
COMET: COunter Mode Encryption with authentication Tag

Designers/Submitters:

Shay Gueron1,2, Ashwin Jha3, Mridul Nandi3

{shay.gueron,ashwin.jha1991,mridul.nandi}@gmail.com

1University of Haifa, Israel
2Amazon Web Services Inc., Seattle, USA
3Indian Statistical Institute Kolkata, India

September 26, 2019

mailto:shay.gueron@gmail.com,ashwin.jha1991@gmail.com,mridul.nandi@gmail.com

1 Specification

COunter Mode Encryption with authentication Tag, or COMET in abbreviation, is a block cipher mode of
operation that provides authenticated encryption with associated data (henceforth “AEAD”) functionality.
At a very high level, it can be viewed as a mixture of CTR [1] and Beetle [2, 3] modes of operation. In
this section we provide complete specification of the COMET family of AEAD ciphers. We first explain the
COMET mode of operation, and then describe our concrete submissions based on this mode.

1.1 Notations and Conventions

We fix positive even integers n, r, κ, and t to denote the block size, nonce size, key size, and tag size,
respectively in bits. We fix p = κ/2. IC-n/κ denotes a block cipher family IC, parametrized by the block
length n and key length κ. We use {0, 1}+ and {0, 1}n to denote the set of all non-empty (binary) strings,
and n-bit strings, respectively. ⊥ denotes the empty string and {0, 1}∗ = {0, 1}+ ∪ {⊥}. For all practical
purposes: we use little-endian format of indexing, and assume all binary strings are byte-oriented, i.e. belong
in ({0, 1}8)∗. For any string B ∈ {0, 1}+, |B| denotes the number of bits in B, and for 0 ≤ i ≤ |B| − 1, bi
denotes the i-th bit of B, i.e. B = b|B|−1 · · · b0. For B ∈ {0, 1}+, (Bℓ−1, . . . , B0)

n← B, denotes the n-bit block
parsing of B into (Bℓ−1, . . . , B0), where |Bi| = n for 0 ≤ i ≤ ℓ− 2, and 1 ≤ |Bℓ−1| ≤ n. For A,B ∈ {0, 1}+,
and |A| = |B|, A⊕ B denotes the “bitwise XOR” operation on A and B. For A,B ∈ {0, 1}+, A‖B denotes
the “string concatenation” operation on A and B. For any B ∈ {0, 1}+ and a non-negative integer s, B ≪ s
and B ≪ s denote the “left shift by s” and “circular left shift by s” operations on B, respectively. The
notations for right shift and circular right shift are analogously defined using ≫ and ≫, respectively.

The set {0, 1}p can be viewed as the finite field F2p consisting of 2p elements. We interchangeably think
of an element B ∈ F2p in any of the following ways: (i) as a p-bit string bp−1 . . . b1b0 ∈ {0, 1}p; (ii) as a
polynomial B(x) = bp−1x

p−1+ bp−2x
p−2+ · · ·+ b1x+ b0 over the field F2; (iii) a non-negative integer b < 2p;

(iv) an abstract element in the field. Addition in F2p is just bitwise XOR of two p-bit strings, and hence
denoted by ⊕. P (x) denotes the primitive polynomial used to represent the field F2p , and α denotes a fixed
primitive element in this representation. The multiplication of A,B ∈ F2p is defined as A⊙B := A(x) ·B(x)
(mod P (x)), i.e. polynomial multiplication modulo P (x) in F2. For any B ∈ F2p , multiplication with α is
computationally efficient. We demonstrate this for p = 64, as we will fix κ = 128 in our submissions. For
p = 64, P (x) = x64 + x4 + x3 + x+1 is a primitive polynomial, and we let α to denote the primitive element
2 ∈ F264 . Then for any B ∈ F264 , we have

A⊙ α =

{

A≪ 1 if a|A|−1 = 0,

(A≪ 1)⊕ 05911011 if a|A|−1 = 1.

1.2 Parameters

COMET is primarily parameterized by the block size n of the underlying block cipher, where n ∈ {64, 128}.
In other words we allow block ciphers with 64-bit and 128-bit block sizes. We simply write COMET-n to
denote COMET with the particular choice of n. The secondary parameters are set according to the value of
n in the following manner.

• COMET-128: In this version n = 128, r = 128, κ = 128, t = 128, and p = 64.

• COMET-64: In this version n = 64, r = 120, κ = 128, t = 64, and p = 64.

In both variants, we use the primitive polynomial P (x) = x64 + x4 + x3 + x + 1 to represent the field
F264 = {0, 1}64, and fix the primitive element α = 2.

1.3 Description of COMET

Algorithms 1-3 give the complete algorithmic description of the mode, and figure 1 illustrates the major
components of the encryption/decryption process. In the remainder of this subsection, we give a high level
description of the main modules (given in algorithm 2) used in the encryption/decryption (described in
algorithm 1) process.

• init: Apart from some book-keeping operations, the major task of this module is to create the initial
state using the public nonce N and the secret key K. This initial state derivation is the only stage where
the two versions of COMET, namely, COMET-128 and COMET-64 vary. The state can be viewed as an
(n+κ)-bit concatenated string Y ‖Z made up of n-bit string Y (also called the Y -state) and κ-bit string
Z (also called Z-state). In this notation the initial state is (Y0, Z0) = Y0‖Z0. In case of COMET-128,

1

we define Y0 = K and Z0 = EK(N), as described in “function init state 128” of algorithm 3. In case
of COMET-64, we use Y0 = EK(0) and Z0 = K ⊕ 08‖N , as described in “function init state 64” of
algorithm 3.

• proc ad: This module is responsible for the associated data (AD) processing. At the start of the
processing a control bit indicating start of non-empty AD is XORed to the 5th most significant bit
(msb) of the current Z-state. The AD data is absorbed, n bits at a time, using “function round” of
algorithm 2. In case of partial last block a control bit indicating partial block is XORed to the 4th msb
of the Z-state before the processing of the last block.

