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Chapter 1

Introduction

In this document, we propose HyENA (Hybrid feedback-based ENcryption with Authentication) mode
of operation that provides nonce-based authenticated encryption with associated data (NAEAD) func-
tionality. Traditionally, block cipher based sequential encryption modes use one of the following methods,
namely plaintext feedback (PFB), ciphertext feedback (CFB), or output feedback (OFB). HyENA is
a hybrid feedback based mode (HyFB) as the block cipher input is partially ciphertext feedback and
partially plaintext feedback.

HyENA primarily focuses on the hardware implementation cost. We aspire to minimize the state
size overhead beyond the block cipher state (including the key schedule), and reduce the XOR counts.
HyENA has several interesting features, most notably, it is single-pass (one block cipher call per data
block), inverse-free (no need for block cipher decryption), and has very low state size approx. 1.5n + κ
for block cipher with n-bit block and κ-bit key. All these features are quite desirable in NIST lightweight
standardization process.

We instantiate HyENA with an ultra-lightweight block cipher GIFT-128 [1].

1.1 Notation

We fix the block size to n bits. We write {0, 1}∗ and {0, 1}n to denote the set of all binary strings
(including the empty string λ), and the set of all binary strings of length n, respectively. |X| denotes
the number of the bits in the string X. For any X ∈ {0, 1}n, XL and XR denote the n/2 most and
least significant bits of X respectively. For all practical purposes, we use the little endian format for
representing binary strings, i.e. the least significant bit is the right most bit. We use the notation ⊕ to
denote binary addition. For two strings A,B ∈ {0, 1}?, A‖B to denotes the concatenation of A and B.

We use the notation (X`−1, . . . , X0)
n← V to denote parsing of the string X into ` blocks such that for

0 ≤ i ≤ ` − 2, |Xi| = n and 1 ≤ |X`−1| ≤ n. The expression E? a : b evaluates to a if E holds and b
otherwise. For any binary string X with |X| ≤ n, we define the padding function Pad as

Pad(X) =

{
X if |X| mod n = 0

0n−|X|−1‖1‖X otherwise.

For any binary string X, the truncate function Trunci(X) returns the i least-significant bits of X.

For n, τ, κ ∈ N, E-n/κ denotes a block cipher family E, parametrized by the block length n, and
key length κ. For K ∈ {0, 1}κ, and M ∈ {0, 1}n, we use EK(M) := E(K,M) to denote invocation of
the encryption function of E on input K, and M . We fix positive even integers n, κ, r and t to denote
the block size, key size, nonce size, and tag size, respectively, in bits. Throughout this document, we fix
n = 128, and κ = 128, r = 96, and t = n.

1.1.1 Finite Field Arithmetic

The set {0, 1}n/2 can be viewed as the finite field F2n/2 consisting of 2n/2 elements. We interchangeably
think of an element A ∈ F2n/2 in any of the following ways: (i) as an n/2-bit string an

2−1 . . . a1a0 ∈
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{0, 1}n/2; (ii) as a polynomial A(x) = an
2−1x

n/2−1 + an
2−2x

n
2−2 + · · · + a1x + a0 over the field F2; (iii)

a non-negative integer a < 2n/2; (iv) an abstract element in the field. Addition in F2n/2 is just bitwise
XOR of two n/2-bit strings, and hence denoted by ⊕. P (x) denotes the primitive polynomial used to
represent the field F2n/2 , and α denotes the primitive element in this representation. The multiplication
of A,B ∈ F2n/2 is defined as A � B := A(x) · B(x) (mod P (x)), i.e. polynomial multiplication modulo
P (x) in F2. For n

2 = 64, we fix the primitive polynomial

P (x) = x64 + x4 + x3 + x+ 1. (1.1)

Then, α, the primitive element, is 2 ∈ F264 . It is well-known [5,6] that multiplication of any field element
with α is computationally efficient. For any A ∈ F264 , we have

A� α =

{
A� 1 if a|A|−1 = 0,

(A� 1)⊕ 05911011 if a|A|−1 = 1.

