
TinyJAMBU: A Family of Lightweight

Authenticated Encryption Algorithms

Designers and Submitters: Hongjun Wu and Tao Huang

Division of Mathematical Sciences
Nanyang Technological University

wuhongjun@gmail.com

27 September 2019

Contents

1 Introduction 3

2 TinyJAMBU Authenticated Encryption Mode 4

3 Specification 5
3.1 Recommended parameter sets . 5
3.2 Operations, Variables and Functions 5

3.2.1 Operations . 5
3.2.2 Variables and Constants 6
3.2.3 The Keyed Permutation Pn 7

3.3 TinyJAMBU-128 . 7
3.3.1 The initialization . 7
3.3.2 Processing the associated data 8
3.3.3 The encryption . 9
3.3.4 The finalization . 9
3.3.5 The decryption . 10
3.3.6 The verification . 10

3.4 TinyJAMBU-192 . 11
3.5 TinyJAMBU-256 . 11

4 Security Goals 12
4.1 Security goals with unique nonce 12
4.2 Security goals with misused nonce 13

5 Security of the TinyJAMBU Mode 14
5.1 Security Model . 14
5.2 Privacy . 15
5.3 Authenticity . 16

6 Security Analysis 20
6.1 Properties of the TinyJAMBU Mode 20

6.1.1 State collision for unique nonce 20
6.1.2 State collision for repeated nonce 20

6.2 Properties of the Keyed Permutation Pn 21

1

6.2.1 Differential properties of the keyed permutation Pn 21
6.2.2 Linear properties of the keyed permutation Pn 23
6.2.3 Algebraic properties of the keyed permutation Pn 23

6.3 Forgery Attacks . 23
6.3.1 Forgery attacks on nonce and associated data 24
6.3.2 Forgery attacks on plaintext/ciphertext 24

6.4 Key Recovery Attacks . 25
6.4.1 Differential cryptanalysis 25
6.4.2 Linear cryptanalysis . 26
6.4.3 Algebraic attacks . 26

6.5 Slide attack . 26

7 The Performance of TinyJAMBU 27
7.1 Hardware Performance . 27
7.2 Software Performance . 28

8 Features 30

9 Design Rationale 31

A Analysis of the Probability for Equation 5.2 36

2

Chapter 1

Introduction

JAMBU is a lightweight authenticated encryption mode submitted to the CAE-
SAR competition [5]. JAMBU is the smallest block cipher authenticated en-
cryption mode in the CAESAR competition, and it was selected to the Third
Round of the competition. JAMBU has been presented at the NIST Lightweight
Cryptography Workshop 2015 [15].

In this report, we propose the TinyJAMBU mode which is a small variant
of the JAMBU mode. TinyJAMBU mode is based on a keyed permutation.
The state size of TinyJAMBU is only two thirds of that of JAMBU, the mes-
sage block size of TinyJAMBU is half of that of JAMBU mode. When nonce
is reused, TinyJAMBU provides better authentication security than JAMBU
mode. The authentication security of TinyJAMBU mode is better than the Du-
plex mode [1] when nonce is reused (for the same permutation size and message
block size).

In this report, we propose a lightweight 128-bit keyed permutation with no
key schedule. The permutation is based on a 128-bit nonlinear feedback shift
register. This lightweight permutation is used in the TinyJAMBU mode. The
keyed permutation supports three possible key sizes: 128 bits, 192 bits, 256 bits.

For the applications in which a fixed key is embedded in the devices, and
for the applications in which a secret key is stored in a device for protecting
multiple messages, TinyJAMBU uses only a 128-bit register for authenticated
encryption. We implemented TinyJAMBU in VHDL and synthesized it on an
ASIC using 90 nm UMC technology standard cell library with a fixed 128-bit
key, only 1352 Gate Equivalent (GE) are needed to achieve the full functionality
of authenticated encryption and decryption. (The whole cipher is implemented,
including the initialization, processing associated data, encryption/decryption,
tag generation and verification. Eight rounds in parallel are computed in a clock
cycle.) The throughput is about 65.1 Mbps for long associated data and 24.6
Mbps for long plaintext.

3

Chapter 2

TinyJAMBU Authenticated
Encryption Mode

The TinyJAMBU mode is a small variant of the JAMBU mode which is a
third-round candidate of the CAESAR competition. In the TinyJAMBU mode,
a 128-bit keyed permutation is used, the state size is 128 its, and the message
block size is 32 bits. When nonce is reused, the TinyJAMBU mode provides
better authentication security than the JAMBU mode.

When nonce is reused, the TinyJAMBU mode provides better authentication
security than the Duplex mode (for the same permutation size and the same
message block size). The reason is that the attacker can easily set part of the
state to arbitrary value when nonce is reused in the Duplex mode, while it is
difficult to do that in the TinyJAMBU mode.

The TinyJAMBU mode is shown in Fig. 2.1. If the last block of the associ-
ated data (or plaintext) is not a full block , the length of the partial block (the
number of bytes) is xored to the state.

Figure 2.1: The TinyJAMBU mode for 128-bit state and keyed-permutations

4

Chapter 3

Specification

3.1 Recommended parameter sets

TinyJAMBU supports three key sizes: 128 bits, 192 bits and 256 bits.

• Primary member: TinyJAMBU-128
128-bit key, 96-bit nonce, 64-bit tag, 128-bit state

• TinyJAMBU-192
192-bit key, 96-bit nonce, 64-bit tag, 128-bit state

• TinyJAMBU-256
256-bit key, 96-bit nonce, 64-bit tag, 128-bit state

3.2 Operations, Variables and Functions

The operations, variables and functions used in TinyJAMBU are defined below.

3.2.1 Operations

The following operations are used in the description of TinyJAMBU:

⊕ : bit-wise exclusive OR

& : bit-wise AND

∼ : bit-wise NOT

‖ : concatenation

bac : floor operator, gives the integer part of a

5

3.2.2 Variables and Constants

The following variables and constants are used in TinyJAMBU:

a{i···j} : the word consists of ai||ai+1|| · · · ‖ aj , where ai is the ith
bit of a.

AD : associated data, a sequence of bytes.

adi : one bit of associated data.

adlen : the length of associated data in bits.

C : ciphertext, a sequence of bytes

ci : the ith ciphertext bit.

FrameBits : Three-bit FrameBits.

FrameBits = 1 for nonce

FrameBits = 3 for associated data

FrameBits = 5 for plaintext and ciphertext

FrameBits = 7 for finalization

FrameBitsi : The ith bit of FrameBits.

K : the key.

ki : the ith bit of K.

klen : the key length in bits.

M : the plaintext, a sequence of bytes

mi : the ith bit of the plaintext.

mlen : the length of the plaintext in bits.

NONCE : the 96-bit nonce.

noncei : the ith bit of the 96-bit nonce.

Pn : the 128-bit permutation with n rounds

S : the 128-bit state of the permutation.

si : the ith bit of the state of the permutation.

T : the 64-bit authentication tag.

ti : the ith bit of the authentication tag.

