Spook: Sponge-Based Leakage-Resistant Authenticated
Encryption with a Masked Tweakable Block Cipher

Davide Bellizia*, Francesco Berti*, Olivier Bronchain*, Gaétan Cassiers*, Sébastien Duval®,
Chun Guo*, Gregor Leander’, Gaétan Leurent?, Itamar Levi*, Charles Momin*,

Olivier Pereira*, Thomas Peters*, Francois-Xavier Standaert*, Friedrich Wiemer'.

Round 2 Submission, September 27, 2019.
URL: https://wuw.spook.dev/

Abstract

This document defines Spook: a sponge-based authenticated encryption with associated
data algorithm. It is primarily designed to provide security against side-channel attacks at a
low energy cost. For this purpose, Spook is mixing a leakage-resistant mode of operation with
bitslice ciphers enabling efficient and low latency implementations. The leakage-resistant mode
of operation leverages a re-keying function to prevent differential side-channel analysis, a duplex
sponge construction to efficiently process the data, and a tag verification based on a Tweakable
Block Cipher (TBC) providing strong data integrity guarantees in the presence of leakages. The
underlying bitslice ciphers are optimized for the masking countermeasures against side-channel
attacks. Spook is an efficient single-pass algorithm. It provides state-of-the-art black box security
with several prominent features: (¢) nonce misuse-resilience, (i7) beyond-birthday security with
respect to the TBC size, and (44) multi-user security at minimum cost with a public tweak.

* ICTEAM Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
T Horst Gortz Institute for IT Security, Ruhr-Universitit Bochum, Germany.
¥ Team SECRET, Inria Paris Research Center, France.

https://www.spook.dev/

1 Corresponding submitter

e Name: Francgois-Xavier Standaert.

e E-mail: fstandae@uclouvain.be.

e Phone number: +3210472565.

e Organization: Université catholique de Louvain.

e Postal address: Place du Levant, 3, 1348 Louvain-la-Neuve, Belgium.

2 Design rationale and motivation

Spook is an Authenticated Encryption scheme with Associated Data (AEAD). Its primary design
goals are resistance against side-channel analysis and low-energy implementations (jointly).

The motivation for the first goal stems from the observation that lightweight devices may be
deployed in environments where they can be under physical control of an adversary, yet be responsible
for sensitive tasks, or be the root of critical distributed attacks starting from seemingly non-critical
connected objects [RSWO18]. As a result, the ability to provide side-channel resistance (and possibly
resistance against fault attacks) easily and at low cost was identified by the NIST as a desirable
feature for lightweight cryptography.! The motivation for the second goal stems from the observation
that energy is a suitable metric to compare the performances of cryptographic algorithms [KDH'12],
and a relevant one from the application viewpoint. It is in particular increasingly needed for
battery-operated / energy harvesting devices, for example in the IoT [MMGD17].

In order to reach these goals, Spook builds on and specializes two main ingredients.

The first ingredient is a leakage-resistant mode of operation that enables efficient side-channel
secure implementations. We use the S1P mode of operation for this purpose [GPPS19], which
stands for “Sponge One-Pass” and is the lightweight variation of a sequence of works aiming at high-
physical security guarantees for (authenticated) encryption [PSV15, BKP118, BPPS17, BGP19).
For integrity, S1P reaches the top of the definitions’ hierarchy established in [GPPS18], namely
Ciphertext Integrity with Misuse and Leakage in encryption and decryption (CIML2), in a liberal
model where all the intermediate computations are leaked to the adversary, except for a long-term
secret key that is only used twice per encrypted or decrypted message. For confidentiality, S1P reaches
security against Chosen Ciphertext Adversaries with misuse-resilience and Leakage in encryption
(CCAmL1). Compared to related works with constructions additionally achieving CCA security
with decryption leakages (i.e., CCAmL2 [GPPS18]), the SIP mode has the significant advantage
of being single-pass in encryption and in decryption, which we believe is essential for lightweight
implementations.? Concretely, SIP encourages so-called leveled implementations, where (expensive)
protections against side-channel attacks are used in a limited way and independent of the message
size, while the bulk of the computation is executed by cheap and weakly protected components.

The second ingredient is the adoption of regular symmetric primitives to operate the S1P
mode of operation, namely the Clyde-128 Tweakable Block Cipher (TBC) and the Shadow-512
permutation, both based on simple extensions of the LS-design framework, which aims at efficient
bitslice implementations [GLSV14]. In order to facilitate leveled implementations, those primitives
use components that can be efficiently masked against side-channel attacks for the TBC (e.g.,
with [GMK17] in hardware or [GR17] in software), and enable fast implementations for the per-
mutation. They bring two main improvements compared to earlier proposals of LS-designs. On

! https://csrc.nist.gov/projects/lightweight-cryptography.
2 We consider the definition of misuse-resilience of Ashur et al. [ADL17] rather than the definition of misuse-resistance
of Rogaway and Schrimpton [RS06] for a similar reason (i.e., in order to avoid the need of two passes).

https://csrc.nist.gov/projects/lightweight-cryptography

the one hand, they leverage the tools introduced by Beierle et al. [BCLR17] in order to prevent the
invariant attacks that put several earlier LS-designs at risk [LMR15, TLS16]. On the other hand,
they replace the table-based L-boxes used in previous LS-designs by word-level L-boxes that can be
efficiently implemented as a sequence of rotation and XOR operations, which is beneficial to prevent
cache attacks [TOS10]. As a result, both Clyde-128 and Shadow-512 enable efficient bitslicing and
side-channel resistant implementations on a wide range of platforms, (e.g., 32-bit microprocessors
such as increasingly used in mobile applications and dedicated hardware or FPGAs).

The motivations for using two symmetric primitives in S1P are twofold. First, an invert-
ible (tweakable) block cipher is instrumental to reach CIML2 security in the unbounded leakage
model [BPPS17]. Second, duplex sponge constructions are in general attractive for efficient AE: they
can achieve this functionality in a single pass, are highly flexible and ensure nice security bounds in
the multi-user setting [BDPA11, DMA17]. Sponge constructions are also believed to provide some
leakage-resistance (or resilience) by design [DEM™*17]. Spook combines the advantages of both.

Eventually, and besides these main features, Spook inherits other interesting properties from the
S1P mode of operation: (i) it is secure beyond the birthday bound (with respect to the size n of
the TBC), and (i) it can provide n-bit multi-user security at low cost with a public tweak.

We note that an important aspect of our security claims is that we consider security definitions
that allow all the computations (including the computation of the “challenge ciphertext”) to leak,
which we denote as leakage-resistance (following the terminology in [GPPS18, StasE]). This is in
contrast with definitions of leakage-resilience excluding the leakage of the challenge ciphertext.

