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1 Introduction

We introduce the Elephant authenticated encryption scheme. The mode of
Elephant is a nonce-based encrypt-then-MAC construction, where encryption
is performed using counter mode and message authentication using a variant of
the Wegman-Carter-Shoup [10,82,92] MAC function. Both modes internally use
a cryptographic permutation masked using LFSRs, akin to the masked Even-
Mansour construction of Granger et al. [49].

The mode is permutation-based and only evaluates this permutation in the
forward direction. As such, there is no need to implement multiple primitives or
the inverse of the primitive, unlike in OCB-based [58, 78, 79] authenticated en-
cryption schemes. Furthermore, this allows us to rely and build on the extensive
literature of permutations used for sponge-based lightweight hashing [6, 21, 51].
That said, Elephant itself is not sponge-based: on the contrary, it departs from
the conventional approach of serial permutation-based authenticated encryp-
tion. Elephant is parallelizable by design, easy to implement due to the use of
LFSRs for masking (no need for finite field multiplication), and finally, it is effi-
cient due to elegant decisions on how the masking should be performed exactly.
A security analysis in the ideal permutation model demonstrates that the mode
of Elephant is structurally sound.

Due to the parallelizability of Elephant, there is no need to instantiate
Elephant

::
for

:::::::::
instances

:
with a large permutation: we can go as small as 160-bit

permutations while still matching the security goals recommended by the NIST
lightweight call [72]. In detail, the Elephant scheme consists of three instances:

1. Dumbo: Elephant-Spongent-π[160]. This instance meets the minimum per-
mutation size as dictated by the security analysis: it achieves 112-bit se-
curity provided that the online complexity is at most around 246 blocks.
This instance is particularly well-suited for hardware, as Spongent [21]
itself is;

2. Jumbo: Elephant-Spongent-π[176]. This is a slightly more conservative in-
stance of Elephant: it is based on the same permutation family, yet achieves
127-bit security under the same conditions on the online complexity. We
note, in particular, that Spongent-π[176] is ISO/IEC standardized [21,54];

3. Delirium: Elephant-Keccak-f [200]. This variant is developed more to-
wards software use, although it still performs reasonably well in hardware.
Elephant instantiated with Keccak-f [200] also achieves 127-bit security,
with a higher bound of around 270 blocks on the online complexity. The
permutation is the smallest instance of the NIST SHA-3 standard [14,47]
that fits our need

:::::
needs.

Dumbo is the primary member of the submission. Dumbo and Jumbo are named
after two famous elephants; Delirium is named after a Belgian beer, whose logo
is a pink elephant. As each of the permutations is relatively small, all versions
of Elephant have a small state size, despite its support for parallelism. The
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LFSRs used for masking are tailored to the specific instance, one for each, and
are developed to operate well with the specific cryptographic permutation. For
example, the LFSRs paired with the Spongent instances have been chosen to
minimize the number of XOR operations that have to be performed for a state-
update, while the Keccak-based instance has been selected to perform well on
software platforms.

We note that the three cryptographic permutations in Elephant can also
be used for cryptographic hashing – in fact, Spongent [21] and Keccak [14]
themselves are sponges – but due to our quest for small permutations, these
cryptographic hash functions cannot meet the 112-, or 127-bit security level
guaranteed by our authenticated encryption schemes. In contrast, in order to
perform sponge-based hashing with at least 112-bit security, a cryptographic
permutation of size at least 225 bits must be used.

2 Algorithmic Specification

The generic Elephant mode is presented in Section 2.2, and the three primitives
used within the mode are presented in Sections 2.3-2.5. Before going to the
mode, we briefly describe the notation used in 2.1.

2.1 Notation

For n ∈ N, we let {0, 1}n denote the set of n-bit strings and {0, 1}∗ the set of
arbitrarily length strings. For X ∈ {0, 1}∗, we define

X1 . . . X`
n←− X (1)

to be the function that partitions X into ` = d|X|/ne blocks of size n bits,
where the last block is appended with 0s. The expression “A ? B : C” equals
B if A is true, and equals C if A is false. For x ∈ {0, 1}n and i ≤ n, we denote
by x� i (resp., x� i) a shift of x to the left (resp., right) over i positions. We
likewise denote by x≪ i (resp., x≫ i) a rotation of x to the left (resp., right)
over i positions. We denote by bxci the i left-most bits of x.

2.2 Elephant Authenticated Encryption Mode

Let k,m, n, t ∈ N with k,m, t ≤ n. Let P : {0, 1}n → {0, 1}n be an n-bit
permutation, and ϕ1 : {0, 1}n → {0, 1}n be an LFSR. Define ϕ2 = ϕ1⊕id,

::::::
where

::
id

::
is

:::
the

:::::::
identity

::::::::
function. Define the function mask : {0, 1}k ×N2 → {0, 1}n as

follows:

maska,bK = mask(K, a, b) = ϕb2 ◦ ϕa1 ◦ P(K‖0n−k) . (2)

We will describe the generic authenticated encryption mode of Elephant. It
consists of two algorithms: encryption enc and decryption dec.
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Algorithm 1 Elephant encryption algorithm enc

Input: (K,N,A,M) ∈ {0, 1}k × {0, 1}m × {0, 1}∗ × {0, 1}∗
Output: (C, T ) ∈ {0, 1}|M | × {0, 1}t

1: M1 . . .M`M
n←−M

2: for i = 1, . . . , `M do
3: Ci ←Mi ⊕ P(N‖0n−m ⊕maski−1,0

K )⊕maski−1,0
K

4: C ← bC1 . . . C`M c|M |
5: T = 0
6: A1 . . . A`A

n←− N‖A‖1
7: C1 . . . C`C

n←− C‖1
8: for i = 1, . . . , `A do
9: T ← T ⊕ P(Ai ⊕maski−1,2

K )⊕maski−1,2
K

10: for i = 1, . . . , `C do
11: T ← T ⊕ P(Ci ⊕maski−1,1

K )⊕maski−1,1
K

12: return (C, bT ct)

2.2.1 Encryption

Encryption enc gets as input a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}m, associated
data A ∈ {0, 1}∗, and a message M ∈ {0, 1}∗, and it outputs a ciphertext C ∈
{0, 1}|M | and a tag T ∈ {0, 1}t. The description of enc is given in Algorithm 1,
and it is depicted in Figure 1.