Clearly, we need one shift and one conditional XOR. We refer to this process of multiplying any element
A ∈ F264 with α, as α-multiplication.
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Chapter 2

Specification

In this chapter, we present the specification of HyENA along with its underlying block cipher GIFT-128.
We also give detailed algorithmic descriptions for the modes. Finally, we give the concrete instantiation
of HyENA with GIFT-128 block cipher.

2.1 HyENA Authenticated Encryption Mode

The HyENA authenticated encryption mode receives an encryption key K ∈ {0, 1}κ, a nonce N ∈
{0, 1}r, an associated data A ∈ {0, 1}∗, and a message M ∈ {0, 1}∗ as inputs, and returns a ciphertext
C ∈ {0, 1}|M | and a tag T ∈ {0, 1}n.

N‖0∗‖b1‖b0 EK HyFB+ EK HyFB+ HyFB+ X

A0

2∆

A1

22∆

Aa−1

2a+1∆

· · ·

X EK HyFB+ EK HyFB+ HyFB+ X

M0 C0 M1 C1 Mm−1 Cm−1

2a+2∆ 2a+3∆ 2a+m+2∆

· · ·

EK T
XL

XR

Figure 2.1: HyENA authenticated encryption mode for full data blocks.
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The decryption algorithm receives a key K ∈ {0, 1}κ, an associated data A ∈ {0, 1}∗, a nonce N ∈
{0, 1}r, a ciphertext C ∈ {0, 1}∗ and a tag T ∈ {0, 1}n as inputs and return the plaintext M ∈ {0, 1}|C|,
corresponding to the ciphertext C, if the tag T authenticates. Complete specification of HyENA is
presented in Algorithm 2.4 and the corresponding pictorial description can be found in Figure 2.1. The
feedback function is illustrated in Figure 2.2 and 2.3.

YL

YR

⊕ XL

ML CL

⊕ ⊕ XR

CR MR ∆

(a) HyFB+ module.

YL

YR

⊕ XL

ML CL

⊕ ⊕ XR

CR MR ∆

(b) HyFB- module.

Figure 2.2: HyFB module of HyENA for full data blocks.
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⊕ XL

ML CL

Pad Trunc

⊕ ⊕ XR

⊕

MR CR ∆

PadTrunc

(a) HyFB+ module.

YL

YR

⊕ XL

⊕ MLCL

Trunc Pad

⊕ ⊕ XR

CR MR ∆

TruncPad

(b) HyFB- module.

Figure 2.3: HyFB module of HyENA for partial data blocks.
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Algorithm HyENA-Enc(K,N,A,M)

1. Y ← Init(N,A,M)

2. (X,∆)← Proc-AD(Y,A)

3. if |M | 6= 0 then

4. (X,C)← Proc-TXT(X,∆,M,+)

5. T ← Tag-Gen(X)

6. return (C, T )

Algorithm Init(N,A,M)

1. b0 ← (|A| = 0)? 1 : 0

2. b1 ← (|A|+ |M | = 0)? 1 : 0

3. Y ← EK(N‖0n−r−2‖b1‖b0)

4. return Y

Algorithm Proc-AD(Y,A)

1. ∆← YR

2. ∆← 2�∆

3. if |A| = 0 then

4. ∆← 22 �∆

5. (X, ?)← HyFB+(Y,∆, 0n−11)

6. return (X,∆)

7. else

8. (Aa−1, . . . , A0)
n← A

9. for i = 0 to a− 2

10. (X, ?)← HyFB+(Y,∆, Ai)

11. Y ← EK(X)

12. ∆← 2�∆

13. t← (|Aa−1| = n)? 1 : 2

14. ∆← 2t �∆

15. (X, ?)← HyFB+(Y,∆, Aa−1)

16. return (X,∆)

Algorithm Tag-Gen(X)

1. T ← EK(XR‖XL)

2. return T

Algorithm HyENA-Dec(K,N,A,C, T )

1. Y ← Init(N,A,M)

2. (X,∆)← Proc-AD(Y,A)

3. if |C| 6= 0 then

4. (X,M)← Proc-TXT(X,∆, C,−)