3 Specifications

3.1 The S1P mode of operation

Notations. We denote the plaintext as M. It is parsed into ¢ blocks M[0], M[1],..., M[¢ —1],
where the size of blocks 0 to £ — 2 is r and the size of the last block is 1 < [M[¢ —1]| < r. We denote
the associated data as A. It is parsed into A blocks A[0], A[1],..., A[A — 1] in the same way as the
plaintext. We denote the 7-bit nonce as N and the key as K||P, where K is a long-term secret key
of n bits, and P is a public tweak of n — 1 bits.®> The secret key K has to be picked up uniformly at
random in {0, 1}". The public tweak P is set to an (n — 1)-bit zero vector in case only single-user
security is requested, and is set to P = p||1 in case multi-user security is requested (i.e., one bit
is used to separate the single-user and multi-user security variants). In case multi-user security is
requested, p plays the role of a long-term “public key”. It is recommended to pick it up uniformly
at random like the long-term secret key K. The S1P[E,w|(A, M, N, K||P) mode of operation relies
on an Tweakable Block Cipher (TBC) with n-bit blocks, tweaks and keys, denoted as E, and an
(r + ¢)-bit permutation 7. Our primary parameters are n = 128, r = 256, ¢ = 256 and 7 = 128.

Conventions. S1P operates over bitstrings (i.e., each of the manipulated data — the plaintext,
associated data, ciphertext, keys and nonce — is a sequence of bits). The Spook cipher is however
defined for bytestrings (i.e., each of the manipulated data is a sequence of bytes). For encryption,
input data (i.e., plaintext, associated data, keys, nonce) bytestrings are first mapped to bitstrings
using the BMAP function defined next, and the ciphertext is converted back to a bytestring using the
inverse of the BMAP function. The operations are the same for decryption, except that the plaintext
and ciphertext are swapped. BMAP maps bytes to bits in little-endian order. More precisely, it
takes as input a sequence of bytes of length ¢: (X[0],..., X[¢ — 1]) and outputs a sequence of bits
(Y[0],...,Y[8¢ — 1]), where Y[8i + j] = (X[i]/27) mod 2 for 0 <i < gand 0 < j<S8.

3 So in our reference implementations, K||P is the key input string required by the NIST API.

As a result, the nonce IV, the private part of the key K and (when applicable) the public part of
the key p are all 16 bytes long. In order to get the bitstring p (which has a length of 126 bits) from
the corresponding bytestring, the last two bits are discarded after application of BMAP.

The encryption. As illustrated in Figure 1, the encryption of the 4-string input (A, M, N, K||P)

first derives an n-bit initial seed B by using a TBC call E?‘O(N [|0%). The initial seed B is then used
as a fresh key for an inner keyed duplex sponge construction, to process A and M and produce C.
Two bits are used for domain separation, in order to distinguish M from A and mark if the last
blocks of A and M are of full r bits or not. Let U||V be the first 2n — 1 bits of the final state, with
|U| = n. The tag Z is produced by using another TBC call EIV(HI(U), where the 1 concatenated with
V' guarantees that this tweak is different from the one used to generate B. The ciphertext is made
of £ — 1 blocks of r bits, a final block of length 1 < |C[¢ — 1]| < r and an n-bit tag. We next denote
it as C :=c||Z := C[0]||...||C[¢ — 1]]|Z (i-e., ¢ is the ciphertext excluding the tag).

AL0] Ao MO —Pp—cior M —P—cn M —P— cp

L
PII0]IN][0° —D © 9
K r n y 3 r b4 10* Z
B
NIlo* # ™ P %
g o B P
PIl0 o1]j0=2 10]/02 o102

Figure 1: S1P mode with TBC E and permutation 7, applied to a 2-block associated data and a
3-block message. The value 01[|0°~2 is inserted only if |[A[A — 1]| < r (resp., |[M[¢ —1]| < 7)).

The decryption. In order to decrypt the 4-string input (A, C, N, K||P), the mode first derives
the initial seed B via E?IO(N [|0*), as when encrypting. It then runs the inner keyed duplex sponge

construction on A and ¢ to derive M and the (2n — 1)-bit truncated state U||V. Finally, it makes
an inverse TBC call U* = (E‘I/(Hl)_l(Z), and outputs M if and only if there is a match U* = U.*

More precisely, SIP[E, 7|.Enc and S1P[E, 7].Dec are specified in Appendix A, Algorithms 3 and 4.
The different cases that the S1IP mode can encounter are also illustrated in Appendix B.

3.2 Clyde-128, a Tweakable LS-Design

The S1P mode of operation requires a TBC. We use the Tweakable LS-Design (TLS-design)
framework introduced as part of the SCREAM authenticated encryption candidate to the CAESAR
competition for this purpose [GLS™14]. TLS-designs are tweakable variants of the LS-designs which
specify a family of bitslice ciphers aimed at efficient masked implementations [GLSV14].

Such ciphers work on n = (s - [)-bit states, where the size of the S-box is s and the size of the
L-box is 2. We denote the full cipher state as x, a state row as z[i,*] (0 < i < s) and a state
column as z[x, j|] (0 < j <). Concretely, we will consider s = 4 and | = 32. Although the internal
representation of the data is a (s-1)-bit matrix, the cipher operates over bitstring inputs and outputs.
The mapping between a bitstring B and the corresponding bit matrix z is x[i, j| = B[i - | + j].

From an implementation viewpoint, the S-boxes and L-boxes are defined such that they can
always be executed thanks to simple operations on the rows (typically corresponding to processor

4 In this way, invalid decryption only leaks meaningless random values U*, instead of the correct tags.

words). The 2I-bit L-boxes are slightly different from (I-bit) L-boxes that were used in the original
LS-designs. As will be clear in Section 3.4, they enable a better branch number at limited cost.

In summary, Clyde-128 (illustrated in Appendix C) updates the n-bit state = by iterating Nj
steps, each of them made of two rounds (so N, = 2N;). One significant advantage of these designs
is their simplicity: they can be described in few lines, as illustrated in Algorithm 1, where y denotes
the plaintext, TK a combination of the master key K and tweak T that we call tweakey [JNP14],
W (r) are round constants, and S and L are an s-bit S-box and a 2/-bit L-box.?