2.2.2 Decryption

Decryption dec gets as input a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}m, associated
data A ∈ {0, 1}∗, a ciphertext C ∈ {0, 1}∗, and a tag T ∈ {0, 1}t, and it outputs
a message M ∈ {0, 1}|M | if the tag is correct, or a dedicated ⊥-sign otherwise.
The description of dec is given in Algorithm 2.

2.3 160-Bit Permutation and LFSR

Section 2.3.1 defines the Spongent-π[160] permutation. The 160-bit masking
LFSR ϕ1 is defined in Section 2.3.2. These components are used in Dumbo.

2.3.1 Spongent Permutation

We denote by Spongent-π[160] : {0, 1}160 → {0, 1}160 the 80-round Spongent
permutation of Bogdanov et al. [21]. It operates on a 160-bit input X as follows:

for i = 1, . . . , 80 do
X ← X ⊕ 0153‖lCounter160(i)⊕ rev

(
0153‖lCounter160(i)

)
X ← sBoxLayer160(X)
X ← pLayer160(X)
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Figure 1: Depiction of Elephant. For the encryption part (top): message is
padded as M1 . . .M`M

n←− M , and ciphertext equals C = bC1 . . . C`M c|M |. For
the authentication part (bottom): nonce and associated data are padded as
A1 . . . A`A

n←− N‖A‖1, and ciphertext is padded as C1 . . . C`C
n←− C‖1.

where the function rev reverses the order of the bits of its input, and where the
functions lCounter160, sBoxLayer160, and pLayer160 are defined as follows:

• lCounter160: this function is a 7-bit LFSR defined by the primitive poly-
nomial p(x) = x7 + x6 + 1 and initialized with “1000101”;

• sBoxLayer160: this function consists of an S-box S : {0, 1}4 → {0, 1}4 ap-
plied 40 times in parallel. In hexadecimal notation, this S-box is defined
as

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(X) E D B 0 2 1 4 F 7 A 8 5 9 C 3 6

• pLayer160: this function moves the j-th bit of its input to bit position
P160(j), where

P160(j) =

{
40 · j mod 159 , if j ∈ {0, . . . , 158} ,
159 , if j = 159 .

2.3.2 LFSR

For generating the masks of our scheme, we use the approach of Granger et
al. [49]. We define ϕ1 as the following F2-linear map, where the xi’s correspond
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Algorithm 2 Elephant decryption algorithm dec

Input: (K,N,A,C, T ) ∈ {0, 1}k × {0, 1}m × {0, 1}∗ × {0, 1}∗ × {0, 1}t
Output: M ∈ {0, 1}|C| or ⊥

1: C1 . . . C`M
n←− C

2: for i = 1, . . . , `M do
3: Mi ← Ci ⊕ P(N‖0n−m ⊕maski−1,0

K )⊕maski−1,0
K

4: M ← bM1 . . .M`M c|C|
5: T̄ = 0
6: A1 . . . A`A

n←− N‖A‖1
7: C1 . . . C`C

n←− C‖1
8: for i = 1, . . . , `A do
9: T̄ ← T̄ ⊕ P(Ai ⊕maski−1,2

K )⊕maski−1,2
K

10: for i = 1, . . . , `C do
11: T̄ ← T̄ ⊕ P(Ci ⊕maski−1,1

K )⊕maski−1,1
K

12: return bT̄ ct = T ? M : ⊥

to 8-bit words:

(x0, . . . , x19) 7→ (x1, . . . , x19, x0 ≪ 3⊕ x3 � 7⊕ x13 � 7) . (3)

2.4 176-Bit Permutation and LFSR

Section 2.4.1 defines the Spongent-π[176] permutation. The 176-bit masking
LFSR ϕ1 is defined in Section 2.4.2. These components are used in Jumbo.

2.4.1 Spongent Permutation

We denote by Spongent-π[176] : {0, 1}176 → {0, 1}176 the 90-round Spongent
permutation of Bogdanov et al. [21]. It operates on a 176-bit input X as follows:

for i = 1, . . . , 90 do
X ← X ⊕ 0169‖lCounter176(i)⊕ rev

(
0169‖lCounter176(i)

)
X ← sBoxLayer176(X)
X ← pLayer176(X)

where, as before, the function rev reverses the order of the bits of its input. The
function lCounter176 is the same as lCounter160 of Section 2.3 but initialized with
“1111010”, the function sBoxLayer176 consists of the function S of Section 2.3
applied 44 times in parallel, and pLayer176 is now defined as the function that
moves the j-th bit of its input to bit position P176(j), where

P176(j) =

{
44 · j mod 175 , if j ∈ {0, . . . , 174} ,
175 , if j = 175 .
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2.4.2 LFSR

For generating the masks of our scheme, we use the approach of Granger et
al. [49]. The LFSR ϕ1 is defined as the following F2-linear map, where the xi’s
correspond to 8-bit words:

(x0, . . . , x21) 7→ (x1, . . . , x21, x0 ≪ 1⊕ x3 � 7⊕ x19 � 7) . (4)

2.5 200-Bit Permutation and LFSR

Section 2.5.1 defines the Keccak-f [200] permutation. The 200-bit masking LFSR
ϕ1 is defined in Section 2.5.2. These components are used in Delirium.

2.5.1 Keccak Permutation

We denote by Keccak-f [200] : {0, 1}200 → {0, 1}200 the 18-round Keccak permu-
tation of Bertoni et al. [14, 47]. The state X ∈ {0, 1}200 is represented as a
5-by-5-by-8 array a ∈ {0, 1}5×5×8, where for (x, y, z) ∈ Z5 × Z5 × Z8 the bit at
position (x, y, z) is set as

a[x, y, z] = X[8(5y + x) + z] .