6

3.2.3 The Keyed Permutation Pn

In TinyJAMBU, a 128-bit keyed permutation is used. The permutation Pn
consists of n rounds. In the ith round of the permutation, a 128-bit nonlinear
feedback shift register is used to update the state as follows (shown in Fig. 3.1):

StateUpdate(S,K, i):
feedback = s0 ⊕ s47 ⊕ (∼ (s70&s85))⊕ s91 ⊕ ki mod klen

for j from 0 to 126: sj = sj+1

s127 = feedback
end

For example, P384 means that the state of the permutation is updated using
the function StateUpdate() for 384 times. 32 rounds of the permutation can be
computed in parallel on 32-bit CPU.

Figure 3.1: The 128-bit Nonlinear Feedback Shift Register in TinyJAMBU

3.3 TinyJAMBU-128

TinyJAMBU-128 uses a 128-bit key and a 96-bit nonce. The associated data
length and the plaintext length are less than 250 bytes. The authentication
tag is 64-bit. The TinyJAMBU authenticated encryption mode is used in
TinyJAMBU-128.

3.3.1 The initialization

In the keyed permutation of TinyJAMBU-128, the 128-bit key of TinyJAMBU-
128 is used, and the klen is set to 128.

The initialization of TinyJAMBU-128 consists of two stages: key setup and
nonce setup.

Key Setup. The key setup is to randomize the state using the keyed permu-
tation P1024.

1. Set the 128-bit state S as 0.

2. Update the state using P1024.

7

Nonce Setup. The nonce setup consists of three steps. In each step, the
Framebits of nonce (the value is 1) are XORed with the state, then we update
the state using the keyed permutation P384, then 32 bits of the nonce are XORed
with the state.

for i from 0 to 2:
s{36···38} = s{36···38} ⊕ FrameBits{0···2}
Update the state using P384

s{96···127} = s{96···127} ⊕ nonce{32i···32i+31}
end for

3.3.2 Processing the associated data

After the initialization, we process the associated data AD. In each step, the
Framebits of associated data (the value is 3) are XORed with the state, then
we update the state using the keyed permutation P384, then 32 bits of the as-
sociated data are XORed with the state.

Processing the full blocks of associated data:

for i from 0 to badlen/32c:
s{36···38} = s{36···38} ⊕ FrameBits{0···2}
Update the state using P384

s{96···127} = s{96···127} ⊕ ad{32i···32i+31}
end for

Processing the partial block of associated data. If the last block is not a
full block (it is called a partial block), the last block is XORed to the state, and
the number of bytes of associated data in the partial block is XORed to the state.

if (adlen mod 32) > 0:
s{36···38} = s{36···38} ⊕ FrameBits{0···2}
Update the state using P384

lenp = adlen mod 32 /* number of bits in the partial block */
startp = adlen− lenp /* starting position of the partial block */
s{96···96+lenp−1} = s{96···96+lenp−1} ⊕ ad{startp···adlen−1}

/* the number of bytes in the partial block is XORed to the state*/
s{32···33} = s{32···33} ⊕ (lenp/8)

end if

8

3.3.3 The encryption

After processing the associated data, we encrypt the plaintext M . In each step,
the Framebits of plaintext (the value is 5) are XORed with the state, then we
update the state using the keyed permutation P1024, then 32 bits of the plain-
text are XORed with the state, and we obtain 32 bits of ciphertext by XORing
the plaintext with another part of the state.

Processing the full blocks of plaintext:

for i from 0 to bmlen/32c:
s{36···38} = s{36···38} ⊕ FrameBits{0···2}
Update the state using P1024

s{96···127} = s{96···127} ⊕m{32i···32i+31}
c{32i···32i+31} = s{64···95} ⊕m{32i···32i+31}

end for

Processing the partial block of plaintext. If the last block is not a full
block (it is a partial block), the last block is XORed to the state, and the num-
ber of bytes in the partial block is XORed to the state.

if (mlen mod 32) > 0:
s{36···38} = s{36···38} ⊕ FrameBits{0···2}
Update the state using P1024

lenp = mlen mod 32 /* number of bits in partial block */
startp = mlen− lenp /* starting position of partial block */
s{96···96+lenp−1} = s{96···96+lenp−1} ⊕m{startp···mlen−1}
c{startp···mlen−1} = s{64···64+lenp−1} ⊕m{startp···mlen−1}
/* the length (bytes) of the last partial block is XORed to the state*/
s{32···33} = s{32···33} ⊕ (lenp/8)

end if

3.3.4 The finalization

After encrypting the plaintext, we generate the 64-bit authentication tag T as
follows. The Framebits of finalization (the value is 7) are XORed with the state.

s{36···38} = s{36···38} ⊕ FrameBits{0···2}
Update the state using P1024

t{0···31} = s{64···95}

s{36···38} = s{36···38} ⊕ FrameBits{0···2}
Update the state using P384

t{32···63} = s{64···95}

9

3.3.5 The decryption

In a decryption process, the initialization and processing the associate data are
the same as the encryption process. After processing the associated data, we
decrypt the ciphertext C. In each step, the Framebits of plaintext (the value
is 5) are XORed with the state, then we update the state using the keyed per-
mutation P1024. We obtain 32 bits of plaintext by XORing the ciphertext with
32 state bits s{64···95}, then the plaintext is XORed with the state bits s{96···127}.

Processing the full blocks of ciphertext:

for i from 0 to bmlen/32c:
s{36···38} = s{36···38} ⊕ FrameBits{0···2}
Update the state using P1024

m{32i···32i+31} = s{64···95} ⊕ c{32i···32i+31}
s{96···127} = s{96···127} ⊕m{32i···32i+31}

end for

Processing the partial block of ciphertext. If the last block is not a full
block (it is a partial block), the number of bytes in the partial block is XORed
to the state.

if (mlen mod 32) > 0:
s{36···38} = s{36···38} ⊕ FrameBits{0···2}
Update the state using P1024

lenp = mlen mod 32 /* number of bits in partial block */
startp = mlen− lenp /* starting position of partial block */
m{startp···mlen−1} = s{64···64+lenp−1} ⊕ c{startp···mlen−1}
s{96···96+lenp−1} = s{96···96+lenp−1} ⊕m{startp···mlen−1}
/* the length (bytes) of the last partial block is XORed to the state*/
s{32···33} = s{32···33} ⊕ (lenp/8)

end if

3.3.6 The verification

After decrypting the plaintext, we generate a 64-bit authentication tag T ′, then
compare T ′ with the received tag T . The Framebits of finalization are of value 7.

s{36···38} = s{36···38} ⊕ FrameBits{0···2}
Update the state using P1024

t′{0···31} = s{64···95}
s{36···38} = s{36···38} ⊕ FrameBits{0···2}
Update the state using P384

t′{32···63} = s{64···95}

T ′ = t′{0···63}. Accept the message if T ′ = T ; otherwise, reject.

10

3.4 TinyJAMBU-192

TinyJAMBU-192 uses a 192-bit key and a 96-bit nonce. The associated data
length and the plaintext length are less than 250 bytes. The authentication tag
is 64-bit.

The design of TinyJAMBU-192 is similar to that of TinyJAMBU-128. The
differences between TinyJAMBU-192 and TinyJAMBU-128 are given below.

Keyed Permutation. In the keyed permutation of TinyJAMBU-192, a 192-bit
key is used, and the klen is set to 192.

The keyed permutation P1024 in TinyJAMBU-128 is replaced with P1152 in
TinyJAMBU-256. P384 in TinyJAMBU-128 is still P384 in TinyJAMBU-192.