Algorithm 1 TLS-design with 2/-bit L-box and s-bit S-box (n = s-1)
x <+ pudTK(0); > x is a s X [bits matrix
for 0 <o < N; do
for 0 <p<2do

r=2-0+ p; > Round index
for 0 <j<ldo
x[*,] = S(z[*, j]); > S-box Layer
for 0 <i<s/2do
(28,], x[2i + 1,%]) = L(x[24, %], z[2i + 1,%]); > L-box Layer
x < xdW(r); > Constant addition
r—c®TK(oc+1); > Tweakey addition
return z

We use SCREAM’s lightweight tweakey scheduling algorithm [GLST14]. Tt takes the n-bit key
K and the n-bit tweak T as input. The tweak is divided into n/2-bit halves: T = tg||t;. Then, three
different tweakeys are used every three steps as follows:

TK(3i) = K & (tollt1),
TK3i+1)=K & (to® t1|to),
TK(3i+2)=K® (t1]|to D t1)-

The tweakeys can also be computed on-the-fly using a simple linear function ¢, corresponding to
multiplication by a primitive element in GF(4) (such that ¢?(z) = ¢(z) @ x, and ¢3(x) = z):

o : 1’0”1’1 — (1‘0@:&)”1’0,

o =T,
dir1 = &(6:),
TK(i) = K & 6.

3.3 Shadow-512, a Multiple LS-Design

The S1P mode of operation also requires a (larger) permutation. We use a simple variant of the
LS-designs that we denote as mLS-designs (standing for multiple LS-designs) for this purpose. In
summary, mLS-designs mix multiple LS-designs thanks to an additional diffusion layer.

Such ciphers work on n = (m - s - [)-bit states, where m is the number of LS-designs considered,
the size of the S-box is s and the size of the L-box is 2. Taking similar notations as for TLS-designs,
we denote the full cipher state as x, each (s -1)-bit substate corresponding to an LS-design as a

® For regularity (in hardware implementations), we keep the linear L-box in the last round.

bundle z[b,*,+] (0 < b < m), a bundle row as z[b,i,%| (0 <1i < s) and a bundle column as z[b, %, j]
(0 < j <1). Concretely, we will consider m = 4, s = 4 and [= 32. Again, the internal representation
of the data is an (m - s -1)-bit state but the cipher operates over bitstring inputs and outputs. The
mapping between a bitstring B and a state x is x[b,i,j] = B[b-l-s+1i-1l+ j].

In summary, Shadow-512 (illustrated in Appendix C) updates the n-bit state = by iterating Nj
steps, each of them made of two rounds (A and B) that respectively apply an L-box to the rows of
each bundle independently, and a diffusion layer mixing the rows of different bundles (on top of the
S-box layer). An accurate description is given in Algorithm 2, where u denotes the input, W (r) are
round constants, S and L are an s-bit S-box and a 2{-bit L-box and D is a m-bit diffusion layer.

Algorithm 2 mLS-design with 2/-bit L-boxes and s-bit S-boxes (n =m - s-1)

T 4 >z is am X s x [bits matrix
for 0 <o < Ng do
for 0 <b<mdo > Round A
for 0 <j<ldo
x[b, %, j] = S(z[b, *, j]); > S-box Layer
for 0 <i < s/2 do
(22,], 2[2i + 1,%]) = L(x[24, %], z[2i + 1,%]); > L-box Layer
T~z dW(2-0); > Constant addition
for 0 < b < mdo > Round B
for 0 <j<ldo
x[b, *, 7] = S(z[b, , j]); > S-box Layer

for 0 <i<sdo
for 0 <j<ldo
x[*, i, j] = D(x[x,1, j]); > Diffusion Layer
r—x@®W(2- 0+1); > Constant addition

return z

3.4 Clyde-128 and Shadow-512 components

We now describe the components S, L and D and the round constants used in Clyde-128 and
Shadow-512. Both ciphers are designed to enable simple implementations based on 32-bit word-level
operations. For the S-box, we provide its circuit representation (which can be applied in parallel to
the 32 bits of a word). For the L-box and diffusion layer, we provide a sequence of 32-bit operations.
We denote the bitwise AND as @ and the left rotation of a word = by « bits as rot(z, a).

S-box. We use a variant of the 4-bit S-box used in Skinny [BJK™16], modified by replacing the
NOR gates by AND gates. It is given in Table 1, with numbers representing bitstrings encoded
in little-endian. That is, z = Y7 2" - z[i] and S(z) = >33, 2° - y[i]. Tt has linear and differential
probabilities 272 and algebraic degree 3. Concretely, y = S(z) can be implemented serially with

r 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sz) 0 8 1 15 2 10 7 9 4 13 5 6 14 3 11 12

Table 1: S-box in table representation.

4 AND gates and 4 XOR gates in the direct and inverse directions. In the direct sense, it has an
AND depth of two and allows computing the two first (and two last) AND gates in parallel:

The S-box is illustrated in Appendix D and its inverse is given in Appendix E.

L-box. We use an interleaved L-box that applies jointly to pairs of 32-bit words and has branch
number 16 over those pairs. Denoting the two words on which it is applied as x and y:

/ circ(0xec045008) - zT @ circ(0x36000£60) - yT
(a,0) = U(z,y) = | _ :
circ(0x1b0007b0) - T & circ(0xec045008) - yT

where circ denotes the circulant matrix whose first line is given in hexadecimal notation, so that the
number b = Z?io 2ib; corresponds to the row vector (bo, ..., bs1).

Concretely, this L-box can be efficiently implemented (in the direct and inverse directions)
thanks to six word-level (left) rotations and six 32-bit XORs per word as follows:

e a=x @ rot(x,12);
o b=y drot(y,12);

e a=a®rot(a,3);

b="ba® rot(b, 3);

e a=a®rot(z,17);

b="b®rot(y,17);
e ¢c=adrot(a,31);

(
= b® rot(b, 31);

e a = a®drot(d,26);
e b="bdrot(c,25);
e a=a®rot(c, 15);
o b="bdrot(d,15);

The L-box is illustrated in Appendix D and its inverse is given in Appendix F. As previously
mentioned, such an interleaved L-box differs from the one used in the original LS-designs (which
works on [bits rather than 2[). The motivation for this tweak is a better branch number at limited
implementation cost. Precisely, the best known non-interleaved 32-bit L-box has branch number 12
and we reach 16 with this solution. It implies that S-boxes must have an even number of bits.