• proc pt: This module is responsible for the plaintext (PT) processing. At the start of the processing
a control bit indicating start of non-empty PT is XORed to the 3rd msb of the current Z-state. PT
processing is similar to AD processing except for the fact that we squeeze out n-bit ciphertext as well.
In case of partial last block a control bit indicating partial block is XORed to the 2nd msb of the Z-state
before the processing of the last block.

• proc ct: This module is responsible for ciphertext (CT) processing. It is symmetrical to proc pt.

• proc tg: This module is responsible for tag generation. Before the tag generation a control bit indicating
the tag generation call is XORed to the msb of the current Z-state.

Algorithm 1 Encryption/Decryption algorithm in COMET.

1: function COMET n[E].E(K,N,A,M)

2: C ← ⊥

3: (Y0, Z0, a,m, ℓ)← init(K,N,A,M)

4: if a 6= 0 then

5: (Ya, Za)← proc ad(Y0, Z0, A)

6: if m 6= 0 then

7: (Yℓ, Zℓ, C)← proc pt(Ya, Za,M)

8: T ← proc tg(Yℓ, Zℓ)

9: return (C, T)

1: function COMET n[E].D(K,N,A,C, T)

2: M ← ⊥

3: is auth← 0

4: (Y0, Z0, a,m, ℓ)← init(K,N,A,C)

5: if a 6= 0 then

6: (Ya, Za)← proc ad(Y0, Z0, A)

7: if m 6= 0 then

8: (Yℓ, Zℓ,M)← proc ct(Ya, Za, C)

9: T ′ ← proc tg(Yℓ, Zℓ)

10: if T ′ = T then

11: is auth← 1

12: else

13: M ← ⊥

14: return (is auth,M)

1.4 Description of Block Ciphers

Here we give a concise description of, AES-128/128, CHAM, and Speck-64/128, the three block ciphers used
in our submissions. These block ciphers are already published in [4, 5, 6, 7], and freely accessible at [4, 5, 8].
We remark that we reuse exactly the same description of AES-128/128 [4], CHAM [5], and Speck-64/128
[6, 7], and the description here is just for the sake of completeness. We also note that, we only present
the encryption function, as the decryption functions is not required in our AEAD algorithms. For detailed
description and rationale, the readers are referred to the original specifications given in [4] for AES-128/128,
[5] for CHAM-128/128 and CHAM-64/128, and [6, 7] for Speck-64/128.

1.4.1 Description of AES-128/128

AES [4] is based on the substitution-permutation network or SPN design paradigm. It has a fixed block size
of 128 bits, and the key size can be 128, 192, or 256 bits. We only use the variant with 128-bit key size, i.e.
AES-128/128.

The algorithm consists of 10 rounds, composed of four main steps: SubBytes, ShiftRows, MixColumns,
and AddRoundKey. The 128-bit internal state of AES-128/128 is also viewed as a 4 × 4 matrix over F28 in
column-major order. For example, let S15, . . . , S1, S0 be some internal state, then it is viewed as:









S0 S4 S8 S12

S1 S5 S9 S13

S2 S6 S10 S14

S3 S7 S11 S15









Now, the encryption algorithm can be described by the following steps in sequence:

2

Algorithm 2 Main modules of COMET.

1: function init(K,N,A,M)

2: if n = 64 then

3: (Y0, Z0)← init state 64(K,N)

4: else

5: (Y0, Z0)← init state 128(K,N)

6: a← ⌈|A|/n⌉

7: m← ⌈|M |/n⌉

8: ℓ← a + m

9: return (Y0, Z0, a,m, ℓ)

10: function round(Y ′, Z′, I, b)

11: Z ← get blk key(Z′)

12: X ← IC(Z, Y ′)

13: if b = 0 then

14: Y ← update(X, I, 0)

15: return (Y, Z)

16: else

17: (Y,O)← update(X, I, b)

18: return (Y, Z,O)

19: function proc ad(Y0, Z0, A)

20: (Aa−1, . . . , A0)← parse(A)

21: Z0 ← Z0 ⊕ 000010κ−5

22: for i = 0 to a− 2 do

23: (Yi+1, Zi+1)← round(Yi, Zi, Ai, 0)

24: if n ∤ |Aa−1| then

25: Za−1 ← Za−1 ⊕ 000100κ−5

26: (Ya, Za)← round(Ya−1, Za−1, Aa−1, 0)

27: return (Ya, Za)

1: function proc pt(Ya, Za,M)

2: (Mm−1, . . . ,M0)← parse(M)

3: Za ← Za ⊕ 001000κ−5

4: for j = 0 to m− 2 do

5: k ← a + j

6: (Yk+1, Zk+1, Cj)← round(Yk, Zk,Mj , 1)

7: if n ∤ |Mm−1| then

8: Zℓ−1 ← Zℓ−1 ⊕ 010000κ−5

9: (Yℓ, Zℓ, Cm−1)← round(Yℓ−1, Zℓ−1,Mm−1, 1)

10: C ← (Cm−1, . . . , C0)

11: return (Yℓ, Zℓ, C)

12: function proc ct(Ya, Za, C)

13: (Cm−1, . . . , C0)← parse(C)

14: Za ← Za ⊕ 001000κ−5

15: for j = 0 to m− 2 do

16: k ← a + j

17: (Yk+1, Zk+1,Mj)← round(Yk, Zk, Cj , 2)

18: if n ∤ |Cm−1| then

19: Zℓ−1 ← Zℓ−1 ⊕ 010000κ−5

20: (Yℓ, Zℓ,Mm−1)← round(Yℓ−1, Zℓ−1, Cm−1, 2)

21: M ← (Mm−1, . . . ,M0)

22: return (Yℓ, Zℓ,M)

23: function proc tg(Yℓ, Zℓ)

24: Zℓ ← Zℓ ⊕ 100000κ−5

25: Zℓ+1 ← get blk key(Zℓ)

26: T ← IC(Zℓ+1, Yℓ)

27: return T

1. KeyExpansion: As the first step, the 128-bit key is processed to derive 11 subkeys, one for each
round and an extra subkey for initial key whitening. The round keys are obtained as follows: Let

K be the key, and (K3,K2,K1,K0)
32← K. For S = (S3, S2, S1, S0) ∈ (F28)

4, let SubWord(S) :=
(SB[S3], SB[S2], SB[S1], SB[S0]), where SB denotes the AES S-box given in Table 1 (see [4] for more
details). Then, for i ∈ {0, . . . , 43}, we have:

Wi :=











Ki if i < 4

Wi−4 ⊕ (SubWord(Wi−1) ≫ 8)⊕ Ri/4 if i ≥ 4 and i ≡ 0 mod 4

Wi−4 ⊕Wi−1 otherwise,

where R denotes the round constant array given in Table 2 (see [4] for more details). Note the direction
of rotation is towards right due to the little endian format used here. For i ∈ [10], we write Ki

to denote the i-th round key W4i+3,W4i+2,W4i+1,W4i, and K0 to denote the initial whitening key
W3,W2,W1,W0.