3.5 TinyJAMBU-256

TinyJAMBU-256 uses a 256-bit key and a 96-bit nonce. The associated data
length and the plaintext length are less than 250 bytes. The authentication tag
is 64-bit.

The design of TinyJAMBU-256 is similar to that of TinyJAMBU-128. The
differences between TinyJAMBU-256 and TinyJAMBU-128 are given below.

Keyed Permutation. In the keyed permutation of TinyJAMBU-256, a 256-bit
key is used, and the klen is set to 256.

The keyed permutation P1024 in TinyJAMBU-128 is replaced with P1280 in
TinyJAMBU-256. P384 in TinyJAMBU-128 is still P384 in TinyJAMBU-256.

11

Chapter 4

Security Goals

In TinyJAMBU, each pair of key and nonce is used to protect only one message.
If verification fails, the new tag and the decrypted plaintext should not be given
as output.

In TinyJAMBU, the associated data plays the same role as nonce. When
the same nonce but different associated data are used for a key, it is equivalent
to the use of unique nonce for the key.

The nonce misuse happens when the same nonce and the same associated
data are reused for a key. When nonce is misused, TinyJAMBU provides strong
protection of the secret key, and provides strong authentication security, but
provides weak protection of the plaintext.

4.1 Security goals with unique nonce

The security goals of TinyJAMBU for unique nonce are given in Table 4.1.
We assume that each each key is used to process at most 250 byes of messages
(associated data, plaintext/ciphertext), and each message is at least 8 bytes.
Note that the authentication security in Table 4.1 includes the integrity security
of plaintext, associated data and nonce.

Table 4.1: Security Goals of TinyJAMBU with Unique Nonce

Encryption Authentication

TinyJAMBU-128 112-bit 64-bit

TinyJAMBU-192 168-bit 64-bit

TinyJAMBU-256 224-bit 64-bit

12

4.2 Security goals with misused nonce

When nonce is misused in TinyJAMBU (the same nonce and the same associated
data are reused for a key), the secret key of TinyJAMBU remains strong, and
the authentication of TinyJAMBU remains strong (suppose that a secret key is
used to process at most 250 bytes of data, and each message consists of at least
8 bytes of data).

When nonce is reused, an attacker is able to decrypt the ciphertext since the
encryption of TinyJAMBU is somehow similar to the Cipher Feedback mode.

The security goals of TinyJAMBU for reused nonce are given in Table 4.2.

Table 4.2: Security Goals of TinyJAMBU with Repeated Nonce (an adversary
has the maximum forgery advantage when a key was used to process adaptively
chosen 250 bytes of data, and each message is at least 8 bytes)

Secret Key Authentication Max. Forgery Adv.

TinyJAMBU-128 112-bit 64-bit 2−15

TinyJAMBU-192 168-bit 64-bit 2−15

TinyJAMBU-256 224-bit 64-bit 2−15

13

Chapter 5

Security of the
TinyJAMBU Mode

In this section, we analyse the security of TinyJAMBU mode. To simplify the
analysis, we consider PK : {0, 1}b × {0, 1}k → {0, 1}b as an underlying ideal
keyed-permutation used in the mode, and use it to replace P1 and P2.

Our security proof is inspired by the security proof for the sponge function
[10] and the SAEB mode [14].

5.1 Security Model

Let E be the authenticated encryption function, which takes key, nonce, as-
sociated data and plaintext as input and outputs ciphertext and authentica-
tion tag. The authenticated encryption process can be denoted as (C, T) ←−
EK(N,AD,M).

Similarly, the authenticated decryption function isD, which takes key, nonce,
associated data, ciphertext and authentication tag as input, and outputs plain-
text when verification is successful or ⊥ otherwise. We denote the decryption
and verification process as P/⊥ ←− DK(N,AD,C, T).

We consider an adversary A that has access to (EK , DK) and an oracle
($,⊥) where $ takes (N,AD,M) as input and returns a random bit string with
the same length as C; ⊥ is an oracle that returns the reject symbol ⊥ for any
query. We assume that the adversary does not make any trivial authenticated
encryption queries or trivial authenticated encryption queries. In addition, we
assume that key is unknown to the adversary. Hence, the adversary does not
have access to the underlying permutation. Let qE and qD denote the maximum
number of queries that the adversary make for authenticated encryption and
authenticated decryption respectively. Let σE and σD denote the total number
of blocks involved in authenticated encryption and authenticated decryption
respectively. When consider j-th authenticated encryption query, σE,j is used
to denote the total number of keyed permutation invocations. Similarly, σD,j is

14

the total number of keyed permutation invocations in the j-th decryption and
verification query.

5.2 Privacy

In the following, we assume that the secret key is unknown to the adversary.
We define the security of TinyJAMBU on privacy against nonce-respecting ad-
versary A in a chosen plaintext attack setting as follows:

Advpriv
TinyJAMBU = |Pr[ATinyJAMBUEK = 1]− Pr[A$ = 1]|,

where ATinyJAMBUEK refers to the case that the adversary interacts with Tiny-
JAMBU authenticated encryption and A$ refers to the case that the adversary
interacts with a random oracle.

The following theorem gives the security bound on privacy for TinyJAMBU.

Thoerem 1. Let A be a nonce-respecting adversary makes qE encryption queries
of at most σE blocks. Then

Advpriv
TinyJAMBU ≤

σ2
E

2n+1
.

Proof. We use s := ([s]v ‖ [s]r ‖ [s]c) to denote the internal state of the authen-
ticated encryption scheme, where [s]v is the v-bit state segment that the message
blocks inject into; [s]r is the r-bit state segment that is used as keystream, which
is similar to the rate segment in the Duplex sponge mode; [s]c is the c-bit state
segment that only frame bits are xored with, which is similar to the capacity
segment in the Duplex sponge mode. sj,k is used to denote the internal state at
the k-th block of j-th query, where 1 ≤ k ≤ σE,j , 1 ≤ j ≤ qE .

We start out proof by defining the following event:

Coll: (sj,k−1 6= sj′,k′−1) and (sj,k = sj′,k′) for j, j′ ∈ 1, ..., qE , k ∈
1, ..., σE,j and k′ ∈ 1, ..., σE,j′ .

Note that for nonce-respecting adversaries, Coll occurs if and only if an
internal state collision occurs.

In regard to the difference between TinyJAMBUEK and $, we have the fol-
lowing Lemma:

Lemma 1. The output of TinyJAMBUEK and $ are identically distributed until
the event Coll occurs.

Proof. From the definition of $, the output (C, T) is a uniformly random bit
string. Consider EK , without event Coll, the input of each keyed-permutation
invocation is a new value. Since PK is an ideal keyed-permutation, the output
of PK is also uniformly random, which is identical to the output of $.

15

From Lemma 1, the advantage of adversary is bounded by the probability
that the event Coll occurs. Thus, we have

Advpriv
TinyJAMBU ≤ Pr[Coll]

Given σE keyed permutation invocations, the probability of event Coll is
upper bounded by

(
σE
2

)
· 2−n.

Thus, we have

Advpriv
TinyJAMBU ≤

σ2
E

2n+1
.