Diffusion layer (for Shadow-512 only). We use the diffusion layer of the low-energy cipher
Midori [BBI*15], which is based on a near-MDS 4 x 4 matrix defined as follows:

(a7 b7 C7d) = D(w7x7 y7 Z) =

—_— = = O

1
0
1
1

_ O = =
O =
N e 8 8

It has branch number 4 (an MDS diffusion would provide 5), is illustrated in in Appendix D, and
can be efficiently implemented with six 32-bit XORs as a circuit with gate depth 2 as follows:

o u=wdu;
e v=yYDz;
e g —=1xDU;
e b=wdv;
e c=udz;
e d=udy;
Round constants. Round constants for Clyde-128 are generated from a 4-bit LFSR. Each state

of the LFSR is used as the constant for a single round. The four bits are XORed with the first bit
of the four state rows. Precisely, the round constants are:

e Round 0: (1,0,0,0); e Round 1: (0,1,0,0); e Round 2: (0,0,1,0); e Round 3: (0,0,0,1);
e Round 4: (1,1,0,0); e Round 5: (0,1,1,0); e Round 6: (0,0,1,1); e Round 7: (1,1,0,1);
e Round 8: (1,0,1,0); e Round 9: (0,1,0,1); e Round 10: (1,1,1,0); e Round 11: (0,1,1,1);

For Shadow-512, we take exactly the same constants, but for each bundle b =0,...,m — 1, we add
the round constant on the bth bit of the four bundle rows, that is x[b, *, b].

4 Security analysis and claims

Our claims are in the single-key setting. Related-key attacks should be avoided at the protocol level.

4.1 The S1P mode of operation

The black box security analysis of S1P is proven under the assumptions that the TBC is a secure
tweakable strong pseudo-random permutation and that the permutation is a random permutation.
CIML?2 is proven under the additional assumption that the long-term key of the TBC cannot be
leaked (but all other intermediate values can be leaked in full). CCAmL1 security is proven under a
bounded leakage assumption. We refer to [GPPS19] for details on these assumptions and proofs.

Based on the above, the single-user security claims of the mode are summarized in Table 2.
These bounds imply that the leakage security of Spook depends on the concrete strength of its
implementation. Informally, the CIML2 bound guarantees that message integrity reduces to the
side-channel security of the TBC. The best forgery attack is a Differential Power Analysis (DPA)
against Clyde-128 — the complexity of which is expected to be smaller than 1272 The CCAmL1

analysis is more subtle, but essentially guarantees that the confidentiality of long messages reduces
to the confidentiality of single-block messages. The best attacks are then a DPA against Clyde-128
(as for CIML2) and a Simple Power Analysis (SPA) against the ephemeral secrets (i.e., the secret
part of the permutation state), the complexity of which is expected to be smaller than on/2 6

Security model security (bits)
Plaintext confidentiality with nonce misuse-resilience (mR) n —logn
Ciphertext integrity with misuse-resistance (MR) but no leakage n —logn
Plaintext confidentiality with encryption leakages and mR ~n/2
Ciphertext integrity with full leakages and MR ~n—logn

Table 2: Single-user security claims.

The security claims for the multi-user variant of S1P are summarized in Table 3.

Security model security (bits) # of users
Plaintext confidentiality with nonce misuse-resilience (mR) n — 2logn ~ 202
Ciphertext integrity with misuse-resistance (MR) but no leakage n —2logn ~ QN2
Plaintext confidentiality with encryption leakages and mR ~n/2 A QN2
Ciphertext integrity with full leakages and MR ~n—2logn ~ QN2

Table 3: Multi-user security claims.

Note that no additional restrictions are imposed on the message length. The security bounds in
both tables only depend on the total number of message and associated data blocks to encrypt.

4.2 The Clyde-128 (tweakable) block cipher

The security of Clyde-128 against linear and differential attacks can be analyzed thanks to the
wide-trail strategy [DRO1]. Two rounds activate 16 S-boxes and the linear/differential probability
of our S-box is 272. As a result, eight rounds (four steps) lead to a bound on the probability of the
best linear/differential characteristics of (272)%16 = 27128 Our recommended parameters add four
rounds (two steps) in order to prevent improvements of these standard attacks.

According to the upper bound in [BCC11], at least five rounds of Clyde-128 are necessary to
reach the maximum algebraic degree. We expect that the recommended twelve rounds (six steps)
should prevent risks of algebraic cryptanalysis [CP02] and related attacks (e.g., cube [DS09] or
division property [Tod15]) — our experiments in this regard did not reveal any weaknesses.

Besides, and following the security arguments recently put forward in [BCLR17], the round
constants are chosen so as to maximize the dimension of the smallest invariant subspace over the
linear layer that contains all round constants. To achieve this, we need at least ten rounds. This
ensures that no invariants exist simultaneously for the S-box layer and the L-box layer.

Note that while Clyde-128 is built from the TLS-designs introduced in [GLS™14] and analyzed as
an ideal TBC in [GPPS19], the way it is used in Spook implies that its tweak input is either constant
(as a zero vector or a public value) or pseudo-random and out of adversarial control. So while a
standard TBC would require security against chosen-tweak attacks, the number of rounds selected

5 The birthday bound for CCAmL1 could possibly be improved. There is no matching attack we are aware of.

for Clyde-128 only corresponds to single-key and random-tweak security, which is the minimum
required for the analysis of the S1IP mode of operation to hold. Chosen-tweak security for Clyde-128
could be obtained by doubling the number of rounds, following the approach in [GPPR11].

4.3 The Shadow-512 permutation

The exact requirements for the Shadow-512 permutation are more difficult to specify.

A minimum is to reach 128-bit security against linear cryptanalysis. This can be analyzed
by considering the super S-box structure of Shadow-512. Two rounds activate 16 S-boxes and
four rounds activate 16 x 4 S-boxes thanks to the branch number of the diffusion layer. Hence, a
probability bound of 2712® for the best linear characteristic is reached after four rounds.

Another minimum requirement is to reach an algebraic degree 128. According to the upper
bound in [BCC11], this can be reached after at least five rounds of Shadow-512.

Besides, one important requirement for the permutation in the analysis of the S1P mode of
operation is that it ensures collision resistance for the 255 bits that are used to generate the tag.
Hence, a more specific requirement is to prevent truncated differentials with probability larger than
27128 for those 255 bits. A conservative heuristic for this purpose is to require that no differential
characteristic has probability better than 27385, which happens after twelve rounds (six steps).

5 Primary candidate and variants

Underlying primitives. We consider two sets of parameters for the Clyde-128 TBC and Shadow-
512 permutation. The recommended parameters are 12 rounds for Clyde-128 and 12 rounds for
Shadow-512. We additionally provide aggressive parameters, with 12 rounds for Clyde-128 and
8 rounds for Shadow-512; as an interesting target for cryptanalysis. Note that our reference
implementations and test vectors are based on the recommended parameters.

Full algorithm. We denote as Spook[128,512,su] the AEAD algorithm operating the S1P
mode in the single user setting with Clyde-128 as TBC and Shadow-512 as permutation, and
as Spook[128, 512, mu] its multi-user version. Based on these notations, we define our:

e Primary candidate as Spook[128, 512, su] with recommended parameters.
e First variant as Spook[128, 512, mu| with recommended parameters.