2. Initial round key whitening: This step generates the initial state S0 using AddRoundKey (described
below) with the initial whitening key K0 and the plaintext P .

3. The following sequence of steps constitute one AES intermediate round, which is repeated 9 times:

(a) SubBytes: Let S denote the internal state at this moment (consists of the plaintext). Then this
step can be described by the mapping, Si 7→ SB[Si], for all i ∈ {0, . . . , 15}, where SB denotes the
AES S-box given in [4].

(b) ShiftRows: The ShiftRows step applied to an internal state s, can be described by the following
mapping:









S0 S4 S8 S12

S1 S5 S9 S13

S2 S6 S10 S14

S3 S7 S11 S15









7−→









S0 S4 S8 S12

S5 S9 S13 S1

S10 S14 S2 S6

S15 S3 S7 S11









3

Algorithm 3 Various sub-modules of COMET.

1: function chop(I, ℓ)

2: if ℓ > n then

3: return ⊥

4: else

5: return iℓ−1 . . . i0

6: function parse(I)

7: ℓ = ⌈|I|/n⌉

8: if ℓ = 0 then

9: return ⊥

10: else

11: (Iℓ−1, . . . , I0)
n
← I

12: return (Iℓ−1, . . . , I0)

13: function opt pad0∗1(I)

14: if |I| = 0 or n ∤ |I| then

15: ξ = n− (|I| mod n)

16: I ← 0ξ−11‖I

17: return I

18: function permute(Z′)

19: (Z′

1, Z
′

0)
p
← Z′

20: Z0 ← Z′

0 ⊙ α

21: Z ← (Z′

1, Z0)

22: return Z

23: function init state 128(K,N)

24: Y ← K

25: Z ← IC(K,N)

26: return (Y, Z)

1: function init state 64(K,N)

2: Y ← IC(K, 0)

3: Z ← K ⊕ 0κ−r‖N

4: return (Y, Z)

5: function shuffle(X′)

6: (X′

3, X
′

2, X
′

1, X
′

0)
n/4
← X′

7: X2 ← X′

2 ≫ 1

8: X ← (X′

1, X
′

0, X2, X
′

3)

9: return X

10: function get blk key(Z′)

11: Z ← permute(Z′)

12: return Z

13: function update(X, I, b)

14: if b = 0 then

15: Y ← X ⊕ opt pad0∗1(I)

16: return Y

17: else

18: X′ ← shuffle(X)

19: O ← chop(X′, |I|)⊕ I

20: if b = 1 then

21: Y ← X ⊕ opt pad0∗1(I)

22: else if b = 2 then

23: Y ← X ⊕ opt pad0∗1(O)

24: return (Y,O)

(c) MixColumns: The MixColumns step applies an invertible linear transformation on each column of
the state matrix. The linear transformation is described by the following matrix:









2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2









over the field F28 defined with respect to the irreducible polynomial x8 + x4 + x3 + x+ 1.

(d) AddRoundKey: The AddRoundKey step for the i-th round and internal state s is defined by the
mapping Sj 7→ Sj ⊕Ki

j , for all j ∈ {0, . . . , 15}.

4. The final round invokes SubBytes, ShiftRows, and AddRoundKey in order, skipping the MixColumns

operation.

1.4.2 Description of CHAM

CHAM [5] is based on the ARX design paradigm, and hence does not require any S-boxes. It can have
block size n ∈ {64, 128}, and key size κ ∈ {n, 2n}. We focus on the κ = n case. Both CHAM-128/128 and
CHAM-64/128 consist of 80 rounds. CHAM-128/128 views its state as a concatenation of four 32-bit words.
Similarly, CHAM-64/128 views its state as a concatenation of four 16-bit words. The number of rounds and
the word size are denoted as r and w, respectively.

In the following discussion we write a%b to denote a mod b, and ⊞ to denote addition modulo 2w. For
n ∈ {64, 128} and κ = n, CHAM-n/κ encrypts a plaintext P ∈ {0, 1}n to a ciphertext C ∈ {0, 1}n using a
secret key K ∈ {0, 1}κ by applying r iterations of a round function as follows:

1. First, P is parsed into four w-bit words S0
3 , S

0
2 , S

0
1 , S

0
0 .

4

N

K

IC Y0

Z0

0

K

IC Y0

⊕

N

Z0

Y0

Z0

IC

⊕

0000‖ctrlad‖0
κ−5

ϕ

̺ IC

ϕ

Ai

̺ IC

⊕ ϕ

000‖ctrlp ad‖00
κ−5

Aa−2

̺

Aa−1

Ya

Za

Xi+1 Yi+1

Zi+1 Zi+2

Xa−1 Ya−1

Za−1 Za

Xa

Ya

Za

IC

⊕

00‖ctrlpt‖000
κ−5

ϕ

̺ IC

ϕ

Mj

Cj

̺ IC

⊕ ϕ

0‖ctrlp pt‖0000
κ−5

Mm−2

Cm−2

̺

Mm−1

Cm−1

Yℓ

Zℓ

Xk+1 Yk+1

Zk+1 Zk+2

Xℓ−1 Yℓ−1

Zℓ−1 Zℓ

Xℓ

Yℓ

Zℓ

IC

⊕

ctrltg‖00000
κ−5

ϕ

T

Zℓ+1

Here:

0 ≤ i ≤ a− 3,

0 ≤ j ≤ m− 3,

k = a + j, and ℓ = a + m.