In the TinyJAMBU authenticated cipher, we have b = 128, r = v = 32, c =
64 and σ ≤ 248. Hence, after 248 queries, the security bound for TinyJAMBU is
Advpriv

TinyJAMBU ≤ 296/2129 ≈ 2−33. It means that when nonce is not reused, the

adversary has the advantage of 2−33 to distinguishing ciphertext from random
after 250 bytes of plaintext are processed.

5.3 Authenticity

For the authenticity of TinyJAMBU mode, we will prove the security for a
nonce-reuse adversary A. In the following, we assume that the secret key is
unknown to the adversary.

We define the authenticity of TinyJAMBU as follows:

AdvauthTinyJAMBU = Pr[ATinyJAMBUEK
,TinyJAMBUDK forges.]

Thoerem 2. Let A be a nonce-reuse adversary makes qE authenticated encryp-
tion queries of at most σE blocks and qD authenticated decryption queries of at
most σD blocks. Then

AdvauthTinyJAMBU ≤ (
eσE
ρ2r

)ρ · 2r
√
ρ

+
(σE + σD)(ρ− 2)

2c+v/2+1
+
qD
2t
,

where e is the Euler’s number and ρ is a positive integer constant.

Proof. We use similar notations as in the proof of Theorem 1 but with a few
adjustments to include the decryption. We use sE and sD to denote the internal
state in encryption and decryption queries respectively. So sEj,k refers to the
k-th keyed-permutation invocation in the j-th encryption query.

Then we define the following events:

1. CollE : (sEj,k−1 6= sEj′,k′−1) and (sEj,k = sEj′,k′) for j, j′ ∈ 1, ..., qE , k ∈
1, ..., σE,j and k′ ∈ 1, ..., σE,j′ ;

2. CollD: (sDj,k−1 6= sEj′,k′−1) and (sDj,k = sEj′,k′) for j ∈ 1, ..., qD, j′ ∈ 1, ..., qE ,
k ∈ 1, ..., σD,j and k′ ∈ 1, ..., σE,j′ ;

16

3. MultiColl: there exists ρ multi-collisions on the rate segment of state for
a positive integer ρ.

The event CollE is exactly the same as Coll in the proof of Theorem 1. The
event CollD is an authenticated decryption query has a non-trivial state collision
with some authenticated encryption query. Here ‘trivial state collision’ refers to
a state collision due to common prefix blocks.

A successful forgery can either from an internal state collision or a random
guess without state collision. Here we only need to consider the internal state
collisions in the two collision events CollE and CollD. Note that the collisions in
two authenticated decryption queries will not lead to a forgery. The probability
that a successful random guess without state collision is 1/2t. Hence, we upper
bound the probability of forgeries as follows:

Pr[ATinyJAMBUEK
,TinyJAMBUDK forges] ≤ Pr[CollE] + Pr[CollD] +

qD
2t
.

Now we compute the probability of the state collision events under the con-
sideration of the number of multi-collisions (#MC) on the rate segment of the
state. As nonce reuse in our setting, it is possible to query multiple messages
with the same prefix blocks. However, we consider this case as the same class of
multi-collision. Only when the previous blocks are different, two blocks can be
considered as different multi-collisions. We set a positive integer ρ. Let f(t) be
the probability that a state collision when t multi-collisions on the rate segment
present. When the number of multi-collisions is less than ρ, the probability of
state collision is given by:

Pr[Coll<ρ] =

ρ−1∑
t=0

Pr[#MC = t] · f(t).

When the number of multi-collisions is at least ρ and of course at most σ,
the probability of state collision is given by:

Pr[Coll>=ρ] =
σ∑
t=ρ

Pr[#MC = t] · f(t) ≤ Pr[#MC >= ρ].

With the definition of the event MultiColl, we have the following inequality:

Pr[CollE] + Pr[CollD] ≤ Pr[CollE |¬(MultiColl)] +

Pr[CollD¬(MultiColl)] +

Pr[MultiColl].

Using the result from Equation (4) in [10], we can bound the probability of
MultiColl as:

Pr[MultiColl] ≤ (
eσE
ρ2r

)ρ · 2r
√
ρ
. (5.1)

17

Next, we analyse the probability for event CollE when MultiColl is false.
Consider a state sEα,i, which is the i-th block in the α-th query. Suppose that

CollE occurs between sEα,i and a previous block sEβ,j , we compute the probability
as follows.

Case 1. sEα,i−1 is a new value which is not equal to any of the previous

states. In this case, PK(sEα,i−1) is randomly chosen from {0, 1}b. Hence,

the probability that CollE occurs between sEα,i and a previous block sEβ,j
is bounded by (

∑α−1
i=1 σE,i + i− 1) · 1

2n .

Case 2. sEα,i−1 is a state that has been queried before. In this case, the

output of PK(sEα,i−1) is a fixed value. Since sEα,i = PK(sEα,i−1) ⊕ (M ‖
0r ‖ (frameBits ‖ 0c−4), [sEα,i]r is a known value. The event CollE
implies that [sEα,i]r = [sEβ,j]r and sEα,i−1 6= sEβ,j−1. Suppose that there are θ

classes of multi-collisions on [sEα,i]r, which are Γ1,Γ2, ...,Γθ such that the
previous states are mutually distinct. For each Γi, there are βi different
messages been queried before. Therefore, the probability that the message
segment [sEα,i]v collide with a previous blocks queried in class Γi is given

by βi/2
v. The rate segments [sEα,i]r must collide from the definition of

multi-collision. The capacity segment has collision probability 1/2c since
the previous blocks are different. In summary, the probability that sEα,i
collides with a previous state is Σθi=1βi/2

c+v.

Next, we compute the state collision probability for all authenticated en-
cryption queries. We divide the state s into disjoint sets Θ1

⋃
Θ2

⋃
...
⋃
Θt

according to the values of the rate segment [s]r. Clearly, any state collision
can only occur within the same set.

Then we compute the collision probability within a set, say Θx. Suppose
that there are θ multi-collision classes, Γ1,Γ2, ...,Γθ, in Θx. Each class Γi
is corresponding to βi different messages with the same input state. Then,
the probability that a state collision between any two classes Γi and Γj
is given by min{βiβj

2v , 1} · 1
2c . Thus, the overall probability that there is a

state collision in set Θx is

Pr[CollE in Θx|¬(MultiColl)] =
∑

i 6=j,1≤i,j≤θ

min{βiβj
2v

, 1} · 1

2c
(5.2)

When βi = 2v/2 for all 1 ≤ i ≤ θ, the above Equation 5.2 has the
maximum probability

(
θ
2

)
· 1
2c with the minimum number of block queries

γ =
∑θ
i=1 βi = 2v/2θ. We explain the details in Appendix A.

Since the event MultiColl is false, the maximum possible number of multi-
collisions on the rate segment is ρ− 1. Thus, θ ≤ ρ− 1. We have

Pr[CollE in Θx|¬(MultiColl)] ≤
(
ρ− 1

2

)
1

2c
=

(ρ− 1)(ρ− 2)

2c+1
.

18

Given the total number of encryption query blocks σE , the maximum num-
ber of disjoint sets that can reach maximum probability is σE

γ = σE
(ρ−1)2v/2 .

Finally, we are able to compute

Pr[CollE|¬(MultiColl)] ≤ σE
(ρ− 1)2v/2

· (ρ− 1)(ρ− 2)

2c+1

=
σE(ρ− 2)

2c+v/2+1
.