Keccak-f [200] operates on a 200-bit input X as follows:

for i = 1, . . . , 18 do
X ← ι ◦ χ ◦ π ◦ ρ ◦ θ(X)

where the functions θ, ρ, π, χ, and ι are defined as follows:

θ : a[x, y, z]← a[x, y, z]⊕
4⊕

y′=0

a[x− 1, y′, z]⊕
4⊕

y′=0

a[x+ 1, y′, z − 1] ,

ρ : a[x, y, z]← a[x, y, z + t[x, y]] ,

π : a[x, y, z]← a[x+ 3y, x, z] ,

χ : a[x, y, z]← a[x, y, z]⊕ (a[x+ 1, y, z]⊕ 1)a[x+ 2, y, z] ,

ι : a[x, y, z]← a[x, y, z]⊕ RC [i, x, y, z] .

For ρ, the function t[x, y] is defined as

t x = 3 x = 4 x = 0 x = 1 x = 2

y = 2 153 231 3 10 171
y = 1 55 276 36 300 6
y = 0 28 91 0 1 190
y = 4 120 78 210 66 253
y = 3 21 136 105 45 15

and for ι, the round constants are given by

RC [i, x, y, z] =

{
rc[j + 7i] , if (x, y, z) = (0, 0, 2j − 1) ,

0 , otherwise ,
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where rc is computed from a binary LFSR defined by the primitive polynomial
p(x) = x8 + x6 + x5 + x4 + 1.

2.5.2 LFSR

For generating the masks of our scheme, we use the approach of Granger et
al. [49]. The LFSR ϕ1 is now defined as the following F2-linear map, where the
xi’s correspond to 8-bit words:

(x0, . . . , x24) 7→ (x1, . . . , x24, x0 ≪ 1⊕ x2 ≪ 1⊕ x13 � 1) . (5)

3 Parameterization of Elephant

Elephant consists of three instances, namely those built from instantiating the
mode using the permutation and LFSR of Sections 2.3, 2.4, and 2.5, respectively.
In more detail, we restrict our focus to n ∈ {160, 176, 200}. We also set m = 96,
i.e. we restrict to nonces of size 96 bits. Parameters k, t ∈ N are still tunable.
We propose the following three instances of Elephant (with Dumbo being the
primary member):

expected limit on
security online

instance k m n t P ϕ1 strength complexity

Dumbo 128 96 160 64 Spongent-π[160] (3) 2112 250/(n/8)
Jumbo 128 96 176 64 Spongent-π[176] (4) 2127 250/(n/8)
Delirium 128 96 200 128 Keccak-f [200] (5) 2127 274/(n/8)

Here, the online complexity is in terms of the number of n-bit blocks (hence
all instances support an online complexity of 250 bytes), and the strength is
measured in the offline complexity, i.e., the number of primitive evaluations
that the adversary can make.

In Appendix B, we give a formal security analysis of the Elephant authenti-
cated encryption mode in the ideal permutation model, and prove that the ad-
vantage of a nonce-based adversary in breaking security of either of the schemes
is at most

Advae
Elephant(A) ≤ `

(
qe
2

)
/2n +

2n−tqd
2n − 1

e(qe+1)qe/2
n

+
4σ2 + 4σp+ 4σ + p

2n
+

p

2k
,

where qe expresses an upper bound on the number of evaluations of the en-
cryption function, qd the number of decryption queries, ` the maximum length
of a single query in blocks, σ the total online complexity in blocks, and p the
number of evaluations of the random primitive P. Note that the dominating
term in the bound is 4σp/2n. By capping σ ≤ 2n−114, this term is less than 1
as long as p ≤ 2112. Likewise, by capping σ ≤ 2n−130, this term is less than 1 as
long as p ≤ 2128. However, one also needs to take the other terms of the bound
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into account. Most of the terms are negligible compared to 4σp/2n, and are
covered by taking a slightly stricter condition on σ (note that 250/(n/8) < 246

and 274/(n/8) ≤ 270 for each of the instances). There is one exception to these
negligible terms, namely the factor p/2k for Jumbo and Delirium: it equals 1 for
p = 2128. This term thus accounts for a factor 2 loss in the security strength
of Jumbo and Delirium, and we must restrict the offline complexity for these
variants by a factor 2, as indicated in above table.

We stress that these security claims only holds in the nonce-respecting set-
ting: the adversary may not evaluate the encryption function twice under the
same nonce (it may make decryption queries for a reused nonce, though). If
the nonce is reused for two different evaluations of enc, security is void. In
particular, if the nonce uniqueness condition is released, trivial confidentiality
and integrity attacks can be mounted. This is not considered to be a flaw
in the scheme. We also do not claim security in case unverified plaintext is re-
leased [5]; we note, however, that in practice decryption of the ciphertext C into
the message M takes place only after the tag (in turn, computed from the nonce,
associated data, and ciphertext) has been verified. Finally, security decreases in
the multi-key or related-key setting.

4 Design Rationale

The Elephant mode is an encrypt-then-MAC mode, where encryption is per-
formed by counter mode and message authentication by a variant of Wegman-
Carter-Shoup [82, 92], both implicitly instantiated using a simplification of the
masked Even-Mansour (MEM) tweakable block cipher of Granger et al. [49].
This tweakable block cipher, in turn, is based on a Spongent [21] or Keccak [14]
permutation. We explain the design rationale of Elephant at the following three
levels of granularity: the generic mode in Section 4.1, how the mode uses the per-
mutation, i.e., the masking scheme, in Section 4.2, and the choice of particular
primitives in Section 4.3. Finally, Section 4.4 briefly discusses implementation
aspects.

4.1 Mode

Generically, encrypt-then-MAC is the most secure approach [9, 71]: unlike its
alternatives encrypt-and-MAC and MAC-then-encrypt, this approach yields in-
tegrity of ciphertexts. Stated differently, malformed ciphertexts yield failure
upon MAC verification, and for these no decryption is needed. This prevents
unintended leakage from verification failures. The approach also makes it possi-
ble to easily prevent leakage due to release of unverified plaintext: simply do not
start decrypting before the tag is verified. Note that for the generic alternatives
encrypt-and-MAC and MAC-then-encrypt, such a simple countermeasure is im-
possible. This makes the encrypt-then-MAC mode of Elephant preferable over
its alternatives, not only in the lightweight setting but also for general purpose.