Figure 1: Schematic diagram of different modules used in the encryption algorithm of COMET for non empty AD and

PT. From top to bottom and left to right, we have the following modules: init state 128, init state 64, proc tg, proc ad,
and proc pt. ϕ and ̺ denote the functional view of sub-modules permute and shuffle from algorithm 3, respectively.

See algorithm 1-3 for more details.

2. For i ∈ {0, . . . , r − 1}, the i-th round output, Si+1 is computed as:

Si+1
3 = ((Si

0 ⊕ i)⊞ ((Si
1 ≪ 1)⊕Ri%2κ/w)) ≪ 8

Si+1
j = Si

j+1 for 0 ≤ j ≤ 2,

if i is even, otherwise,

Si+1
3 = ((Si

0 ⊕ i)⊞ ((Si
1 ≪ 8)⊕Ri%2κ/w)) ≪ 1

Si+1
j = Si

j+1 for 0 ≤ j ≤ 2,

where RKi%2k/w is the round key. The ciphertext C is defined as C = (Sr
3 , S

r
2 , S

r
1 , S

r
0).

3. The key schedule of CHAM-n/κ takes the secret key K ∈ {0, 1}κ and generates the 2κ/w w-bit round
keysR0, R1, . . . , R2κ/w−1. Initially, divide the secret key into κ/w w-bit round wordsK0,K1, . . . ,Kκ/w−1.
Then the round keys are generated as follows:

Ri = Ki ⊕ (Ki ≪ 1)⊕ (Ki ≪ 8),

R(i+κ/w)⊕1 = Ki ⊕ (Ki ≪ 1)⊕ (Ki ≪ 11),

where i ∈ {0, . . . , κ/w}.

1.4.3 Description of Speck-64/128

Speck-64/128 [6, 7] is based on ARX design paradigm. Speck-64/128 allows for a number of block size/key
size combinations, but we will focus on Speck-64/128[64] which requires 27 rounds of a key-dependent map
fR : F232 × F232 → F232 × F232 defined by

∀(X1, X0) ∈ F232 × F232 , fR(X1, X0) := (((X1 ≫ 8)⊞X0)⊕R, ((X0 ≪ 3)⊕ ((X1 ≫ 8)⊞X0)⊕R)),

5

Table 1: AES-128/128 S-Box Table. All values are given in hexadecimal format. The row and column denote the

most and least significant nibble of the input. For example For example 3a is converted into 80.

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 63 7c 77 7b f2 6b 6f 35 30 01 67 2b fe d7 ab 76

10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

20 b7 fd 97 26 36 3f f7 cc 34 a5 ef f1 71 d8 31 15

30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75

40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84

50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf

60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8

70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2

80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73

90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db

a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79

b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08

c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a

d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e

e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df

f0 89 a1 89 0d bf e6 42 68 42 99 2d 0f b0 54 bb 16

Table 2: AES-128/128 Round Constants Table. All values are given in hexadecimal format.

Round: 1 2 3 4 5 6 7 8 9 10

R 01 02 04 08 10 20 40 80 1b 36

where R denotes the 32-bit subkey, and (X1, X0) denotes the 64-bit state of the cipher. The Speck-64/128
key schedule uses similar round function to generate the round subkeys Ri. Let K be the 128-bit key of

Speck-64/128[64]. We write (K3,K2,K1,K0)
32← K. Let L2 = K3, L1 = K2, L0 = K0, and R0 = K0. Then

for 0 ≤ i < 27, the round subkeys are defined as:

Li+3 = (Ri ⊞ (Li ≫ 8))⊕ i,

Ri+1 = (Ri ≪ 3)⊕ Li+3,

and (R26, . . . , R0) denote the round subkeys.

2 Concrete Proposals for Submission

COMET is designed to have small state and small number of operations in both hardware and software. The
major chunk of computational time and power is used by the underlying block cipher. In this section we pro-
vide concrete proposals based on three block ciphers, namely, AES-128/128 [4], CHAM [5], and Speck-64/128
[6, 7, 8]. The proposals based on these block ciphers are categorized into software and hardware oriented
proposals, due to their relative advantages in their respective category. Here we remark that the segregation
is only for recommendation purposes, and the seven schemes listed below are suitable for application in both
software and hardware.

2.1 Software Oriented Lightweight AEAD Proposals

Speck-64/128 is specially designed for applications in small micro-controllers [6] and AES-128/128 is supported
on many micro-controllers and processors. So, they are well-suited for applications requiring lightweight
software implementations. We propose the following submissions for applications in software oriented areas:

1. COMET-128 AES-128/128: This version sets n = 128 and uses AES-128/128 as the underlying block
cipher. It requires a fixed length nonce of size r = 128. The maximum length of plaintext or associated
data, and the amount of data to be processed using a single key, is bounded by at most 264 bytes. The
tag size t = 128 bits.

3. COMET-64 Speck-64/128: This version sets n = 64 and uses Speck-64/128 as the underlying block
cipher. It requires a fixed length nonce of size r = 120. The maximum length of plaintext or associated

6

data, and the amount of data to be processed using a single key, is bounded by at most 245 bytes. The
tag size t = 64 bits.

2.2 Hardware Oriented Lightweight AEAD Proposals

CHAM is an ultra-lightweight block cipher which has very small hardware footprint [5]. We propose the
following CHAM-based submissions for applications in hardware oriented areas:

1. COMET-128 CHAM-128/128: This version sets n = 128 and uses CHAM-128/128 as the underlying
block cipher. It requires a fixed length nonce of size r = 128. The maximum length of plaintext or
associated data, and the amount of data to be processed using a single key, is bounded by at most 264

bytes. The tag size t = 128 bits.

2. COMET-64 CHAM-64/128: This version sets n = 64 and uses CHAM-64/128 as the underlying block
cipher. It requires a fixed length nonce of size r = 120. The maximum length of plaintext or associated
data, and the amount of data to be processed using a single key, is bounded by at most 245 bytes. The
tag size t = 64 bits.