We recall that the only difference between the single-user and multi-user versions is that the public
tweak p is stuck at zero in the first case (i.e., the key is limited to 128 secret bits), and picked up at
random in the second one (i.e., the key is made of 128 secret bits and 126 public bits).

We additionally define two versions of Spook with a 384-bit state. They are obtained by turning
the 512-bit permutation into a 384-bit one. We do so by defining Shadow-384 as a 3LS-design (rather
than a 4LS-design) where the diffusion layer (a, b, c) = D(z,y, 2) is specified as:

e a=xdYD z; e b=udz ec=xdY;

The rest of the permutation and all the other elements of the mode are adapted so that r = 128,
with the same number of rounds for the recommended and aggressive parameters, leading to our:

e Second variant as Spook[128, 384, su] with recommended parameters.

e Third variant as Spook[128, 384, mu] with recommended parameters.

10

6 Design trade-offs: advantages and limitations

Spook is an AEAD algorithm with state-of-the-art guarantees in the black box setting. It ensures
beyond-birthday security with respect to the size of its long-term key, can be extended to multi-user
security with a public tweak, and provides nonce misuse-resilience in the sense of Ashur et al [ADL17].
Thanks to its one-pass structure, Spook should allow efficient implementations on a wide range
of platforms. Its design is in particular well-suited to 32-bit software implementations (thanks to
an intensive exploitation of 32-bit word-level operations), and to dedicated hardware and FPGA
implementations (thanks to the low gate complexity of its underlying components).

Spook provides excellent opportunities to mitigate physical attacks efficiently thanks to its
leakage-resistant features. In particular, the general rationale behind its design enables leveled
implementations, where the Clyde-128 TBC is well protected against side-channel attacks and the
Shadow-512 (or Shadow-384) permutation is implemented with cheaper protections (or even no protec-
tions at all). It is in the specific contexts where physical attacks are an important concern that Spook
is expected to exhibit significant performance gains compared to modes without leakage-resistant
(or resilient) features. Concretely, protecting the TBC can be achieved thanks to the masking
countermeasure, both in hardware [GMK17] and in software [GR17]. For this purpose, Clyde-128 is
designed both with low AND complexity (as previous LS-designs) and low AND depth (which is
important to limit the latency of so-called glitch-free implementations [NRS11, FGP18]). As for the
permutation, low-latency / low-energy implementations in the sense of [KDH'12] are natural candi-
dates in hardware, while some minimum countermeasures to prevent SPA (e.g., low-order masking,
or time randomization [VMKS12]) should be sufficient in software. For this purpose, the Shadow-512
(or Shadow-384) permutation is designed with low-latency components. Leveled implementations of
Spook can also benefit from pre-computing the (expensive) generation of fresh seeds.

The main price to pay for the leakage-resistant features of Spook is that it suffers from some
overheads in case of short messages. This seems unavoidable in any mode leveraging a re-keying
process. However, and as evaluated in [BGPT19], these overheads are amortized as soon as the data
to process is a few blocks long, and the gains of leveled implementations can reach factors 10 to 100
(e.g., in energy) if a high physical security level is required by an application.

A secondary drawback is the need of two primitives (a TBC and a permutation), which
implies a larger cost (i.e., area) in hardware. However, this drawback vanishes for the intended
performance metric (i.e., the energy per bit) and case studies, since (i) the Clyde TBC is only
used for initialization and finalization and can be switched off for the rest of the computations, and
(@) leveled implementations require implementations with different physical security levels anyway.
Also, in case uniformly (un)protected implementations are considered, the use of the same S-box
and L-box in Clyde-128 and Shadow-512 (or Shadow-384) should allow resource sharing.

Eventually, we list a couple of additional interesting features of Spook.

First, the S1IP mode is compatible with solutions for the encryption of long messages segmented
into several smaller packets, as for example proposed by Bertoni et al. [BDPA11] and formalized by
Hoang et al. [HRRV15]. Such a “session feature” can be used as a partial tagging mechanism which
allows the decryption of long messages when only a limited memory is available (i.e., smaller than
the size of the message), and saves the execution of one TBC per segment (i.e., the highly protected
part and therefore more expensive part in a leveled implementation of S1P). As such modes are not
directly compatible with the NIST API, we leave their discussion for a separate report.

Second, and since leveraging a re-keying process, the Spook algorithm inherently provides good
resistance against various Differential Fault Attacks, as discussed in [MSGR10, DEM*17]).

11

Finally, an inverse-free variant of Spook can be obtained by performing the tag verification
in the direct sense. It can only satisfy CIML1 in the unbounded leakage model, yet can provide
good concrete security against bounded leakages if the tag verification is sufficiently protected (e.g.,
masked). It is also the natural way to implement Spook if side-channel attacks are not a concern.
In case such an inverse-free variant is considered, the tag of Spook can additionally be truncated,
leading to a standard tradeoff between the mode’s integrity guarantees and performance.

More discussions about the high-level design choices and security claims of the Spook authenti-
cated encryption scheme, together with news, software and hardware (unprotected and masked)
implementations, mathematical and side-channel cryptanalysis challenges and other additional
resources, can be found on the algorithm website https://www.spook.dev/

Acknowledgments. Gaétan Cassiers, Thomas Peters and Francois-Xavier Standaert are respec-
tively PhD Student, Post-Doctoral Researcher and Senior Research Associate of the Belgian Fund
for Scientific Research (FNRS-F.R.S.). This work has been funded in part by EU and the Walloon
Region through the ERC Project 724725 (SWORD), the FEDER Project USERMedia (convention
501907-379156), the H2020 project REASSURE and the Wallinov TRUSTEYE project.

References

[ADL17] Tomer Ashur, Orr Dunkelman, and Atul Luykx. Boosting Authenticated Encryption
Robustness with Minimal Modifications. In Jonathan Katz and Hovav Shacham, editors,
Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part III,
volume 10403 of LNCS, pages 3-33. Springer, 2017.

[BBI"15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga
Hiwatari, Toru Akishita, and Francesco Regazzoni. Midori: A Block Cipher for Low
Energy. In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology -
ASTACRYPT 2015 - 21st International Conference on the Theory and Application of
Cryptology and Information Security, Auckland, New Zealand, November 29 - December
8, 2015, Proceedings, Part II, volume 9453 of LNCS, pages 411-436. Springer, 2015.

[BCC11] Christina Boura, Anne Canteaut, and Christophe De Canniére. Higher-Order Differential
Properties of Keccak and Luffa. In Antoine Joux, editor, Fast Software Encryption
- 18th International Workshop, FSE 2011, Lyngby, Denmark, February 13-16, 2011,
Revised Selected Papers, volume 6733 of LNCS, pages 252—269. Springer, 2011.