Generally, we have σE · 2−r ≤ ρ from the Pigeonhole principle. So the
probability of Case 2 is at least the probability of Case 1. Hence, the sum of
probabilities in Case 2 gives the bound for Pr[Coll]E :

Pr[CollE |¬(MultiColl)] ≤ σE(ρ− 2)

2c+v/2+1
.

We bound the probability for event CollD when MultiColl is false. The
probability that a CollD occurs between sDα,i and some block from authenticated

encryption sEβ,j can be computed in a similar way as the computation for CollE ,
resulting the following bound:

Pr[CollD|¬(MultiColl)] ≤ σD(ρ− 2)

2c+v/2+1
.

In summary, we have

AdvauthTinyJAMBU ≤ (
eσE
ρ2r

)ρ · 2r
√
ρ

+
(σE + σD)(ρ− 2)

2c+v/2+1
+
qD
2t

(5.3)

In the TinyJAMBU authenticated cipher, b = 128, r = v = 32, c = 64 and
σ ≤ 248. For authenticity security, we choose ρ = 217.445, after substituting
the values of r and σ, the security bound for authenticity is AdvauthTinyJAMBU ≤
2−387 +217.445 · (σE+σD)/281 +(qE+qD)/264. When 248 blocks are queried, the
adversary has the advantage of less than 2−15.5 to forge a message successfully.

Note that if Duplex mode is used for the same setting on block size and rate
size, when 248 blocks are queried , the adversary has the advantage around 2−1

to forge a message successfully.

19

Chapter 6

Security Analysis

6.1 Properties of the TinyJAMBU Mode

In an authenticated encryption mode, the probability of state collision plays the
role for protecting the confidentiality of plaintext and for resisting the forgery
attack on the message. The security proof of the TinyJAMBU mode was given
in Chapter 5. In the following, we provide a simple analysis on the state collision
of the TinyJAMBU mode.

6.1.1 State collision for unique nonce

For unique nonce, a new state is generated for each message. It is impossible
to apply the adaptively chosen message attack on the TinyJAMBU mode when
the nonce is unique since each message is processed using a new initial state.

Only the state size affects state collision when the nonce is unique. When we

use the 128-bit state in the TinyJAMBU mode, the probability is
(
248

2

)
×2−128 =

2−33 when a key is used to process 250 message bytes (there are about 248

message blocks if assume that each message is at least 8 bytes long).

6.1.2 State collision for repeated nonce

For repeated nonce, the adaptively chosen message can be applied to improve
the probability of state collision.

In TinyJAMBU, after processing each plaintext block, 32 bits of the ith state
are known to the attacker as keystream (denoted as U i32); 32 bits of the state
are unknown to the attacker, but the attacker is able to modify these 32 bits
through message injection (denoted as V i32); 64 bits of the state are unknown to
the attacker (denoted as W i

64.
When 248 message blocks are processed, the multicollisions at U32 can be

observed. On average, each 32-bit value of U32 appears 216 times.
We consider 216 states with the same value at U32, and inject 216 message

blocks to V32 for each state to introduce collision at V32 with probability about

20

1 (i.e., two different states before the message injection now have the same value
at V32 for some message blocks). After the message injections, there are about
216 states which are the same at U32 ‖ V32. The chance that there is a whole

state collision is about
(
216

2

)
× 2−64 = 2−33 after the message injections. We

need to adaptively choose 216 × 216 = 232 message blocks here to carry out this
attack.

Since the attacker is able to adaptively choose up to 248 message blocks, the
attacker is able to perform the above attack for 216 times. Thus the success rate
of the whole state collision is 2−33 × 216 = 2−17.

Experiment. We implemented the above attack using 48-bit state size instead
of the 128-bit sate size. The U and V are 12 bits, W is 24 bits. The attacker
can use 218 chosen message blocks. We repeated the attack for 215 times, the
success rate for a state collision is 2−7.02. (The experimental result matches
very well with the theoretical result, which is 2−7 for the 48-bit state version.)

6.2 Properties of the Keyed Permutation Pn

In the following, we will analyse the differential, linear and algebraic properties
of the keyed permutation Pn .

6.2.1 Differential properties of the keyed permutation Pn

In this section, we analyse the differential properties [2, 4] of the TinyJAMBU
permutation Pn. The following three types of differences will be analysed.

• Type 1. Input differences at S96···127

• Type 2. Arbitrary input differences, output differences at S96···127

• Type 3. Input differences at S96···127 , output differences at S96···127

• Type 4. Arbitrary input differences, arbitrary output differences

In the following, we will analyse the differential propagation using the Mixed
Integer Linear Programming (MILP) [13]. We use the Gurobi optimizer [8] to
find the bounds for the permutations.

Type 1 Differences

For the Type 1 differences, the input differences are at S96···127, and there is no
restriction on the output differences. The largest differential probabilities of the
Type 1 differences are summarized in Table 6.1.

21

Table 6.1: Type 1 Differential Properties of Pn

Round Probability Method

256 2−22 MILP

320 2−33 MILP

384 2−45 MILP

448 2−55 MILP

512 2−68 MILP

Type 2 Differences

For the Type 2 differences, there is no restriction on the input differences, and
output differences are at S96···127. The largest differential probabilities of the
Type 2 differences are summarized in Table 6.2.

Table 6.2: Type 2 Differential Properties of Pn

Round Probability Method

384 2−28 MILP

512 2−47 MILP

Type 3 Differences

For the Type 3 differences, the input differences are at S96···127, and output
differences are at S96···127. The largest differential probabilities of the Type 3
differences are summarized in Table 6.3.

Table 6.3: Type 3 Differential Properties of Pn

Round Probability Method

384 2−80 MILP

Type 4 Differences

For the Type 4 differences, there is no constraint on the input differences and
output differences. The largest differential probabilities of the Type 4 differences
are summarized in Table 6.4.

22

Table 6.4: Type 4 Differential Properties of Pn

Round Probability Method

192 2−4 MILP

320 2−13 MILP

6.2.2 Linear properties of the keyed permutation Pn

In this section, we analyse the linear properties [11, 12] of the TinyJAMBU
permutation Pn . The linear bias being analsed is for arbitrary input bits and
output bits at S64···95.

In the analysis, we use the Mixed Integer Linear Programming (MILP) [13].
We will use the Gurobi optimizer [8] to find the linear bias of the permutations.
The results are summarized in Table 6.5.

Table 6.5: Linear bias of Pn

Round Bias

256 2−13

320 2−17

384 2−23

448 2−27

512 2−30

6.2.3 Algebraic properties of the keyed permutation Pn

We consider the algebraic property for the input bits at S96···127. Our experi-
ment shows that after 598 rounds, every output bit at S64···95 is affected by the
32-bit input cube tester [7] at S96···127 .

6.3 Forgery Attacks

For an authenticated encryption scheme, an internal state collision will directly
lead to a forgery attack. To produce a state collision, an attacker can inject
difference into nonce, associated data or plaintext/ ciphertext, then eliminate
the difference in the state using the difference in the later input blocks.

23

6.3.1 Forgery attacks on nonce and associated data

In TinyJAMBU, each 32-bit nonce block and associated data block is processed
using P384 (with different Framebits for nonce and associated data). The asso-
ciated data also plays the role of nonce in TinyJAMBU.