2.2.1 Primary Version

We fix COMET-128 AES-128/128 as our primary submission in the AEAD category. We choose the mode
COMET-128 for two reasons:

• Better security: It achieves better data complexity limits than COMET-64. Additionally it gives better
security in random nonce scenario (see section 4).

• Higher throughput: The data processing rate is a healthy 128-bit per block cipher call. This could be
crucial in reducing the latency and energy consumption.

We choose the block cipher AES-128/128, as it is well-analyzed in both single-key and related-key models,
and hence instills greater confidence to the security of COMET-128 AES-128/128. Furthermore, AES-128/128
is a standardized block cipher, which means that most of the well-known cryptographic libraries offer an AES-
128/128 implementation. This will allow for swift integration of COMET-128 AES-128/128.

3 Design Rationale

The primary motivation behind COMET is the design of a lightweight (in hardware/software state/memory
footprint) yet adequately efficient and secure AEAD mode of operation for block ciphers. Particularly, our
goal is to keep minimal state size, and then aim for better performance and security. For this we start with
the design paradigm of Beetle [2, 3], a sponge variant, and think of ways to replace the internal permutation
call with a block cipher call. For b ≥ 1, suppose, P : {0, 1}b → {0, 1}b is a permutation over {0, 1}b. Now,
for b = n + κ and (x, z) ∈ {0, 1}n × {0, 1}κ, we define P (x, z) := (IC(z, x), ϕ(z)) where IC is a block cipher
with n-bit block size and κ-bit key size, and ϕ is a permutation over {0, 1}κ. Now if ϕ is light and efficient
then one can expect that this definition of P will be more efficient then a larger permutation over {0, 1}b, as
it may require more rounds to mix b bits. In order to keep ϕ light we use an encoding of the block position
(motivated by the CTR mode [1]) to permute and generate the next block key. Combining the two elements:
state size reduction following Beetle paradigm, and efficient and light key updation using encoding of block
position following CTR paradigm, we get a mode with a small state ((n+κ) bits) and high security (2n data
and 2κ time complexity).

3.1 Nonce Usage

COMET makes a single pass over the input associated data and plaintext to reduce the latency in producing
the ciphertext. In general, single pass AEAD’s use a non-repeating nonce to generate a (possibly uniform)
random state for each encryption query. COMET also follows the same paradigm and is secure in nonce

respecting scenario, i.e. each nonce should be used to encrypt a single message in the lifetime of the key. We
remark here that we do not claim any security when the nonces are reused in an arbitrary fashion to encrypt
multiple messages, although birthday bound (in the block size) security is still possible for scenarios where
the nonce is chosen randomly. This is mentioned in section 4.

7

3.2 Number of Block Cipher Calls

The cipher requires 1 call (this can be cached between queries for COMET-64, if storage is available) for
initialization; a and m calls for processing AD and message, respectively, where a = ⌈|A|/n⌉ and m =
⌈|M |/n⌉; and 1 call for tag generation. In total, the cipher requires a + m + 2 many calls to process an a
block AD and m block message. In the following list, we enumerate the exact number of calls for some cases.

1. For |A| = 0, |M | = 0: 2 calls — 1 call for initialization, and 1 call for tag generation.

2. For 0 < |A| ≤ n, |M | = 0: 3 calls — 1 call for initialization, 1 for AD processing, and 1 for tag
generation.

3. For 3n < |A| ≤ 4n, |M | = 0: 6 calls — 1 call for initialization, 4 for AD processing, and 1 for tag
generation.

4. For |A| = 0, |M | ≤ n: 3 calls — 1 call for initialization, 1 for key stream generation, and 1 for tag
generation.

5. For |A| = 0, 3n < |M | ≤ 4n: 6 calls — 1 call for initialization, 4 for key stream generation and 1 for
tag generation.

6. For 0 < |A| ≤ n, 0 < |M | ≤ n: 4 calls — 1 call for initialization, 1 for AD processing, 1 for key stream
generation, and 1 for tag generation.

7. For 3n < |A| ≤ 4n, 3n < |M | ≤ 4n: 10 calls — 1 call for initialization, 4 for AD processing, 4 for key
stream generation, and 1 for tag generation.

3.3 Choice of init state Function

COMET employs nonce-based initialization (see Figure 1) at the start to generate a random state (initial
key and input). This is done while restricting the number of block cipher calls to 1, so as to keep minimal
overhead. Depending upon the variants, namely, COMET-128 and COMET-64, we employ two different
approaches in this step:

State Derivation in COMET-128: In this case the input nonce is encrypted with the master key to get
a nonce derived key and the master key is used as the initial input. This helps in two respects: first, the
security of the mode can be shown in more relaxed security models [9]; second, the underlying block cipher
is only required to be related-key secure under without replacement key derivation.

State Derivation in COMET-64: In this case, the block size is smaller than the nonce size, which makes
it difficult to process the nonce in one go. Since the focus of COMET-64 is more towards, state size reduction,
we sacrifice a little bit in terms of security. Here the master key is XORed with the input nonce to generate
the initial key and the encryption of 0 under master key is used as the initial input.

3.4 Choice of permute Function

We need that the permute function should have a large period, so that within an encryption query there is
no collision in the key input of each block. Multiplication by primitive element α has this property. In this
case two block keys can be same only if the input length goes beyond 264. So we choose α multiplication as
our choice of permute. Note that, it is also expected to resist the existing related-key attack strategies based
on key difference.

3.5 Choice of shuffle Function

Like Beetle [2, 3], we need that both shuffle(x) and shuffle(x)⊕ id(x) should be invertible for all x, where id
denotes the identity function. We choose a variant of the shuffle function used in Beetle, in order to reduce
the number of shift and swap operations.

3.6 The Control Bits

Here we explain the 5-bit control signal that we use to separate the processing of various critical blocks. The
control signals can be viewed as a 5-bit string described below

ctrltg ctrlp pt ctrlpt ctrlp ad ctrlad

Initially, all bits are set to 0. The bits are set to 1 in the following manner:

8

1. ctrlad: The bit sets to 1 at first AD block processing call. For empty AD it remains set to 0.