[BCLR17] Christof Beierle, Anne Canteaut, Gregor Leander, and Yann Rotella. Proving Resistance
Against Invariant Attacks: How to Choose the Round Constants. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017 - 37th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 20-24, 2017,
Proceedings, Part II, volume 10402 of LNCS, pages 647-678. Springer, 2017.

[BDPA11] Guido Bertoni, Joan Daemen, Michaél Peeters, and Gilles Van Assche. Duplexing the
Sponge: Single-Pass Authenticated Encryption and Other Applications. In Ali Miri and
Serge Vaudenay, editors, Selected Areas in Cryptography - 18th International Workshop,
SAC 2011, Toronto, ON, Canada, August 11-12, 2011, Revised Selected Papers, volume
7118 of LNC'S, pages 320-337. Springer, 2011.

12

https://www.spook.dev/

[BGP*19]

[BJK*16]

[BKP+18]

[BPPS17]

[CPO2]

[DEM*17]

[DMA17]

[DRO1]

[DS09]

[FGPT18]

Francesco Berti, Chun Guo, Olivier Pereira, Thomas Peters, and Francois-Xavier
Standaert. TEDT, a Leakage-Resilient AEAD Mode for High (Physical) Security
Applications. TACR Cryptology ePrint Archive, 2019:137, 2019.

Christof Beierle, Jérémy Jean, Stefan Kolbl, Gregor Leander, Amir Moradi, Thomas
Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. The SKINNY family of block
ciphers and its low-latency variant MANTIS. In Matthew Robshaw and Jonathan
Katz, editors, Advances in Cryptology - CRYPTO 2016 - 36th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,
Part II, volume 9815 of LNCS, pages 123—-153. Springer, 2016.

Francesco Berti, Frangois Koeune, Olivier Pereira, Thomas Peters, and Francgois-Xavier
Standaert. Ciphertext Integrity with Misuse and Leakage: Definition and Efficient
Constructions with Symmetric Primitives. In Jong Kim, Gail-Joon Ahn, Seungjoo
Kim, Yongdae Kim, Javier Lépez, and Taesoo Kim, editors, Proceedings of the 2018 on
Asia Conference on Computer and Communications Security, AsiaCCS 2018, Incheon,
Republic of Korea, June 04-08, 2018, pages 37-50. ACM, 2018.

Francesco Berti, Olivier Pereira, Thomas Peters, and Francois-Xavier Standaert. On
Leakage-Resilient Authenticated Encryption with Decryption Leakages. TACR Trans.
Symmetric Cryptol., 2017(3):271-293, 2017.

Nicolas Courtois and Josef Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations. In Yuliang Zheng, editor, Advances in Cryptology - ASTACRYPT
2002, 8th International Conference on the Theory and Application of Cryptology and
Information Security, Queenstown, New Zealand, December 1-5, 2002, Proceedings,
volume 2501 of LNCS, pages 267—-287. Springer, 2002.

Christoph Dobraunig, Maria Eichlseder, Stefan Mangard, Florian Mendel, and Thomas
Unterluggauer. ISAP - Towards Side-Channel Secure Authenticated Encryption. IACR
Trans. Symmetric Cryptol., 2017(1):80-105, 2017.

Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-State Keyed Duplex with
Built-In Multi-user Support. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances
in Cryptology - ASTACRYPT 2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part II, volume 10625 of LNCS, pages 606—637. Springer, 2017.

Joan Daemen and Vincent Rijmen. The Wide Trail Design Strategy. In Bahram Honary,
editor, Cryptography and Coding, 8th IMA International Conference, Cirencester, UK,
December 17-19, 2001, Proceedings, volume 2260 of LNCS, pages 222-238. Springer,
2001.

Itai Dinur and Adi Shamir. Cube Attacks on Tweakable Black Box Polynomials. In
Antoine Joux, editor, Advances in Cryptology - EUROCRYPT 2009, 28th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Cologne, Germany, April 26-30, 2009. Proceedings, volume 5479 of LNCS, pages 278-299.
Springer, 2009.

Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga, and
Frangois-Xavier Standaert. Composable Masking Schemes in the Presence of Physical

13

[GLS*14]

[GLSV14]

[GMK17]

[GPPR11]

[GPPS18]

[GPPS19]

[GR17]

[HRRV15]

[INP14]

Defaults & the Robust Probing Model. TACR Trans. Cryptogr. Hardw. Embed. Syst.,
2018(3):89-120, 2018.

Vincent Grosso, Gagtan Leurent, Francois-Xavier Standaert, Kerem Varici, rangois

Durvaux, Lubos Gaspar, and Stéphanie Kerckhof. SCREAM & iSCREAM Side-Channel
Resistant Authenticated Encryption with Masking, 2014.

Vincent Grosso, Gaétan Leurent, Francois-Xavier Standaert, and Kerem Varici. LS-
Designs: Bitslice Encryption for Efficient Masked Software Implementations. In Carlos
Cid and Christian Rechberger, editors, Fast Software Encryption - 21st International
Workshop, FSE 2014, London, UK, March 3-5, 2014. Revised Selected Papers, volume
8540 of LNCS, pages 18-37. Springer, 2014.

Hannes Grof3, Stefan Mangard, and Thomas Korak. An Efficient Side-Channel Protected
AES Implementation with Arbitrary Protection Order. In Helena Handschuh, editor,
Topics in Cryptology - CT-RSA 2017 - The Cryptographers’ Track at the RSA Conference
2017, San Francisco, CA, USA, February 14-17, 2017, Proceedings, volume 10159 of
LNCS, pages 95-112. Springer, 2017.

Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The LED
Block Cipher. In Bart Preneel and Tsuyoshi Takagi, editors, Cryptographic Hardware
and Embedded Systems - CHES 2011 - 13th International Workshop, Nara, Japan,
September 28 - October 1, 2011. Proceedings, volume 6917 of LNCS, pages 326-341.
Springer, 2011.

Chun Guo, Olivier Pereira, Thomas Peters, and Francois-Xavier Standaert. Authenti-
cated Encryption with Nonce Misuse and Physical Leakages: Definitions, Separation
Results, and Leveled Constructions. IACR Cryptology ePrint Archive, 2018:484, 2018.

Chun Guo, Olivier Pereira, Thomas Peters, and Francois-Xavier Standaert. Towards
Low-Energy Leakage-Resistant Authenticated Encryption from the Duplex Sponge
Construction. TACR Cryptology ePrint Archive, 2019:133, 2019.

Dahmun Goudarzi and Matthieu Rivain. How Fast Can Higher-Order Masking Be
in Software? In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances
in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4,
2017, Proceedings, Part I, volume 10210 of LNCS, pages 567-597, 2017.