The counter encryption mode and Wegman-Carter-Shoup MAC mode within
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Elephant, in turn, are both fully parallelizable and only evaluate the underlying
permutation P in forward direction. The fact that Elephant evaluates its prim-
itive in forward direction is important in the lightweight setting: it allows for
smaller implementations, since there is no need to implement the inverse of P.
Note, in particular, that due to the rise of the sponge, various cryptographic
permutations, including Ascon [42], Gimli [12], Keccak [14], and XOODOO [33],
are developed to be particularly efficient in forward direction.

By being parallelizable, Elephant distinguishes itself from a wide range of
authenticated encryption schemes that employ a serial permutation-based mode
of operation, such as APE [3], Beetle [28], or the Duplex construction [13,34,66].
To support parallelism, we need to store the internal state value, but on the
upside, it turns out to give various elegant implementation advantages (see
Section 4.2 and Section 4.4) and it means that there is no strict need to employ
larger permutations.

The mode is nonce-based: each of the members of Elephant uses a 96-bit
nonce. The nonce is prepended to the associated data, which is then padded
into n-bit blocks A1 . . . A`A (see line 6 of Algorithm 1). This way, the scheme
is optimized for the parameters specified in the NIST call [72]: the nonce is
96 bits, and in order to avoid a waste of n − 96 bits due to padding (where
n ∈ {160, 176, 200}), the nonce is appended with the first n − 96 bits of the
associated data. Caution must be paid here, namely that the nonce is always
of fixed length of 96 bits. If variable-length nonces were allowed, the scheme
would be vulnerable to trivial padding attacks. Also, as the mode is nonce-
based, security is guaranteed only if the adversary does not repeat nonces for
encryption queries.

4.2 Masking

As specified in Section 2.2, the inputs to and outputs of the permutation P are
masked using maska,bK of (2). The masking function is defined using two LFSRs
ϕ1, ϕ2 : {0, 1}n → {0, 1}n that satisfy ϕ2 = ϕ1 ⊕ id, and it is parameterized by
(a, b) which are used in a manner so as to assure that every occurrence of the
masking in the Elephant mode gets different parameters.

The LFSR-based masking technique is taken from Granger et al. [49], and
so is the security analysis (although different state sizes, discrete logarithm
computations, LFSRs, and tweak domains are considered). Granger et al. have
argued in favor of this technique over its alternatives for various reasons: (i) the
approach is simpler to implement, as the masking is purely linear and does not
use finite field multiplication, (ii) it is more efficient (depending on the primitive
used), and (iii) the masking is constant time.

The latter point is important in the lightweight setting where resistance
against timing attacks comes at a cost. In this respect, the LFSR-based mask-
ing approach compares favorably with another, and very popular, masking tech-
nique, namely powering-up-based masking (simplified to allow for fair compar-
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ison with (2)):

3b2aP(K‖0n−k) ,

where 2 and 3 are coordinates in the monomial basis in the finite field F2n .
The technique was introduced by Rogaway [78] in the context of OCB2, and
it has seen many applications, including CAESAR submissions AES-OTR [67],
AEZ [52], COLM [4], Minalpher [81], POET [2], and SHELL [91]. Note that,
in F2n , a multiplication by 2

:::::
These

::::::::::::::
multiplications

:
can be implemented as a

conditional XOR, which is variable-time and which can only be made constant
time at a certain cost. A similar issue occurs for multiplication by 3. For
comparison,

::
an

::::::
LFSR

:::
on

:::::::
one-bit

::::::
words,

::::
but

:
the masking functions ϕ1 and ϕ2

are constant time by design .
::::
and

:::::
allow

:::
for

:::::
more

:::::::::
flexibility

::
in

:::
the

:::::
word

:::::
size.

:

A related masking approach is that of OCB3 [58] and OMD [31], which use
masking based on Gray coding. In detail, Gray coding-based masks can be
updated as G(i) = G(i− 1)⊕ 2ntz(i), were ntz(i) is the number of trailing zeros
in the binary representation of i. The masking, unlike powering-up, does not
need a conditional XOR, but it requires log2(i) field doublings (which may be
precomputed). As the LFSR-based masking used in Elephant does not incur
such a cost, it also compares favorably with this technique.

The particular choice of masking, namely (a, b) = (i, 0) in the encryption
layer, (a, b) = (i, 1) for ciphertext authentication, and (a, b) = (i, 2) for as-
sociated data authentication, allows maskings to cancel out nicely in the im-
plementation. To see this, consider the authentication of ciphertext Ci (for
i < `M ≤ `C), and more detailed the contribution Ti it makes to tag T . This
value is computed as

Ti = P
(
Mi ⊕ P(N‖0n−m ⊕maski−1,0

K )⊕maski−1,0
K ⊕maski−1,1

K

)
⊕maski−1,1

K .

By definition of maska,bK , and as ϕ2 = ϕ1 ⊕ id, we have

maski−1,0
K ⊕maski−1,1

K = ϕi−1
1 ◦ P(K‖0n−k)⊕ (ϕ1 ⊕ id) ◦ ϕi−1

1 ◦ P(K‖0n−k)

= ϕi1 ◦ P(K‖0n−k) .

This, not surprisingly, is the mask used for the encryption of the next message
block Mi+1.

:::
We

:::::
note

::::
that

:::::::::
exploiting

::::
this

::::::::
requires

:::::
extra

:::::
state.

:

Another optimization in mask management is in the masks that contribute
to the tag, i.e., the sum of all masks that appear in the final tag T . The
contribution coming from the ciphertext authentication equals(

`C⊕
i=1

maski−1,1
K

)
=

(
`C⊕
i=1

(ϕ1 ⊕ id) ◦ ϕi−1
1 ◦ P(K‖0n−k)

)
= (ϕ`C1 ⊕ id) ◦ P(K‖0n−k) , (6)

and that coming from the associated data likewise equals(
`A⊕
i=1

maski−1,2
K

)
= (ϕ`A+1

1 ⊕ ϕ`A1 ⊕ ϕ1 ⊕ id) ◦ P(K‖0n−k) . (7)
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This feature of the masking may be useful if Elephant is used for fixed-length
data, in which case the (6) and (7) could be precomputed.