Nonce and associated data are processed in a very similar way in Tiny-
JAMBU (the only difference is the use of different FrameBits). In the following,
we only need to consider the forgery attacks on associated data. There are two
cases of forgery attacks on the associated data:

Case 1. Forgery attacks with differences at only two adjacent associated data
blocks, i.e., ∆adi 6= 0 and ∆adi+1 6= 0

For this type of forgery attacks, the input difference to P384 is at
s96···127, and the output difference is at s96···127. This is the Type 3
differences analysed in Sect. 6.2.1. According to Tabl 6.3, the largest
differential probability of Type 3 differences of P384 is at most 2−80. It
means that the forgery attack succeeds with probability at most 2−80

using this type of differential attack.

Case 2. Forgery attacks involving more than two associated data blocks, i.e.,
∆adi 6= 0 and ∆adj 6= 0, where j > i+ 1 . (∆adw may or may not be
zero for i < w < j.)

For this type of forgery attacks, at least two permutations P384 are
involved. ∆adi introduces input difference at s96···127 of P384, this
differential probability in P384 is at most 2−45 (according to Table 6.1).
To eliminate the difference at ∆adj , the output difference of P384

should appear at s96···127 of P384, this differential probability in P384

is at most 2−28 (according to Table 6.2). Thus the forgery attack
succeeds with probability at most 2−55 × 2−28 = 2−73. The actual
forgery is expected to be successful with probability less than 2−73

since the two optimal differentials may not match in the middle.

The above analysis shows that the differential forgery attack on nonce and
associated data succeeds with probability at most max(2−80, 2−73) = 2−73. It
is smaller than the intrinsic forgery success rate of 2−64 for a 64-bit tag.

6.3.2 Forgery attacks on plaintext/ciphertext

Note that an attacker always has the advantage of 2−16 to successfully forge a
message using 248 random trials since the tag size is 64 bits. It was analysed in
Chapter 5 and Sect. 6.1.2 that the TinyJAMBU mode provides strong authenti-
cation security even when nonce is repeated, and the attacker has the advantage
of 2−17 to forge a message with 248 adaptively chosen message blocks. Thus an
adversary has advantage of less than 2−15 to forge a message successfully when
less than 250 bytes of data are authenticated using the same key when the nonce
is repeated (under the assumption that each message is at least 8 bytes).

24

In the above analysis, it is assumed that the permutation is perfect. Here we
analyse the forgery attacks for the concrete permutation. When an adversary
introduces a difference in a plaintext block Mi or ciphertext block Ci , there is
difference at the input s96···127 of the permutation Pn. This differential proba-
bility of 512 rounds of the permutation is at most 2−68 (according to Table 6.1).
When an adversary eliminates the difference in the state with the plaintext
block Mi+1 or ciphertext block Ci+1 , there is output difference at the output
s96···127 of the permutation Pn. This differential probability of 512 rounds of
the permutation is at most 2−47 (according to Table 6.2).

In TinyJAMBU, at least 1024 rounds are used to encrypt a plaintext block, so
the differential forgery attack on plaintext/ciphertext succeeds with probability
at most 2−68 × 2−47 = 2−115. It is smaller than the intrinsic forgery success
rate of 2−64 for a 64-bit tag.

6.4 Key Recovery Attacks

In the section, we analyse the security of the secret key being used in Tiny-
JAMBU.

6.4.1 Differential cryptanalysis

When nonce is unique, a difference can be injected into the state through a nonce
block. The difference in the state can get eliminated using the subsequent nonce
blocks. The elimination of the difference in the state can be identified from the
ciphertext blocks or tags. According to Section 6.3.1, the difference in the state
can get eliminated with probability less than 2−73. Since each key is used to
protect at most 250 bytes of data, there are at most 247 messages if each message
is at least 8 bytes. The attacker does not have enough messages to launch this
differential attack successfully.

When nonce is repeated for the same key, a difference can be injected into the
state at s96···127 through a plaintext/ciphertext block, then the output difference
can be observed in the next ciphertext block (the injection of associated data
difference is identical to that of the nonce difference). According to Table 6.1,
the maximum differential probability is 2−68 for 512 rounds of the permutation.
We also analysed the probability of any input difference to any output difference
of the permutation, and the maximum differential probability is 2−17 according
to Table 6.4. In TinyJAMBU, at least 1024 rounds are used to encrypt a 32-bit
message block. The differential probability for 1024 rounds is at most 2−68 ×
2−17 = 2−85. There are at most 248 32-bit plaintext blocks being processed.
The attacker does not have enough message blocks to launch the differential
cryptanalysis successfully.

25

6.4.2 Linear cryptanalysis

When nonce is misused, an attacker can try to find the linear relation between
the input bits and the output bits s64···95 of Pn.

According to Table 6.5, the linear bias is at most 2−30 for 512 rounds. This
linear bias is much smaller than 2−16 (the message block size is 32-bit). At
least 1024 rounds are used in the encryption of one plaintext block, we thus
expect that it is impossible to recover the key of TinyJAMBU using the linear
cryptanalysis.

6.4.3 Algebraic attacks

We experimentally tested the number of rounds for each output bit being af-
fected by 32-bit cube for the input. The experimental results show that after
598 rounds, every output bits is affected by the 32-bit cube tester. Hence, we
believe that the 1024-round encryption provides large security margin against
the algebraic cryptanalysis since the message block size is 32-bit.

6.5 Slide attack

The slide attack [3] is an effective tool to analyse the cipher with self-similarity
round functions. Although TinyJAMBU permutation has the sliding property,
the frame bits being added to the state will prevent the slide attack since the
position of the frame bits is fixed. For example, for two related keys with slide
property, the slide property between the two states gets eliminated with the
introduction of Framebits of nonce.

26

Chapter 7

The Performance of
TinyJAMBU

7.1 Hardware Performance

To evaluate the hardware performance of TinyJAMBU, we implemented TinyJAMBU-
128 with a fixed key in VHDL using the CAESAR Hardware API [9]. The
CAESAR Hardware API supports two lightweight inputs, one is 8-bit input
port, another is 32-bit input port.

In our lightweight implementations of TinyJAMBU, we compute 8 and 32
rounds in one clock cycle. We synthesis our implementations with the Synopsys
Design Compiler for an ASIC using 90 nm UMC technology. The results are
summarized in Table 7.1. The result is the hardware cost of the whole cipher
(including initialization, processing associated data, encryption and decryption,
tag generation and verification), we exclude the cost of the CAESAR Hardware
API which is the same for all the authenticated encryption algorithms.

Table 7.1: The hardware performance of TinyJAMBU with a fixed key on 90nm
ASIC UMC Technology (The whole cipher is implemented, including the initial-
ization, processing associated data, encryption and decryption, tag generation
and verification)

Cipher Rounds
per clock
cycle

Area
(GE)

Throughput
AD (Mbps)

Throughput
Plaintext
(Mbps)

TinyJAMBU-128 8 rounds 1352 65.16 24.6

TinyJAMBU-128 32 rounds 1674 243.3 91.2

27

7.2 Software Performance

In software implementation, the amount of RAM and ROM required by Tiny-
JAMBU is expected to be very small. Some estimation is given below.

1. RAM requirements

• 16 bytes of RAM are used to store the 128-bit state.