Viet Tung Hoang, Reza Reyhanitabar, Phillip Rogaway, and Damian Vizar. Online
Authenticated-Encryption and its Nonce-Reuse Misuse-Resistance. In Rosario Gennaro
and Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015 - 35th Annual
Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part I, volume 9215 of LNCS, pages 493-517. Springer, 2015.

Jérémy Jean, Ivica Nikolic, and Thomas Peyrin. Tweaks and Keys for Block Ciphers:
The TWEAKEY Framework. In Palash Sarkar and Tetsu Iwata, editors, Advances
i Cryptology - ASTACRYPT 2014 - 20th International Conference on the Theory
and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014, Proceedings, Part II, volume 8874 of LNCS, pages 274-288.
Springer, 2014.

14

[KDH*12]

[LMR15]

[MMGD17]

[MSGR10]

[NRS11]

[PSV15]

[RS06]

[RSWO18]

[StasE]

Stéphanie Kerckhof, Francois Durvaux, Cédric Hocquet, David Bol, and Francois-
Xavier Standaert. Towards Green Cryptography: A Comparison of Lightweight Ciphers
from the Energy Viewpoint. In Emmanuel Prouff and Patrick Schaumont, editors,
Cryptographic Hardware and Embedded Systems - CHES 2012 - 14th International
Workshop, Leuven, Belgium, September 9-12, 2012. Proceedings, volume 7428 of LNCS,
pages 390-407. Springer, 2012.

Gregor Leander, Brice Minaud, and Sondre Rgnjom. A Generic Approach to Invariant
Subspace Attacks: Cryptanalysis of Robin, iISCREAM and Zorro. In Elisabeth Oswald
and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual
International Conference on the Theory and Applications of Cryptographic Techniques,
Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of LNCS, pages
254-283. Springer, 2015.

Elodie Morin, Mickael Maman, Roberto Guizzetti, and Andrzej Duda. Comparison
of the Device Lifetime in Wireless Networks for the Internet of Things. IEFEE Access,
5:7097-7114, 2017.

Marcel Medwed, Francois-Xavier Standaert, Johann Grofischédl, and Francesco Regaz-
zoni. Fresh Re-keying: Security against Side-Channel and Fault Attacks for Low-Cost
Devices. In Daniel J. Bernstein and Tanja Lange, editors, Progress in Cryptology -
AFRICACRYPT 2010, Third International Conference on Cryptology in Africa, Stellen-
bosch, South Africa, May 3-6, 2010. Proceedings, volume 6055 of LNCS, pages 279-296.
Springer, 2010.

Svetla Nikova, Vincent Rijmen, and Martin Schlaffer. Secure Hardware Implementation
of Nonlinear Functions in the Presence of Glitches. J. Cryptology, 24(2):292-321, 2011.

Olivier Pereira, Francois-Xavier Standaert, and Srinivas Vivek. Leakage-Resilient
Authentication and Encryption from Symmetric Cryptographic Primitives. In Indrajit
Ray, Ninghui Li, and Christopher Kruegel, editors, Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, Denver, CO, USA,
October 12-16, 2015, pages 96-108. ACM, 2015.

Phillip Rogaway and Thomas Shrimpton. A Provable-Security Treatment of the Key-
Wrap Problem. In Serge Vaudenay, editor, Advances in Cryptology - EUROCRYPT 2006,
25th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, St. Petersburg, Russia, May 28 - June 1, 2006, Proceedings, volume 4004
of LNCS, pages 373-390. Springer, 2006.

Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. IoT Goes Nuclear:
Creating a Zigbee Chain Reaction. IEEE Security & Privacy, 16(1):54-62, 2018.

Francois-Xavier Standaert. Towards and Open Approach to Secure Cryptographic
Implementations (Invited Talk). In Yuval Ishai and Vincent Rijmen, editors, Advances
in Cryptology - EUROCRYPT 2019 - 38th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Darmstadt, Germany, May 19-23,
2019, Proceedings, Part I, volume 11476 of Lecture Notes in Computer Science, page Xv.
Springer, 2019, https://www.youtube.com/watch?v=KdhrsuJT1sE.

15

https://www.youtube.com/watch?v=KdhrsuJT1sE

[TLS16]

[Tod15]

[TOS10]

[VMKS12]

Yosuke Todo, Gregor Leander, and Yu Sasaki. Nonlinear Invariant Attack - Practical
Attack on Full SCREAM, iSCREAM, and Midori64. In Jung Hee Cheon and Tsuyoshi
Takagi, editors, Advances in Cryptology - ASIACRYPT 2016 - 22nd International
Conference on the Theory and Application of Cryptology and Information Security,
Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part II, volume 10032 of LNCS,
pages 3-33, 2016.

Yosuke Todo. Structural evaluation by generalized integral property. In Elisabeth
Oswald and Marc Fischlin, editors, Advances in Cryptology - EUROCRYPT 2015 -
34th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, volume 9056 of
LNCS, pages 287-314. Springer, 2015.

Eran Tromer, Dag Arne Osvik, and Adi Shamir. Efficient Cache Attacks on AES, and
Countermeasures. J. Cryptology, 23(1):37-71, 2010.

Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and Frangois-Xavier
Standaert. Shuffling against Side-Channel Attacks: A Comprehensive Study with
Cautionary Note. In Xiaoyun Wang and Kazue Sako, editors, Advances in Cryptology -
ASIACRYPT 2012 - 18th International Conference on the Theory and Application of
Cryptology and Information Security, Beijing, China, December 2-6, 2012. Proceedings,
volume 7658 of LNCS, pages 740-757. Springer, 2012.

16

A S1P mode of operation: specifications

Notation. For a bitstring S = by .. .b,,—1, we denote the bitstring of first bits by ...b,—1 as S[: x]
and we denote the bitstring of last bits by ...by—1 as S[z :].

Algorithm 3 S1P[E, n|.Enc(A, M, N, K||P).