4.3 Primitives

4.3.1 Dumbo and Jumbo

Both the 160-bit and 176-bit instance of Elephant are based on a Spongent
permutation [21]: the 160-bit instance is based on the Spongent-π[160] permu-
tation, and the 176-bit instance is based on the Spongent-π[176] permutation.
The choice for Spongent is natural: it is particularly well-suited for hardware,
and the existing third-party analysis (see Section 5.2) does not indicate any
weakness of the Spongent family relevant for our use-case. We have used the
160-bit version of Spongent as this is the smallest possible permutation that can
be used to efficiently1 meet the NIST call for proposals. The 176-bit Spongent
permutation offers a slightly more comfortable 127-bit security margin. In ad-
dition, this particular Spongent permutation is part of the ISO/IEC standard
on lightweight hash functions [54].

Bogdanov et al. [21] do not explicitly specify the number of rounds of the
160-bit version of the Spongent permutation; we opt for 80 rounds since this
ensures that at least 160 S-boxes are differentially active. This is in accordance
with the Spongent design strategy. Note further that this implies that the 7-bit
LFSR specified in [21] should be used (with initial value 0x75) to generate the
round constants for the permutation.

The LFSRs of both instances aim to minimize the area required when im-
plemented in hardware. In particular, in addition to the shift register, only two
2-bit XOR gates are needed. Hence, these choices of LFSRs are in line with the
strength of the Spongent permutations, making a perfect match for small area
hardware implementations. Despite the particular suitability of both LFSRs
for small area hardware implementations, it is still possible to implement them
rather efficiently on 8-bit platforms.

4.3.2 Delirium

The 200-bit instance of Elephant is based on the Keccak-f [200] permutation [14].
The 200-bit instance is the smallest of the instances in the NIST standard [47]
that fits our need; it is still reasonable in hardware, and particularly good in
software on 8-bit platforms, considering that it is naturally defined using 8-bit
lanes [16,56]. As such, it is complementary to the Spongent-based instantiation
of Elephant.

This LFSR shows its full potential when implemented on 8-bit platforms. A
state update within the LFSR just updates one byte, while the content of the
other 24 bytes is not changed and basically just relabeled. The single updated
byte is computed as the XOR sum of 3 bytes other state bytes that are just

1Beyond birthday bound solutions may use even smaller permutations, but only at an
efficiency penalty.
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rotated or shifted by one bit position. Hence, the essential operations that have
to be performed on 8-bit platforms are 3 XOR operations, two rotations by one
bit to the left plus one shift by one bit to the left.

4.4 Implementation

As discussed in Section 4.1, the Elephant mode allows for a high degree of paral-
lelism. For the hardware-oriented variants of Elephant (Dumbo and Jumbo), this
makes it easy to trade-off area for additional throughput. Hardware implemen-
tations of the 176-bit Spongent permutation are given by Bogdanov et al. [21],
e.g., just needing 1329 GE to implement the Spongent-160 hash function, which
is based on the 176-bit Spongent permutation. The 200-bit variant of Elephant
primarily targets (embedded) software, but the same remarks concerning hard-
ware implementations apply as, e.g., demonstrated by an implementation of a
hash function based on the 200-bit Keccak permutation needing just 2520 GE
by Kavun and Yalçin [56].

Software implementations of 200-bit Elephant (Delirium) can also exploit
parallelism. If multiple cores are available, several blocks can be processed
concurrently – but this is only useful for long messages. More importantly, on
processors with a word size above 16 bits, the available parallelism makes it pos-
sible to increase the efficiency of the implementation by combining two or more
calls to the Keccak permutation. For mid- and high-end processors with SIMD
instructions, the same technique can be used to obtain even greater speed-ups.

An increasingly common requirement is the ability to protect implemen-
tations against side-channel attacks. As discussed in Section 4.2, the masking
scheme is constant time by design. The same applies to the Spongent and Keccak
permutations. In addition, all variants of Elephant are well-suited for Boolean
masking techniques such as threshold implementations [75].

Finally, it is worth mentioning that a few specific use-cases of Elephant allow
for additional optimizations. As discussed in Section 4.2, the contribution of
the mask values to the tag can be precomputed for fixed-length messages. In
addition, if one or more blocks of associated data are static, it is possible to
precompute their contribution to the tag – with the exception of the first block,
which involves the nonce.

A reference implementation of Dumbo, Jumbo, and Delirium written in C99
can be found at https://github.com/TimBeyne/Elephant.

5 Summary of Known Cryptanalytic Attacks

After briefly reviewing security aspects of the generic Elephant mode in Sec-
tion 5.1, we discuss the main cryptanalytic results on Spongent in Section 5.2,
and on Keccak in Section 5.3.
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5.1 Generic Mode

In Appendix B, we prove that the generic mode of Elephant, based on a tweakable
block cipher, is secure. The security proof is standard, and it builds among
others on ideas of Bellare and Namprempre [9] and Namprempre et al. [71] (for
insights in the encrypt-then-MAC approach), and Bernstein [10] (for insights
in the Wegman-Carter-Shoup MAC mode). The analysis of the underlying
tweakable block cipher, in turn, builds on Granger et al. [49].

5.2 Spongent Permutation

We discuss the main known cryptanalytic results in detail, and refer to Ap-
pendix A.1 for a complete list.

Differential Cryptanalysis. The following result of Bogdanov et al. [22]
provides a lower bound on the number of active S-boxes in any differential
characteristic of Spongent-π[b] with b ≥ 64. The result and its proof are similar
to those for the block cipher PRESENT [23].

Theorem 5.1 (Theorem 1 of Bogdanov et al. [22]). Any 5-round differential
characteristic of Spongent-π[b] with b ≥ 64 involves at least 10 differentially
active S-boxes.

Theorem 5.1 implies that after r rounds of Spongent-π[b] with b ≥ 64, at least
2r S-boxes are differentially active. Since the S-box is differentially 4-uniform,
it follows that the probability of any r-round characteristic is at most 2−4r.

Note that the number of rounds of Spongent-π[b] is determined such that at
least b S-boxes are differentially active [22]. Equivalently, Spongent-π[b] should
have at least b/2 rounds.