• The key may be stored in RAM depending on the applications.

• Zero RAM for key schedule since there is no key schedule in Tiny-
JAMBU.

2. ROM requirements

• Constants: there are four Framebits (each number 3-bit), , two round
numbers (each number at most 11-bit) and five tap positions (each
tap position one byte).

• According to the reference code, the binary code of TinyJAMBU
is expected to be very small since we repeatedly using the keyed
permutation in the code, and the keyed permutation is implemented
using only 16 lines of code. The amount of ROM being used to store
the binary code is expected to be small.

We implemented TinyJAMBU in C code. We tested the speed on Intel Core
i7-6550U processor running at the turbo boost speed 3.4GHz. Operating system
is 64-bit Windows 10. The compiler being used is gcc 7.4.0 of Cygwin64 3.0.0,
and the optimization option “-O3” is used. The performance for associated data
and plaintext are given in Table 7.2 and Table 7.3, respectively.

In Table 7.2, the associated data of TinyJAMBU-192 is processed faster than
TinyJAMBU-128 and TinyJAMBU-256 for long length. The reason is that in
the implementation, we use slightly larger loop unrolling for the implementation
of TinyJAMBU-192 so that 192 bits of the key are all used in one iteration.

Table 7.2: The speed (cycles per byte) of the 32-bit implementation of Tiny-
JAMBU on Intel Core i7-6550U processor (associated data only)

AD 8B 64B 256B 1024B 4096B

TinyJAMBU-128 133.0 36.0 25.3 22.9 22.7

TinyJAMBU-192 140.9 36.4 25.3 22.6 21.9

TinyJAMBU-256 152.6 39.3 27.3 24.3 23.5

28

Table 7.3: The speed (cycles per byte) of the 32-bit implementation of Tiny-
JAMBU on Intel Core i7-6550U processor (plaintext only)

Plaintext 8B 64B 256B 1024B 4096B

TinyJAMBU-128 170.2 75.2 66.6 62.6 62.0

TinyJAMBU-192 186.1 83.1 71.6 69.0 68.6

TinyJAMBU-256 208.4 95.7 83.5 80.5 80.0

29

Chapter 8

Features

• Lightweight, efficient authenticated encryption mode. It is lightweight
since TinyJAMBU mode is based on a 128-bit keyed permutation. It is
efficient since the message block size is 32 bits for 128-bit permutation.

• Strong protection of the secret key when nonce is reused. When nonce is
reused in TinyJAMBU, and each key is used to process less than 250 bytes
of data, the secret key cannot be recovered with less than 2112 computa-
tions.

• Strong authentication security when nonce is reused. When nonce is
reused in TinyJAMBU, and each key is used to process less than 250

bytes of data, the attacker’s advantage of forgery is less than 2−15.

• The associated data is part of the nonce in TinyJAMBU, i.e., the combi-
nation of nonce and associated data is the effective nonce of the cipher.

• Lightweight Permutation. The keyed permutation is based on a 128-bit
nonlinear feedback shift register with only 5 taps. It is thus efficient to
implement the keyed permutation in hardware.

• No key schedule in the keyed permutation, so the hardware area is signifi-
cantly reduced when a constant fixed key is used in TinyJAMBU (or when
a key must be stored in the devices for protecting multiple messages).

• Lightweight Input Loading. The nonce, associated data and the plain-
text/ciphertext can be loaded into the state bit-by-bit when the nonlinear
feedback shift register of the keyed permutation is clocked. It is thus
efficient to load the input into the cipher in hardware.

• Parallel Computation. In TinyJAMBU, 32 steps can be computed in
parallel. This parallel feature benefits fast hardware and software imple-
mentations.

30

Chapter 9

Design Rationale

• Design goal
We aim to design a lightweight authenticated encryption algorithm which
is optimized for the devices in which a secret key is stored. In the ap-
plications in which a secret key is used to protect multiple messages, it
is reasonable to store a secret key in the devices, either store the key
temporarily as a session key or store the key permanently as a fixed key.

When a key is already stored in the device, the state of the cipher could be
very small since we can use the keyed permutation to prevent an attacker
from computing the states offline and launching the state collision attacks
using the computed states.

• Design a nonce-misuse resistant cipher

Since we aim to design a cipher for a stored key (especially a fixed key),
we design the cipher to resist the key recovery attack when the attacker
is able to control the nonce, associated data and plaintext.

We also design the cipher to provide strong authentication security when
nonce is misused.

To provide better nonce-misuse resistance, the associated data also plays
the role of nonce. In case when nonce is repeated due to some error, but
associated data is different, the security of the cipher would not be affected
by the repeated nonce.

Feeding the plaintext twice into the cipher (one for tag generation, another
for encryption using the tag as part of the nonce) can provide high security
for plaintext when nonce is misused. But such cost is high for a lightweight
cipher, so we do not provide strong protection of plaintext when both
nonce and associated data are repeated.

• Design the TinyJABMU authenticated encryption mode

JAMBU mode is the smallest block cipher authenticated encryption mode
in the CAESAR competition. The message block size and the state size

31

of the JAMBU mode is 0.5 and 1.5 times of the block size of the block
cipher, respectively.

If we reduce the message block size in the JAMBU mode, the state size of
JAMBU can be reduced significantly, and we can get better authentication
security when nonce is reused. So we designed TinyJAMBU which is a
small variant of JAMBU.

In the TinyJAMBU mode, the attacker cannot control the state bits easily,
so when nonce is reused, TinyJAMBU mode achieves better authentication
security than the Duplex mode for the same keyed permutation and the
same message block size. In th Duplex mode, part of the state can be set
to any arbitrary value when nonce is reused. So we do not use he Duplex
mode in our design.

• Different processing of associated data and plaintext

In TinyJAMBU, we use a strong permutation for encrypting plaintext,
while we use a relatively weak permutation for processing associated data
for better efficiency. The reason is that when we are processing the asso-
ciated data, there is no information leakage as long as there is no state
collision. The permutation for associated data only needs to resist the
forgery attack, while the permutation for plaintext should resist not only
the forgery attack, but also the the key recovery attack when the nonce is
reused.

• Design the keyed permutation

The keyed permutation is based on a simple nonlinear feedback shift reg-
ister with only 5 taps. There are three reasons for using the nonlinear
feedback shift register to update the state:

– The hardware cost of nonlinear feedback shift register is low.

– A number of steps of the nonlinear feedback shift registers can be
computed in parallel for efficient hardware and software implemen-
tation.

– The stream input data can be easily loaded into the state when the
state gets updated.

There is slide property in the keyed permutation based on a feedback shift
register. We use the FrameBits for each permutation to destroy the slide
property.

In the keyed permutation, there is no key schedule (the round keys are
simply generated by repeating the secret key). It is to reduce the hardware
cost of key schedule when there is an embedded key in the device. This
approach of designing lightweight block cipher has been been used in the
design of KTANTAN [6].

32

• Design the nonlinear feedback shift register

We use a 128-bit nonlinear feedback shift register with 5 taps to update the
state of the permutation. The number of taps is not large since we aim at
lightweight hardware implementation; the number of taps is not too small
so that we can get reasonably good differential and linear characteristics.

Among those five taps, two taps are NANDed together (nonlinear feed-
back), the other three taps are for linear feedback.