2. ctrlp ad: The bit sets to 1 at the last AD block processing call if the last block is partial. For full last
block it remains set to 0.

3. ctrlpt: The bit sets to 1 at first message block processing call. For empty messages it remains set to 0.

4. ctrlp pt: The bit sets to 1 at the last message block processing call if the last block is partial. For full
last block it remains set to 0.

5. ctrltg: The bit sets to 1 at tag generation call.

At each of the 5 critical stages, we XOR the corresponding signal to the appropriate bit (as described above)
of the Z-state. Note that, in hardware implementations we do not actually need 5 signals. Indeed, one can
reuse the ctrlad and ctrlp ad for ctrlpt and ctrlp pt, respectively, which means that we only need 3 signals.

4 Security Claims

Table 3: Summary of security claims for various submissions based on COMET.

Submissions Confidentiality Integrity

Time Data (in bytes) Time Data (in bytes)

COMET-128 AES-128/128 2119 264 2119 264

COMET-128 CHAM-128/128 2119 264 2119 264

COMET-64 Speck-64/128 2119 264 2112 245

COMET-64 CHAM-64/128 2119 264 2112 245

In Table 3, we give a quantitative summary of the expected security level for the four instantiations of
COMET. We assume a nonce-respecting environment, i.e., for a fixed key, for two distinct encryption queries,
the public nonce value is always distinct, although COMET-128 could also be secure in scenarios, where the
nonce is chosen uniformly from the nonce space. The security claims are based on full round AES-128/128,
CHAM-128/128, CHAM-64/128, and Speck-64/128, and we do not claim any security for COMET with round-
reduced variants of these block ciphers. Note that COMET-64 allows for higher data limits in confidentiality,
as compared to the data limit in integrity/authenticity. We remark that we could not find any matching
forging attack(s) on COMET-64, even when the integrity data limits was significantly higher than the one
given in Table 3, so it is quite possible that the integrity security margins for COMET-64 could be improved.

5 Security Analysis

In this section, we give a brief and informal justification for the security claims made in Table 3 of section 4.

5.1 Security of COMET

We analyze the COMET mode of operation against generic attacks (assuming the underlying block cipher
is ideal, i.e. random permutation). First we briefly explain possible attack strategies along with a rough
lower bound estimate on the data and time complexity of each strategy. Then we validate the recommended
criteria given in Table 3 by substituting concrete parameters. In the following discussion:

• D denotes the total (both encryption and decryption) data complexity. This parameter quantifies
the online resource requirements, and includes the total number of blocks (among all messages and
associated data) processed through the underlying block cipher for a fixed master key. We use De and
Dv to account for the data complexity of encryption and decryption/verification queries.

• T denotes the time complexity. This parameter quantifies the offline resource requirements, and includes
the total time required to process the offline evaluations of the underlying block cipher. Since one call
of the block cipher can be assumed to take a constant amount of time, we generally take T as the total
number of offline calls to the block cipher.

9

5.1.1 Master Key or Internal State Recovery

Master Key Recovery: The adversary can try to guess the master key using offline block cipher queries.
Once the master key is known the adversary can certainly distinguish, forge valid ciphertexts, or recover the
plaintext. But, since the master key is chosen uniformly in both COMET-128 and COMET-64, this strategy
would require T ≈ 2κ many offline queries and a constant number of encryption queries, i.e. De = O(1).

State Recovery: The adversary can try to guess the internal state for some encrypted block using a
combination of offline and online queries. If the adversary guesses the state correctly then it can forge valid
ciphertexts for the nonce value used in this encrypted block. We argue that guessing the internal state is
much harder than guessing the master key itself. Indeed, one can recover the key once the state is recovered.
Note that guessing just one of Y or Z is not enough as the other value is random. Further, guessing both
Y and Z requires the product of data and time, DeT ≈ 2n+κ. This can be argued using list matching
arguments, i.e. the adversary creates a list LT of T offline query-response tuples and a list LDe

of De online
query-response tuples (with empty PT and AD). It can then try to get a matching between LT and LDe

,
and for each matching try an appropriate forging attempt. A matching between any element of LT and any
element of LDe would happen with approx. 2−(n+κ) probability (as the key and mask are random and almost
independent of each other). So we need DeT ≈ 2n+κ.

5.1.2 Privacy Security of COMET

In privacy attacks the adversary is concerned with distinguishing the COMET mode with an ideal authen-
ticated encryption scheme. In addition to access of the encryption algorithm, the adversary is also allowed
offline evaluations of the underlying block cipher. A trivial attack strategy is guessing the master key (as
discussed in section 5.1.1). Non-trivially, the adversary can distinguish the modes from ideal if there is no
randomness in some ciphertext (or tag) blocks. This is possible in the following two ways:

• Online-Online Block Matching: For a pair of distinct online (in this case encyrption) query
block, the internal states matches. Then, the block that appears later will have non-random behavior.
Note that this matching is only accidental and will happen with probability approx. 2−(n+κ) in both
COMET-128, and COMET-64. Thus it requires DeT ≈ 2n+κ.

• Online-Offline Block Matching: This is similar to the state recovery attack strategy of section
5.1.1. Again this matching will happen accidentally with probability approx. 2−(n+κ), which gives
DeT ≈ 2n+κ. To be a bit more precise, the product DeT will be a little bit higher, approximately
2n+κ/2n. We ignore the logarithmic and constant factors as our security claims are well within the
precise limits.

5.1.3 Integrity Security of COMET

In this case the adversary has to forge a fresh and valid ciphertext and tag pair. The adversary is allowed to
make encryption queries to the encryption algorithm and forging queries to the decryption algorithm.

In forgery attack, the adversary can apply previous strategies of key or state recovery as in section 5.1.1.
Previous strategies would lead to bounds of the form T ≈ 2κ and DeT ≈ 2n+κ. Some other attack strategies
are described below:

• Tag Guessing: The adversary simply guesses random tag values for each forgery attempt. A tag
guess will be valid with probability approx. 2−n, which would give Dv ≈ 2n.