5. T ′ ← Tag-Gen(X)

6. if T ′ = T then return M

7. else return ⊥

Algorithm HyFB+(Y,∆,M)

1. C ← Trunc|M|(Y )⊕M

2. M ← Pad(M), C ← Pad(C)

3. B ←
(
ML‖(CR ⊕∆)

)
4. X ← B ⊕ Y

5. return (X,C)

Algorithm HyFB−(Y,∆, C)

1. M ← Trunc|C|(Y )⊕ C

2. M ← Pad(M), C ← Pad(C)

3. B ←
(
ML‖(CR ⊕∆)

)
4. X ← B ⊕ Y

5. return (X,M)

Algorithm Proc-TXT(X,∆, D, dir)

1. (Dd−1, . . . , D0)
n← D

2. for i = 0 to d− 2

3. ∆← 2�∆

4. Y ← EK(X)

5. if dir = + then

6. (X,Oi)← HyFB+(Y,∆, Di)

7. else

8. (X,Oi)← HyFB−(Y,∆, Di)

9. t← (|Dd−1 = n)? 2 : 3

10. ∆← 2t �∆

11. Y ← EK(X)

12. if dir = + then

13. (X,Od−1)← HyFB+(Y,∆, Dd−1)

14. else

15. (X,Od−1)← HyFB−(Y,∆, Dd−1)

16. return (X, (Od−1‖ . . . ‖O0))

Figure 2.4: Formal Specification of HyENA Authenticated Encryption and Decryption algorithm. For any

n-bit string S, we define SL (and SR) as the most (and least) significant n/2 bits of S i.e. (SL, SR)
n/2← S. We

use the notation ? to denote values that we do not care.

2.2 Specification of GIFT-128

GIFT-128 is a 128-bit block cipher proposed by [1]. GIFT-128 receives a 128-bit plaintext b127b126 · · · b0
as the cipher state S where b0 being the least significant bit. The cipher state can be viewed as 32 many
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4-bit nibbles S = w31‖w30‖ · · · ‖w0. Along with the plaintext, the cipher also receives a 128-bit key
K = k7‖k6‖ · · · ‖k0 as the key state, where ki is a 16-bit word. The cipher is composed of 40 rounds and
each round is composed of the following operations:

SubCells: GIFT-128 uses an invertible 4-bit S-box and applies it to each nibble of the cipher state.
Description of this S-box (in hex) is given in Table 2.1.

i 0 1 2 3 4 5 6 7 8 9 A B C D E F
Sbox(i) 1 A 4 C 6 F 3 9 2 D B 7 5 0 8 E

Table 2.1: The GIFT-128 S-Box.

PermBits: To make the cipher light-weight, GIFT-128 employs an optimal bit permutation that sat-
isfies a special property called “BOGI” [1]. The bit-permutation maps bit position i of the cipher state
to bit position Perm(i), where

Perm(i) = 4bi/16
⌋

+ 32
((

3b(i % 16)/4c+ (i % 4)
)

% 4
)

+ (i % 4).

AddRoundKey: In this step a 64 bit round key is extracted from the key state, and the round key is
xored with {b4i+1} and {b4i+2} of the cipher state. The round-keys are generated using a key scheduling
algorithm which updates the key state at each round using some simple word-wise rotations and bit-wise
rotations within a word.

AddRoundConstant: A single bit “1” and a 6 bit round constant are xored into the cipher state at
bit position 127, 23, 19, 15, 11, 7 and 3 respectively. The round constants are generated using a 6 bit
affine LFSR that was also used in SKINNY [2].

Detailed description of the algorithm can be found in [1].

2.3 Recommended Instantiation

We instantiate HyENA with GIFT-128 as the underlying block cipher, as our primary recommendation
for AEAD. Here the key size is 128 bits, nonce size is 96 bits, and tag size is 128 bits.
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Chapter 3

Security

In this chapter, we summarize the security details of HyENA. Section 3.1 gives the maximum data and
time limits. It also lists all the relevant conditions to be adhered in order to maintain adequate security
level. Section 3.2 presents a brief analysis against generic attacks (assuming the underlying block cipher
is ideal), i.e. the security of modes. Section 3.3 presents a brief analysis on the security of GIFT-128,
showing that it displays close to ideal behavior under the given data and time limit.