More rounds can be attacked by relying on truncated differentials. For exam-
ple, for b = 176, Zhang and Liu [94] presented a 46-round truncated differential
with (marginally) significant probability. These properties are derived from
multidimensional linear approximations, following Blondeau and Nyberg [20].
In the next section, linear approximations are discussed in more detail.

In conclusion, (truncated) differential cryptanalysis does not threaten full-
round Spongent-π[b], for neither b = 160 nor b = 176. In addition, one should
keep in mind that many of the best reduced-round distinguishers require more
data than is allowed to be processed by the Elephant mode (i.e., no more than
247 chosen plaintexts).

Linear Cryptanalysis. In order to assess the security of the permutation
Spongent-π[b] against linear cryptanalysis, we follow the approach used by Bog-
danov et al. [22]: rather than computing only the correlation of individual
trails, the correlation of linear approximations will be estimated. Previous work
has shown that 1-bit (per round) trails are dominant in PRESENT-like de-
signs [30, 61], meaning that one can estimate the correlation of all 1-bit linear
approximations over r rounds by computing the product of r sparse matrices of
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size b×b. Table 1 shows the resulting estimates, where cr denotes the maximum
absolute correlation after r rounds.

Table 1: Estimated maximum correlation of linear approximations of Spongent-
π[b] with b ∈ {160, 176}. The total number of rounds is denoted by R (that is,
R = 80 for b = 160 and R = 90 for b = 176).

b = 160 b = 176

c40 2−80 2−80

c44 2−88 2−88

cR 2−160 2−180

The estimates in Table 1 could be improved by taking into account additional
trails. For example, Abdelraheem [1] gives improved estimates by taking into
account all trails with at most four linearly active S-boxes per round. This
yields slightly improved distinguishers in some cases, but still covering at most
one or two additional rounds.

The results above imply that full-round Spongent-π[b] is not threatened
by linear attacks, statistical saturation attacks, or multidimensional linear at-
tacks [30, 32]. As for differential cryptanalysis, it should be remarked that the
security margin remains large, especially because even the reduced-round dis-
tinguishers typically require more data than the Elephant mode can securely
process.

Integral Cryptanalysis. Division properties of Spongent-π[b] have been an-
alyzed to some extent, in particular for b = 88 [46, 88, 89]. Eskandari et al. [46]
built a SAT-solver based tool to find, or show the absence of, division proper-
ties. They use this tool to show that Spongent-π[176] does not have a bit-based
division property covering 12 rounds or more. It was verified that the same
holds for Spongent-π[160].

It is often possible to setup a distinguisher that covers more rounds, by
starting from the middle of the permutation and extending the division property
in the forward and backward direction. For example, Sun et al. [89] presented
a zero-sum distinguisher for 21 rounds of Spongent-π[160] requiring 2159 data.
Remark that even this reduced-round distinguisher far exceeds the data limits
imposed for Elephant.

We now discuss the ramifications of the above results in the context of im-
possible differentials and zero-correlation linear approximations, by relying on
a result of Sun et al. [87]. Sun et al. demonstrated that a nontrivial zero-
correlation linear approximation of a permutation constructively implies the
existence of an integral distinguisher. They furthermore demonstrated that, as
Spongent-π[b] has a bitwise (hence self-dual) linear layer, one can conclude that
for (round-reduced) Spongent-π[b], any nontrivial impossible differential that
does not depend on the choice of the S-box constructively implies the existence
of an integral distinguisher.
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It can be concluded that Spongent has a very large margin against integral-
type distinguishers. The same applies to zero correlation linear approximations
and impossible differentials (not relying on the S-box structure), due to their
links with integral properties.

5.3 Keccak Permutation

We discuss the main known cryptanalytic results in detail, and refer to Ap-
pendix A.2 for a complete list.

Differential Cryptanalysis. The differential properties of the permutation
Keccak-f [200] have been extensively analyzed and no significant differential
distinguishers are expected to exist [14, 35, 65]. Due to Keccak’s weak align-
ment [15], there are no known analytic upper bounds on the probability of dif-
ferential characteristics. Instead, computer assistance is required to determine
bounds.

The analysis in the Keccak reference [14] leads to lower bounds on the weight
of symmetric characteristics in Keccak-f – remark that Keccak-f [200] charac-
teristics are symmetric by definition. The results are summarized in the first
three rows of Table 2. Improved bounds are presented by Mella, Daemen, and
Van Assche [65] based on a dedicated search algorithm. For the characteristics
corresponding to the lower bounds in Table 2, the reader is referred to Table 3
of [65].

Table 2: Lower and upper bounds on the minimum weight of differential char-
acteristics in Keccak-f [200] [14,65].

Rounds Lower bound Upper bound

2 8 8
3 20 20
4 46 46
5 50 89
6 92 142

18 276 —–

Of course, the lack of high probability differential characteristics need not
imply that all differentials have low probability. Bertoni et al. [15] argue that
clustering of 2-round characteristics is prevented by weak alignment. This means
that the propagation of differentials does not respect cell-boundaries in Keccak.
Weak alignment leads the authors of Keccak to believe that it is unlikely that
truncated differentials can be successfully exploited [15].

Linear Cryptanalysis. The Keccak reference [14] provides lower bounds on
the weight of linear trails, where the weight of a linear trail equals minus the
logarithm of the square of its correlation. These bounds are listed in Table 3.
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The lower bound for full-round Keccak-f [200] is 204, corresponding to a correla-
tion which is only slightly smaller than the variance of the correlation of linear
approximations in a random permutation. It should be emphasized that 204 is
a rather rough lower bound, and the true minimum weight is expected to be
much larger.

As in the case of differential cryptanalysis, Bertoni et al. [15] provide argu-
ments against clustering of linear trails based on Keccak’s weak alignment.

Table 3: Lower and upper bounds on the minimum weight of linear trails in
Keccak-f [200] [14].