• Decryption Query Matching with Encryption Query Chain: Suppose the adversary gets the
response (c1, c2, c3, c4, c5, t) for some encryption query, and then tries a decryption query of the form
(c′1, c

′
2, c
′
3, c4, c5, t), of course, with a different nonce value. In this case the decryption query is valid if

the next input internal state corresponding to c′3 matches with the one corresponding to c3. It can be
shown that the probability of this event is bounded by approx. nDeDv/2

n+κ + De/2
2n, which gives

De ≈ 2n and Dv ≈ 2κ−log2 n.

• Decryption Query Matching with Offline Query Chain: This is similar to the previous case,
in the sense, that the adversary tries to match a decryption query to a chain, except in this case the
chain is constructed through offline queries. This would mean that the adversary constructed a chain
of internal states for some fixed ciphertext and tag blocks using offline queries, and then matched a
decryption query to this chain. Now the chain can be constructed by making block cipher queries in
one of the two ways:

10

– Using forward only or backward only queries: This corresponds to the strategy where,
the adversary makes, either E only or E−1 only queries. It can be shown that the probability of
getting a successful forgery can be bounded by approx. nDvT/2

n+κ + T/2κ, which gives T ≈ 2κ

and Dv ≈ 2n/n.

– Using both forward and backward queries: This is the trickiest case, where the adversary
makes both E and E−1 calls. The probability of getting a successful forgery, in this case, can be

bounded by 2
√
nDvT/2

κ+n/2, which gives Dv = 2κ+
n
2−

log2 n
2 −1/T .

5.1.4 Validation of Security Claims

The security claims given in Table 3 follow from the rough lower bounds on De, Dv and T , as discussed in
subsections 5.1.1-5.1.3. Importantly, it can be observed that the COMET mode of operation is secure, as
long as the upper limits on De, Dv and T , as given in Table 3, are respected.

5.2 Security of Block Ciphers

All our submissions use COMET instantiated with well-known and fairly well-studied block ciphers AES-
128/128, CHAM, and Speck-64/128. Some of the relevant cryptanalysis results on these block ciphers can be
found, among others, in [10, 11, 12, 13, 14, 15, 16] for AES-128/128, [5] for CHAM, and [17, 18, 19, 20] for
Speck-64/128.

We skip a detailed exposition on the cryptanalysis of these block ciphers, and instead summarize few
standard cryptanalytic bounds. Since we use the ideal cipher view of the block ciphers, related-key attacks
could be another relevant cryptanalytic appraoach. We remark here that in COMET-128, keys within a query
are related by α-multiplication1, which seems significantly harder then the usual XOR related-keys. In fact,
to the best of our knowledge, this has not been analyzed till date.

5.2.1 Security of AES-128/128

The security of AES-128/128 is well-established in the community. To the best of our knowledge, the best
single-key attack on AES-128/128 is the biclique attack by Bogdanov et al. [10], that recovers the key in
approx. 2126 computations. Although there is a related-key attack on full-round AES-128/192 and AES-
128/256, the same attack does not apply to AES-128/128, even in the usual XOR related-key setting, let
alone the α-multiplication related-keys. In fact, [14] shows that AES-128/128 is almost as secure in related-
key setting as it is in single-key setting. Recent distinguishers on AES-128/128 [11, 12, 13, 15], are applicable
to round-reduced variants of AES-128/128, and hence not applicable in our case.

5.2.2 Security of CHAM

CHAM [5] has been designed to achieve high security in both single-key and related-key settings. The designers
have claimed that the best possible attack strategy for CHAM-128/128 is the boomerang attack that breaks 47
rounds of CHAM-128/128, whereas the best attack strategy for CHAM-64/128 is the related-key boomerang
attack that breaks 41 rounds of CHAM-64/128. Accordingly, full-round CHAM-128/128 and CHAM-64/128,
each having 80 rounds, are expected to be secure against both single and related-key attacks. We could not
find any third party analysis on the security of CHAM.

5.2.3 Security of Speck-64/128

The best single-key attack on Speck-64/128 [7] breaks 20 out of the 27 rounds with 2125.56 time and 261.56

data complexity using differential cryptanalysis. In related-key settings, the rotational cryptanalysis of [19]
of improves on the existing attacks for some versions of Speck, including Speck-32/64 and Speck-48/96, but
it does not seem to improve the attacks on Speck-64/128. Overall, to the best of our knowledge there is
no single-key or related-key attack on full-round Speck-64/128 with significantly better complexity than the
brute-force approach.

5.3 Statement

We declare that there are no hidden weaknesses in the COMET mode of operation. Further, to the best of our
knowledge, public third-party analysis do not raise any security threat to the submissions, COMET-128 AES-
128/128, COMET-128 CHAM-128/128, COMET-128 CHAM-64/128 and COMET-128 Speck-64/128, within
the data and time limit prescribed in Table 3 of section 4.

1Recall that α denotes the primitive element of the field.

11

6 Features and Limitations

Some of the standout features of our submissions are as follows:

1. Small State Size: Our main goal is to design AEAD schemes with minimum state size. COMET
achieves minimal state size, in the sense that the only state it requires (apart from a constant number
of bits) is used for the block cipher, i.e. (n+ κ)-bit state. We believe that this is the smallest possible
state size for nonce-based AEAD schemes with security level comparable with COMET.

2. Design Simplicity: The design of COMET is extremely simple. Apart from the block cipher evalua-
tions, it only requires simple shift and XOR operations.

3. Efficiency: This point is closely related to the previous two points. As the design is nonce-based, we
are able to keep it single pass, which makes the scheme quite efficient in both hardware and software.
Apart from the block cipher call, only 1 shift and at most 2 XOR operations are required per block of
AD or PT.

The only notable limitation of COMET seems to be the insecurity in nonce-misusing scenario. COMET
can be broken in constant queries if the adversary can repeat the tweaks in arbitrary fashion. But we
remark here that if the nonce is chosen uniformly at random then COMET-128 can still satisfy the NIST
lightweight standardization requirements. Another, limitation is rekeying per block, which makes it difficult
to precompute and store the round keys, thought this is not our motivation as we want to reduce the storage
requirement.