3.1 Security Claims

Table 3.1: Summary of security claims for HyENA. The data and time limits indicate the amount of data and
time required to make the attack advantage close to 1.

Submissions Privacy Integrity
Time Data (in bytes) Time Data (in bytes)

HyENA 2128 264 2128 258

In Table 3.1, we list the security levels of HyENA. We assume a nonce-respecting adversary, i.e. for a
fixed key, no pair of distinct encryption queries share the same public nonce value, although we remark
that the security may even hold when the public nonce value is sampled uniformly at random from the
nonce space for each encryption query. All our security claims are based on full round GIFT-128, and
we do not claim any security for HyENA with round-reduced variants of GIFT-128.

3.1.1 Statement

We declare that there are no hidden weaknesses in the HyENA mode of operation. Further, to the best
of our knowledge, public third-party analysis do not raise any security threat to the submission HyENA,
within the data and time limit prescribed in Table 3 of section 4.

3.2 Security Analysis of HyENA

We study the security of HyENA against generic attacks (assuming the underlying block cipher is ideal,
i.e. random permutation). First we briefly explain possible attack strategies along with a rough lower
bound estimate on the data and time complexity of each strategy. Then we validate the recommended
criteria given in Table 3.1 by substituting concrete parameters. In the following discussion:

• D denotes the total (both encryption and decryption) data complexity. This parameter quantifies
the online resource requirements, and includes the total number of blocks (among all messages and
associated data) processed through the underlying block cipher for a fixed master key. We use De

and Dv to account for the data complexity of encryption and decryption/verification queries.
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• T denotes the time complexity. This parameter quantifies the offline resource requirements, and
includes the total time required to process the offline evaluations of the underlying block cipher.
Since one call of the block cipher can be assumed to take a constant amount of time, we generally
take T as the total number of offline calls to the block cipher.

3.2.1 Privacy Security of HyENA

In privacy attacks the adversary is concerned with distinguishing the HyENA mode with an ideal
authenticated encryption scheme, by exploiting access to the encryption algorithm. In other words, we
are interested in the usual IND-CPA security notion. The adversary can distinguish the mode from ideal
if there is no randomness in some ciphertext (or tag) blocks. This is possible in the following way:

• Encryption-Encryption Block Matching: For a pair of distinct encryption query blocks,
the internal states matches. Then, the block that appears later will definitely have non-random
behavior, though the adversary may not be able to detect it. In any case it is sufficient to bound
the occurrence of this event. Now we may have two cases: (i) the two blocks belong to different
query, in which case the nonce is different, and we can bound the probability of full state collisions,
which is roughly D2

e/2
n; (ii) the two blocks belong to the same query, in which case they must

have different indices and hence we can again bound the probability of full state collision by at
most D2

e/2
n. The second case can be argued as follows: for the upper part of the state, we have

uniform and random ciphertext block for the later query (contributing ≈ n/2-bit entropy); and
for the lower part the equation in ∆ masking is again almost uniform and random (contributing
≈ n/2-bit entropy). Note that the equation in ∆ is non-trivial as the two colliding blocks have
distinct indices. Combining the two cases we get De ≈ 2n/2. As we use the standard PRP notion
on the underlying block cipher, we can safely assume T ≈ 2κ.

3.2.2 Integrity Security of HyENA

In this case the adversary has to forge a fresh and valid ciphertext and tag pair. The adversary is allowed
to make encryption queries to the encryption algorithm and forging queries to the decryption algorithm.
In other words, we use the INT-CTXT security notion.

In forgery attack, the adversary can apply one of the following strategies:

• Tag Guessing: The adversary can simply guess the tag in each decryption query. The probability
of correct guess is roughly Dv/2

n. This gives Dv ≈ 2n.

• Decryption-Encryption Block Matching: Some decryption query block might match some
encryption query block. Now depending upon the type of encryption query block we can have two
cases:

1. Non-init block: The encryption block is from AD or message processing. In this case we
can first bound the probability of roughly n-multicollisions on the most significant part of any
ciphertext blocks, which can be bounded by Dv/2

n/2. Given this we know that the decryption
query has at most n many choices for the lower part. So a full state collision would occur with
probability at most nDv/2

n. This gives Dv ≈ 2n−log2 n.