L= [[M|/r], A< [|A]/r];
. Parse M as M[0]|...||M[¢ — 1], with |[M[0]| =...=|M[{ —2]|=rand 1 < |M[{—1]| <
. Parse A as A[0]]|...[|A[A — 1], with |A[0]| = ... =|A[A—2]|=rand 1 < |A[XA —1]| < r;

. IV <« P||0||N||0* (with size r + ¢ — n);
. Sy« w(IV||B);
. if A > 1 then
(a) fori=0to A\ —2do
o S; — S; @ (A[i]]|0°);
e Siy1 < m(S);
(b) if |[A]A —1]| < r then

o AA—1] + A[X—1]||10m~AR-I=L
o Sh_1 < Sa1 @ (07]|01]j0°2);

(c) Sa-1 ¢ Sxr-1 @ (A[A = 1][|0%);
(d) Sx < m(Sx-1);

P
3
4. B+ ERIO(NV0%);
5
6
7

8. if £ > 1 then
(a) Sx < Sx @ (07]]10][0°72);
(b) for i=0to £ —2 do
o j i+ N\
o Cli] + Sj[: r] ® M[i];
o S; « CI[i]||S;[r :;
o Siy1 — m(S));
(c) Cl—1] + Sxyo1[: |M[¢ —1]|] & M[¢ —1];
(d) if |C[¢ — 1]| < r then
o Sxpemt ¢ Snaer ® (01U 10719 fon]joe2);
e Shiv—1 < Clt —1]||Srse—1[IC[L = 1]]);
(e) else Syip_1 + C[¢ —1]||Srge—1[r :;
(f) Sxge = m(Sxge-1);

9. UHV — S)\Jrg[: 2n — 1];
1%
10. Z « ExIND;
11. e« C[0])|...|IC[¢ — 1], C «+ ¢||Z;
12. return C;

17

Algorithm 4 S1P[E, 71].Dec(A, C, N, K||P).

1 ¢« €270 X« 14]/7];

Parse C as C[0]||...||C[¢ —1]||Z, with |C[0]] = ... =|C[¢{ =2]| =r, 1 <|C[¢ —1]| < r and
12| = n;

Parse A as A[0]||...[|A[A — 1], with |A]0]| = ... =|A[A=2]|=rand 1 < |A[A —1]| < r;

o

B EQ(N]0°);
IV < PJ|0||N||0* (with size r + ¢ — n);
So < w(IV||B);
if A > 1 then
(a) fori=0to A—2do
o S« S;® (A[i]]j0%);
o Sit1 < m(Si);
(b) if |[A[A —1]| < r then
o A[N + A — 1]|1o7— AR,
e Sy Sxh_1 @ (07]j01]0°72);
(€) Sa—1 < Sxh_1 @ (A[X — 1]]|0%);
(d) Sx = m(Sx-1);

o otk W

8. if > 1 then
(a) Sx < Sx @ (07[[10][0°72);
(b) for i =0 to ¢ —2 do
o j i+ A\
o MJi] < S;[: r] @ CVil;
o Sj « CllllS;lr:];
o Sjt1 « 7(S5;);
(¢) Ml —1] < Sxyea[: [ClE = 1] & C[€ - 1];
(d) if [C[¢ = 1]| < 7 then
© Sxrrot + Sipemr @ (0101 0]j0°);
o Sxpe-1 4 Ol = 1||Srea[IC[1 = 1]] 2]
(¢) else Syyp1 < ClU—1][Sxe-alr]
(£) Sxte < m(Sxge-1);

9. U||V 4= Sxtel: 2n —1];

10. U* « (Ex™M 7 (2);

11. if U # U* then return 1;

12. else if ¢ > 0 then return M0]|...||M[¢— 1];

13. else return true;

18

B Cases of the S1P mode of operation

MO [0 S
AL0] Al N [0] [0]
* N I N e I : v
Pl|0[INT|O —D N 4 z PlI0]|NT|O n
s . . z 14 N " = 4
n—1 1 n—1 1
B B Yan
N[|0* *
I n c r+c—-2n+1 Mo n \|J r+c—-2n+1
10|02
P||0 P||0
(a) only AD, last block full. (b) full single-block message.
s M0l —Pp— cro S
A[0] A[1]]]10* 1 10}
N I N o |
" u * v
Pl[0]IN]|0 —D D n z PI[0]|N]]0 s n
S = T v S 7 10* b \4
n—1 1 n—-1 1
B B
= yanY - JAR
N||O
N”O n c r+c-2n+1 I n r+c-2n+1
011|072 11]j0°2
P10 P||0
(c) only AD, last block partial. (d) partial single-block message.
M[0] C10] Ml1] Cl1] M(2] 2] N
U
PlI0]IN]]0 Z
n
s 7 n z & v
n—1 1
B Jan
N||0*
L Y1 L L e
1010°2
P||0
(e) no AD, last block full.
Cl1] M[2] 2] N
|M121]
v z
n
e 2 14
T 10 n—1 1
N
\lJ rdc—2n+1

P||0

(e) no AD, last block partial.

Figure 2: Different cases of the S1IP mode of operation.

19

C Clyde-128 and Shadow-512 illustrations

128-bit state 32 (parallel) S-boxes 2 L-boxes constant addition —

aNnod

4 x 32 // S-boxes

4 x 2 L-boxes

4 x 32// S-boxes constant addition

4 D-boxes

constant addition

32 (parallel) S-boxes 2 L-boxes constant addition key addition

\ 4

Figure 3: Round and step of Clyde-128: high-level view.

128-bit bundle 128-bit bundle 128-bit bundle 128-bit bundle
= =
ko)
2
~ z
S
>
— —
ko)
2
— =
]
W
_J _J

Figure 4: Round and step of Shadow-512: high-level view.

20

d3als

d3als

D Clyde-128 and Shadow-512 components

®§®§®X®

Figure 5: 32 parallel executions of the Clyde-128 and Shadow-512 S-box.

Figure 7: Shadow-512 diffusion layer.

21

E Inverse S-box implementation

e y[3] = (=[0] © z[1]) @ 2[2];
e y[0] = (z[1] © y[3]) @ =[3];
 y[1] = (y[3] © y[0]) ® [0];
e y[2] = (y[0] © y[1]) ® x[1];

F Inverse L-box implementation
e a=x @ rot(x,25);
e b=yDrot(y,25);
(

e c=x drot(a,31);

d =y @ rot(b, 31);

¢ = c @ rot(a, 20);
d = d @ rot(b, 20);

e a=c®rot(c,31

(¢, 31);
e b=ddrot(d,31);
e c=cProt(h,26);
e d=d®rot(a,25)
a=a®rot(c, 17);
b="b®rot(d,17);
a = rot(a, 16);
b = rot(b, 16);

I

22

	Corresponding submitter
	Design rationale and motivation
	Specifications
	The S1P mode of operation
	Clyde-128, a Tweakable LS-Design
	Shadow-512, a Multiple LS-Design
	Clyde-128 and Shadow-512 components

	Security analysis and claims
	The S1P mode of operation
	The Clyde-128 (tweakable) block cipher
	The Shadow-512 permutation

	Primary candidate and variants
	Design trade-offs: advantages and limitations
	S1P mode of operation: specifications
	Cases of the S1P mode of operation
	Clyde-128 and Shadow-512 illustrations
	Clyde-128 and Shadow-512 components
	Inverse S-box implementation
	Inverse L-box implementation