Rounds Lower bound Upper bound

2 8 8
3 20 20
4 46 46

18 204 —–

Attacks Exploiting Algebraic Degree. For keyed instances that use vari-
ants of Keccak-f , such as Ketje [18] and Keyak [17], the attacks covering the
highest number of rounds typically exploit the algebraic degree, e.g., cube [41],
cube-like [40], or conditional cube attacks [53]. In the case of Ketje Jr., that
builds on a round-reduced version of Keccak-f [200], those attacks can cover up to
6 rounds [83]. If we take a broader look at constructions that use bigger variants
of Keccak-f , and also allow the attacker more degrees of freedom in placing the
cube variables, those attacks usually lie in the region of 8 rounds [19,40,43,53,85]
considering a targeted security level of 128-bits. Since Keccak-f [200] used in
Delirium has 18 rounds, we have a huge security margin against this type of
attacks.
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[56] Kavun, E.B., Yalçin, T.: A Lightweight Implementation of Keccak Hash
Function for Radio-Frequency Identification Applications. In: Yalcin,
S.B.O. (ed.) Radio Frequency Identification: Security and Privacy Issues
- 6th International Workshop, RFIDSec 2010, Istanbul, Turkey, June 8-
9, 2010, Revised Selected Papers. LNCS, vol. 6370, pp. 258–269. Springer
(2010), https://doi.org/10.1007/978-3-642-16822-2 20

[57] Kölbl, S., Mendel, F., Nad, T., Schläffer, M.: Differential Cryptanalysis
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B Security of Elephant Mode

We describe the security model in Section B.1, introduce a simplified version of
masked Even-Mansour in Section B.2, and state the formal security result on
Elephant in Section B.3. We discuss the implication of this result for the three
instances Dumbo, Jumbo, and Delirium in Section B.4.

B.1 Security Model

For a finite set T , we denote by perm(n) the set of all n-bit permutations and
by perm(T , n) the set of all families of permutations indexed by T ∈ T . For a

finite set S, we denote by s
$←− S the uniform random sampling of an element s

from S.
An adversary A is an algorithm that is given access to one or more oracles

O, and after interaction with O it outputs a bit b ∈ {0, 1}. This event is denoted
as AO → b. In our work, we will be concerned with computationally unbounded
adversaries A; their complexities are only measured by the amount

:::::::
number of

oracle queries. For two randomized oracles O,P, we denote the advantage of
an adversary A in distinguishing both by

∆A (O ; P) = Pr
(
AO → 1

)
−Pr

(
AP → 1

)
. (8)

Finally, let k,m, n, t ∈ N with k,m, t ≤ n throughout.

B.1.1 Authenticated Encryption

An authenticated encryption scheme AE consists of two algorithms enc and
dec. Encryption enc gets as input a key K ∈ {0, 1}k, a nonce N ∈ {0, 1}m,
associated data A ∈ {0, 1}∗, and a message M ∈ {0, 1}∗, and it outputs a
ciphertext C ∈ {0, 1}|M | and a tag T ∈ {0, 1}t. Decryption dec gets as input a
key K ∈ {0, 1}k, a nonce N ∈ {0, 1}m, associated data A ∈ {0, 1}∗, a ciphertext
C ∈ {0, 1}∗, and a tag T ∈ {0, 1}t, and it outputs a message M ∈ {0, 1}|C| if the
tag is correct, or a dedicated ⊥-sign otherwise. The two functions are required
to satisfy

dec(K,N,A, enc(K,N,A,M)) = M .

In our work, the authenticated encryption scheme AE is based on an n-bit

permutation P, which is modeled as a random permutation: P
$←− perm(n). The
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security of AE against an adversary A is defined as

Advae
AE(A) = ∆A

(
encPK , dec

P
K ,P

± ; rand,⊥,P±
)
, (9)

where the randomness of the oracles is taken over K
$←− {0, 1}k, P

$←− perm(n),
and the function rand that for each input (N,A,M) returns a random string
of size |M | + t bits. The

::::::::::
superscript

::

±
::::::::
indicates

:::::::::
two-sided

::::::
access

:::
by

:::
A.

:::::
The

function ⊥ returns the ⊥-sign for each query.
We only consider nonce-respecting adversaries: A is not allowed to make two

encryption queries for the same nonce. It is also not allowed to relay the output
of the encryption oracle (encK in the real world and rand in the ideal world) to
the decryption oracle (decK in the real world and ⊥ in the ideal world).

B.1.2 Tweakable Block Ciphers

A tweakable block cipher Ẽ is a function that gets as input a key K ∈ {0, 1}k,
tweak T ∈ T ,2 and message M ∈ {0, 1}n, and it outputs a ciphertext C ∈
{0, 1}n. The tweakable block cipher is required to be bijective for any fixed
(K,T ).

In our application, we will not make use of the inverse Ẽ−1. More impor-
tantly, for our authenticated encryption scheme it suffices to use a tweakable
block cipher that is secure against adversaries that only have access to Ẽ, and
not to Ẽ−1. The tweakable block cipher considered in this work is based on an

n-bit permutation P, which is modeled as a random permutation: P
$←− perm(n).

The security of Ẽ against an adversary A is defined as

Advtprp

Ẽ
(A) = ∆A

(
ẼP
K ,P

± ; π̃,P±
)
, (10)

where the randomness of the oracles is taken over K
$←− {0, 1}k, P

$←− perm(n),

and π̃
$←− perm(T , n).

B.2 Simplified Masked Even-Mansour

The Elephant authenticated encryption family uses its underlying permutation
in a “Masked Even-Mansour” (MEM) construction [49]: the input to and output
of the permutation P are masked using an LFSR evaluated on the secret key.
However, the tweakable block cipher used in our proposal is simpler than the
original construction in two ways: (i) the tweak only consists of the exponents
of the LFSRs and not the nonce and (ii) in our application, the tweakable block
cipher is only evaluated in the forward direction. The changes are not huge, but
they do allow for a simpler description, security analysis, and bound. We will
refer to this scheme as SiM (Simplified MEM). For generality, we will keep the
formalization for an arbitrary amount of LFSRs, even though we will only use
it for two LFSRs.