2. Init block: The decryption query block collides with the starting state (N‖0n−r−2‖b1‖b0)
of some encryption query. In this case, one can show that the probability is bounded by at
most Dv/2

n/2, which gives Dv ≈ 2n/2.

Again using the standard PRP notion we can bound T ≈ 2κ.

3.2.3 Validation of Security Claims

The security claims given in Table 3.1 follow from the rough lower bounds on De, Dv, and T , as discussed
in subsections 3.2.1 and 3.2.2, and the fact that n = κ = 128. Importantly, it can be observed that the
HyENA mode is secure, as long as the upper limits on De, Dv, and T are not violated, and the underlying
block cipher is a PRP.
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3.3 Security Analysis of GIFT-128

We briefly mention the existing best possible analysis of GIFT-128. In [8], Zhu et al. uses the mixed-
integer-linear-programming (MILP) based analysis to find an 18-round differential characteristic with
probability 2−109, which was further extended to mount a 23-round key recovery attack with time and
data complexity of 2120 each and memory complexity of 280. Hence, we believe that 40 rounds of
GIFT-128 should be secure against differential cryptanalysis.

GIFT-128 has a 9-round linear hull effect of 2−45.99, which implies that 27 rounds would achieve
correlation potentially lower than 2−128. Therefore, we expect 40 rounds of GIFT-128 has enough
resistance against linear cryptanalysis.

The designers of GIFT-128 analysed the security of GIFT-128 against integral attacks. They have
used the bit-based division property to the detect the longest integral distinguisher and found a 11-round
integral distinguisher. No improved integral attacks have been reported since, and we believe full round
of GIFT-128 has resistance against integral attacks.

The number of rounds of impossible differentials in GIFT-128 is much smaller than the integral
attack, and 40 rounds are quite sufficient to resist the impossible differential attack.

Meet-in-the-middle attack exploits the property that a part of key does not appear during a certain
number of rounds. The designers and the follow-up work by Sasaki [7] showed an attack against 15-
rounds of GIFT-64 and mentioned the difficulty of applying it to GIFT-128 due to the larger ratio of
the number of subkey bits to the entire key bits per round. Note that, in GIFT-128 one round uses 64
bits of the key and the entire key size is 128 bits.
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Chapter 4

Features and Design Rationale

Here, we summarize the salient features and design rationale of HyENA:

1. Inverse-Free: HyENA is an inverse-free authenticated encryption algorithm. Both encryption
and verified decryption of the algorithm do not require any decryption call to the underlying
block cipher. This reduces the overall hardware footprint significantly, especially in the combined
encryption-decryption implementations.

2. Optimal: HyENA requires (a + m + 1) many block cipher invocations to process an a block
associated-data and m block message. In [3], it has been shown that this is the optimal number
of non-linear primitive calls required for any nonce based authenticated encryption. This feature
is particularly important for short messages from the perspective of energy consumption, which is
directly dependent upon the number of non-linear1 primitive calls.

3. Low State-size: HyENA requires a state size as low as 3n/2-bits along with the key state.

4. Low XOR Count: To achieve optimal, inverse-free authenticated ciphers with low state, a possi-
ble direction is to use the combined feedback approach where (i) the previous block cipher output is
XORed with the plaintext to generate the ciphertext, and (ii) the next block cipher input is defined
as the XOR of the plaintext with some linear function of the previous block cipher output. This
technique was used in the popular authenticated encryption mode COFB [4]. It is easy to see that
such combined feedback function require at least 2n bits of XOR operations (when operated on n
bit data), along with some additional XOR operations required for the linear function mentioned
above. On the contrary, in HyENA, we use the concept of hybrid feedback or HyFB, where the
block cipher input is defined partially via ciphertext feedback and partially via plaintext feedback.
This reduces the number of the XOR operations to only n bits.

1In general, non-linear operations consume significantly more energy as compared to linear operations
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