Acknowledgments

Shay Gueron is a professor in the Department of Mathematics at the University of Haifa, Haifa, Israel and
a Senior Principal Engineer at Amazon Web Services Inc., Seattle, USA.

Shay Gueron is a member of the Center for Cyber Law & Policy at the University of Haifa and a member of
the BIU Center for Research in Applied Cryptography and Cyber Security.

Mridul Nandi is an associate professor in the Applied Statistics Unit at the Indian Statistical Institute,
Kolkata, India.

Ashwin Jha is a PhD student in the Applied Statistics Unit at the Indian Statistical Institute, Kolkata, India.

Shay Gueron is supported by:

• the BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with the
Israel National Cyber Directorate in the Prime Minister’s Office;

• the Israel Science Foundation (grant No. 1018/16);

• a grant from the Ministry of Science and Technology, Israel, and the Department of Science and
Technology, Government of India;

• the Center for Cyber Law & Policy at the University of Haifa, in conjunction with the Israel National
Cyber Directorate in the Prime Ministers Office.

Mridul Nandi is supported by:

• the DST/INT/ISR/P-20/2017 Indo-Israel Joint Research Programme by Department of Science and
Technology, Government of India.

References

[1] Dworkin, M.: Recommendation for Block Cipher Modes of Operation – Methods and Techniques.
NIST Special Publication 800-38A, National Institute of Standards and Technology, U. S. Department
of Commerce (2001)

[2] Chakraborti, A., Datta, N., Nandi, M., Yasuda, K.: Beetle Family of Lightweight and Secure Authen-
ticated Encryption Ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(2) (2018) 218–241

12

[3] Chakraborti, A., Datta, N., Nandi, M., Yasuda, K.: Beetle Family of Lightweight and Secure Authen-
ticated Encryption Ciphers. IACR Cryptology ePrint Archive 2018 (2018) 805

[4] NIST: Announcing the ADVANCED ENCRYPTION STANDARD (AES). Fedral Information Process-
ing Standards Publication FIPS 197, National Institute of Standards and Technology, U. S. Department
of Commerce (2001)

[5] Koo, B., Roh, D., Kim, H., Jung, Y., Lee, D., Kwon, D.: CHAM: A family of lightweight block ciphers for
resource-constrained devices. In: Information Security and Cryptology - ICISC 2017 - 20th International
Conference, Seoul, South Korea, November 29 - December 1, 2017, Revised Selected Papers. (2017) 3–25

[6] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The Simon and Speck
Block Ciphers on AVR 8-Bit Microcontrollers. In: Lightweight Cryptography for Security and Privacy -
Third International Workshop, LightSec 2014, Istanbul, Turkey, September 1-2, 2014, Revised Selected
Papers. (2014) 3–20

[7] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK
Lightweight Block Ciphers. In: Proceedings of the 52nd Annual Design Automation Conference, San
Francisco, CA, USA, June 7-11, 2015. (2015) 175:1–175:6

[8] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: SIMON and SPECK:
Block Ciphers for the Internet of Things. IACR Cryptology ePrint Archive 2015 (2015) 585

[9] Gueron, S., Lindell, Y.: Better bounds for block cipher modes of operation via nonce-based key deriva-
tion. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017. (2017) 1019–1036

[10] Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full AES. In: Advances
in Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and Application of
Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings. (2011)
344–371

[11] Grassi, L., Rechberger, C., Rønjom, S.: Subspace trail cryptanalysis and its applications to AES. IACR
Trans. Symmetric Cryptol. 2016(2) (2016) 192–225

[12] Grassi, L., Rechberger, C., Rønjom, S.: A new structural-differential property of 5-round AES. In:
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part
II. (2017) 289–317

[13] Rønjom, S., Bardeh, N.G., Helleseth, T.: Yoyo tricks with AES. In: Advances in Cryptology - ASI-
ACRYPT 2017 - 23rd International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I. (2017) 217–243

[14] Khoo, K., Lee, E., Peyrin, T., Sim, S.M.: Human-readable proof of the related-key security of AES-128.
IACR Trans. Symmetric Cryptol. 2017(2) (2017) 59–83

[15] Grassi, L.: Mixture differential cryptanalysis: a new approach to distinguishers and attacks on round-
reduced AES. IACR Trans. Symmetric Cryptol. 2018(2) (2018) 133–160

[16] Bar-On, A., Dunkelman, O., Keller, N., Ronen, E., Shamir, A.: Improved key recovery attacks on
reduced-round AES with practical data and memory complexities. In: Advances in Cryptology -
CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2018, Proceedings, Part II. (2018) 185–212

[17] Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers SIMON and SPECK. In: Fast
Software Encryption - 21st International Workshop, FSE 2014, London, UK, March 3-5, 2014. Revised
Selected Papers. (2014) 546–570

[18] Liu, Y., Fu, K., Wang, W., Sun, L., Wang, M.: Linear cryptanalysis of reduced-round SPECK. Inf.
Process. Lett. 116(3) (2016) 259–266

[19] Liu, Y., Witte, G.D., Ranea, A., Ashur, T.: Rotational-xor cryptanalysis of reduced-round SPECK.
IACR Trans. Symmetric Cryptol. 2017(3) (2017) 24–36

[20] Ashur, T., Bodden, D., Dunkelman, O.: Linear cryptanalysis using low-bias linear approximations.
IACR Cryptology ePrint Archive 2017 (2017) 204

13

	Specification
	Notations and Conventions
	Parameters
	Description of
	Description of Block Ciphers
	Description of AES-128/128
	Description of
	Description of Speck-64/128

	Concrete Proposals for Submission
	Software Oriented Lightweight AEAD Proposals
	Hardware Oriented Lightweight AEAD Proposals
	Primary Version

	Design Rationale
	Nonce Usage
	Number of Block Cipher Calls
	Choice of Function
	Choice of permute Function
	Choice of shuffle Function
	The Control Bits

	Security Claims
	Security Analysis
	Security of
	Master Key or Internal State Recovery
	Privacy Security of
	Integrity Security of
	Validation of Security Claims

	Security of Block Ciphers
	Security of AES-128/128
	Security of
	Security of Speck-64/128

	Statement

	Features and Limitations