To design a nonlinear feedback shift register with 5 taps, we need to choose
four tap positions.

– The tap positions are chosen to ensure that 32 steps can be computed
in parallel.

– There are 15 tap distances for the feedback register with 5 taps. The
tap positions are chosen to ensure that most of those 15 tap distances
are coprime to each other. When two tap distances are not coprime,
the greatest common divisor should be small.

– After the above filtering of tap positions, we choose the tap positions
with fast diffusion (measured as the number of steps being used for
one state bit affecting the whole state). We keep the top 20 sets of
tap positions with fast diffusion.

– After the above filtering, we tested the differential and linear property
of the permutation (for 32-bit message block). We choose the tap
positions that gives excellent differential and linear characteristics.

33

Bibliography

[1] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van Assche.
Duplexing the sponge: Single-pass authenticated encryption and other ap-
plications. In Selected Areas in Cryptography – SAC 2011, pages 320–337.

[2] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryp-
tosystems. Journal of Cryptology, 4(1):3–72, 1991.

[3] Alex Biryukov and David Wagner. Slide Attacks. International Workshop
on Fast Software Encryption – FSE’99, pp. 245—259.

[4] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data En-
cryption Standard. Springer-Verlag, London, UK, 1993.

[5] CAESAR: Competition for Authenticated Encryption: Security, Applica-
bility, and Robustness. Available at https://competitions.cr.yp.to/

caesar-submissions.html

[6] Christophe De Cannière, Orr Dunkelman, Miroslav Knežević. KATAN
and KTANTAN — A Family of Small and Efficient Hardware-Oriented
Block Ciphers. International Workshop on Cryptographic Hardware and
Embedded Systems – CHES 2009, pp 272–288.

[7] Itai Dinur and Adi Shamir. Cube attacks on tweakable black box polyno-
mials. In Antoine Joux, editor, Advances in Cryptology - EUROCRYPT
2009, pages 278–299, 2009. Springer Berlin Heidelberg.

[8] Gurobi Optimizer. Available at http://www.gurobi.com/

[9] Ekawat Homsirikamol, William Diehl, Ahmed Ferozpuri, Farnoud Farah-
mand, Panasayya Yalla, Jens-Peter Kaps, and Kris Gaj. CAESAR hard-
ware API. IACR Cryptology ePrint Archive, 2016:626, 2016.

[10] Philipp Jovanovic, Atul Luykx, Bart Mennink, Yu Sasaki, and Kan Ya-
suda. Beyond conventional security in sponge-based authenticated en-
cryption modes. Journal of Cryptology, Jun 2018.

[11] Mitsuru Matsui. Linear Cryptanalysis Method for DES cipher. In Ad-
vances in Cryptology–EUROCRYPT’93, pages 386–397. Springer, 1994.

34

https://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar-submissions.html
http://www.gurobi.com/

[12] Mitsuru Matsui and Atsuhiro Yamagishi. A New Method for Known
Plaintext Attack of FEAL Cipher. In Advances in Cryptology – EURO-
CRYPT’92, pages 81–91. Springer, 1993.

[13] Nicky Mouha, Qingju Wang, Dawu Gu, Bart Preneel. Differential and lin-
ear cryptanalysis using Mixed-Integer Linear Programming. Information
security and cryptology – Inscrypt 2011, pages 57–76.

[14] Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara, and Daisuke Suzuki.
SAEB: A lightweight blockcipher-based AEAD mode of operation. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):192–217, 2018.

[15] Hongjun Wu and Tao Huang. JAMBU Lightweight Authenticated Encryp-
tion Mode and AES-JAMBU. NIST Lightweight Cryptography Workshop
2015. Available at https://www.nist.gov/news-events/events/2015/
07/lightweight-cryptography-workshop-2015

35

https://www.nist.gov/news-events/events/2015/07/lightweight-cryptography-workshop-2015
https://www.nist.gov/news-events/events/2015/07/lightweight-cryptography-workshop-2015

Appendix A

Analysis of the Probability
for Equation 5.2

Here we show how to derive the maximum probability for Equation 5.2 with
minimum required message blocks. The equation is given below.

Pr[CollE in Θx] =
∑

i 6=j,1≤i,j≤θ

min{βiβj
2v

, 1} · 1

2c

First, we ignore the min function, so the right hand side becomes:∑
i 6=j,1≤i,j≤θ

βiβj
2v
· 1

2c
=

1

2c+v

∑
i 6=j,1≤i,j≤θ

βiβj

Let z =
∑
i 6=j,1≤i,j≤θ βiβj , we have

z =
∑

i 6=j,1≤i,j≤θ

βiβj

≤
∑

i 6=j,1≤i,j≤θ

(
β2
i + β2

j

2
)

=
(θ − 1)(

∑θ
i=1 β

2
i)

2
.

Then,
θ∑
i=1

β2
i ≥

2z

θ − 1

Add 2z to both size, we have

(

θ∑
i=1

βi)
2 =

θ∑
i=1

β2
i + 2z ≥ 2z

θ − 1
+ 2z.

36

Therefore,

z ≤ (θ − 1)

2θ
(

θ∑
i=1

βi)
2. (A.1)

The equality holds when βi are equal for all 1 ≤ i ≤ θ.
Now we take the min function into consideration. When βi = βj ≥ 2v/2,

min{βiβj

2v , 1} = 1. Then, the Equation 5.2 obtains the maximum value which is∑
i6=j,1≤i,j≤θ

1
2c =

(
θ
2

)
· 1
2c .

On the other hand, when βi = βj < 2v/2, min{βiβj

2v , 1} =
βiβj

2v < 1, the
probability cannot reach the maximum value. Moreover, from inequality A.1,
z is related to the (

∑θ
i=1 βi)

2. Any decrease in
∑θ
i=1 βi will lead to the overall

probability reduce even more.
Therefore, the βi = βj ≥ 2v/2 will obtain the maximum value of probability

with least number of message blocks
∑θ
i=1 βi. Any decrease in the choice of∑θ

i=1 βi will decrease the probability in a squared manner.

37

	Introduction
	TinyJAMBU Authenticated Encryption Mode
	Specification
	Recommended parameter sets
	Operations, Variables and Functions
	Operations
	Variables and Constants
	The Keyed Permutation Pn

	TinyJAMBU-128
	The initialization
	Processing the associated data
	The encryption
	The finalization
	The decryption
	The verification

	TinyJAMBU-192
	TinyJAMBU-256

	Security Goals
	Security goals with unique nonce
	Security goals with misused nonce

	Security of the TinyJAMBU Mode
	Security Model
	Privacy
	Authenticity

	Security Analysis
	Properties of the TinyJAMBU Mode
	State collision for unique nonce
	State collision for repeated nonce

	Properties of the Keyed Permutation Pn
	Differential properties of the keyed permutation Pn
	Linear properties of the keyed permutation Pn
	Algebraic properties of the keyed permutation Pn

	Forgery Attacks
	Forgery attacks on nonce and associated data
	Forgery attacks on plaintext/ciphertext

	Key Recovery Attacks
	Differential cryptanalysis
	Linear cryptanalysis
	Algebraic attacks

	Slide attack

	The Performance of TinyJAMBU
	Hardware Performance
	Software Performance

	Features
	Design Rationale
	Analysis of the Probability for Equation 5.2

