x0001020304050607
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After Loading

NFSR: 0x000102030405060708090a0b0c0d0e0f

LFSR: 0x000102030405060708090a0bffffff7f

ACC: 0x0000000000000000

REG: 0x0000000000000000

After Initialization

NFSR: 0x79b1c18f580fe3ae76434f3c3c6ab613

LFSR: 0x5786a81c2bd080517c27132a29ab3e4b

ACC: 0x6e73d6fb62c21220

REG: 0x3b960a19fbd66db2

Ciphertext and Tag

CT: 0x72111052D73C410E

Tag: 0x8D98EA68D9A2C044
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[55] M. Ågren, M. Hell, and T. Johansson. On hardware-oriented message

authentication with applications towards rfid. In 2011 Workshop on

Lightweight Security Privacy: Devices, Protocols, and Applications, pages

26–33, March 2011.
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