2In our application, the tweak space is of a specific form and cannot be conveniently
expressed as a set of binary strings.
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B.2.1 Specification

Let k, n, z ∈ N. Let P ∈ perm(n) be an n-bit permutation, and let ϕ1, . . . , ϕz :
{0, 1}n → {0, 1}n be z LFSRs. Let T ⊆ Nz be a finite tweak space. Define the
function mask : {0, 1}k × T → {0, 1}n as follows:

maska1,...,azK = mask(K, a1, . . . , az) = ϕazz ◦ · · · ◦ ϕ
a1
1 ◦ P(K‖0n−k) . (11)

We define the tweakable block cipher SiM : {0, 1}k × T × {0, 1}n → {0, 1}n as

SiM(K, (a1, . . . , az),M) = P(M ⊕maska1,...,azK )⊕maska1,...,azK . (12)

B.2.2 Security of SiM

We need a restriction on the tweak space T in order for SiM to be a secure
tweakable block cipher. As Granger et al. [49], we say that T is 2−α-proper with
respect to (ϕ1, . . . , ϕz) if the function L 7→ ϕazz ◦ · · · ◦ϕ

a1
1 (L) is 2−α-uniform and

2−α-XOR-uniform.

Definition B.1. Let n, z ∈ N. Let ϕ1, . . . , ϕz : {0, 1}n → {0, 1}n be z LFSRs.
The tweak space T is called 2−α-proper with respect to (ϕ1, . . . , ϕz) if the
following two properties hold:

1. For any Y ∈ {0, 1}n and (a1, . . . , az) ∈ T ∪ {(0, . . . , 0)},

Pr
(
L

$←− {0, 1}n : ϕazz ◦ · · · ◦ ϕ
a1
1 (L) = Y

)
≤ 2−α ;

2. For any Y ∈ {0, 1}n and distinct (a1, . . . , az), (a
′
1, . . . , a

′
z) ∈ T ∪{(0, . . . , 0)},

Pr
(
L

$←− {0, 1}n : ϕazz ◦ · · · ◦ ϕ
a1
1 (L)⊕ ϕa

′
z
z ◦ · · · ◦ ϕa

′
1

1 (L) = Y
)
≤ 2−α .

In Section C, we will prove Theorem B.2, which says that if the tweak space
is 2−α-proper for sufficiently small 2−α (note that 2−α cannot be smaller than
2−n), then SiM is a secure tweakable block cipher. The proof is a direct simplifi-
cation of Granger et al.’s analysis of MEM [49], due to the changes described in
the introductory text of Section B.2. These simplifications allow us to derive a
slightly improved bound on the advantage, noting for comparison that Granger
et al. [49] proved security up to (4.5q2 + 3qp)/2α + p/2k.

Theorem B.2. Let k, n, z ∈ N. Let ϕ1, . . . , ϕz : {0, 1}n → {0, 1}n be z LFSRs,
and let T be a 2−α-proper tweak space with respect to (ϕ1, . . . , ϕz). Consider

SiM of (12) based on random permutation P
$←− perm(n). For any adversary A

making at most q ≤ 2n−1 construction queries and p primitive queries,

Advtprp
SiM (A) ≤ q2 + 2qp

2α
+

2q + p

2n
+

p

2k
.

The proof is given in Section C.

36



B.3 Security of Elephant

We will prove security of Elephant of Section 2 for any 2−α-proper tweak space.
The specific choice of tweak space for the three instances of Elephant will be
discussed in Section B.4.

Theorem B.3. Let k,m, n, t ∈ N with k,m, t ≤ n. Let ϕ1, ϕ2 : {0, 1}n →
{0, 1}n be LFSRs, and let T be a 2−α-proper tweak space with respect to (ϕ1, ϕ2).

Consider Elephant = (enc, dec) of Section 2 based on random permutation P
$←−

perm(n). For any adversary A making at most qe ≤ 2n−1 construction encryp-
tion queries, qd construction decryption queries, each query at most ` padded
nonce and associated data and message blocks, and in total at most σ padded
nonce and associated data and message blocks, and p primitive queries,

Advae
Elephant(A) ≤ `

(
qe
2

)
/2n +

2n−tqd
2n − 1

e(qe+1)qe/2
n

+ Advtprp
SiM (A′) ,

for some A′ that makes 2σ construction queries and p primitive queries.

The proof is given in Section D.

B.4 Implication for Dumbo, Jumbo, and Delirium

B.4.1 Dumbo: 160-Bit Elephant

We will prove that the 160-bit LFSR defined by (3) has maximal length, and
that the tweak space used in Elephant with this LFSR is 2−n-proper with respect
to (ϕ1, ϕ2).

Proposition B.4. Let n = 160. Let ϕ1 : {0, 1}160 7→ {0, 1}160 be the LSFR
given in (3), and ϕ2 = ϕ1⊕ id. The tweak space T = T1×T2 = {0, 1, . . . , 2154}×
{0, 1, 2} is 2−n-proper with respect to (ϕ1, ϕ2).

Proof. The proof is almost identical to [49, Lemma 4], with the main difference
that a different discrete logarithm must be computed. Let V be the 160× 160
matrix over F2 that represents ϕ1 of (3). As shown in [49, Lemma 3], ϕi1(L) =
V i · L is 2−n-proper for i ∈ {0, . . . 2n − 2} if the minimal polynomial of V is
primitive and of degree n. A quick computation using Sage [90] shows that this
polynomial

p(x) = x160 + x136 + x83 + x53 + 1

is irreducible and primitive.
Next, let ` = logx(x + 1) in the field F2[x]/p(x). We have to show that

ϕb2 ◦ ϕa1(L) = (V + I)b · V a · L = V `·b · V a · L is unique for any distinct set of
tweaks. A simple Sage computation gives the following values for ` and 2`:

` = 742800116542094474882643562714650758474536684889 ≈ 2159.02 ,

2` = 24098595753286031561602292713018497293140826803 ≈ 2154.08 .
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If we consider that b ∈ {0, 1, 2} divides the tweak space into three sets, the
smallest difference is between the set with b = 0 and the set corresponding
to b = 2, which is bigger than 2154. Hence, by ensuring that 0 ≤ a ≤ 2154,
we have that for any two distinct (a, b), (a′, b′) ∈ {0, 1, . . . , 2154} × {0, 1, 2},
ϕb2 ◦ ϕa1 6= ϕb

′

2 ◦ ϕa
′

1 .
Finally, using both of the above observations, one can easily observe that T

is 2−n-proper in light of Definition B.1.

We directly obtain that Dumbo is secure in the random permutation model.

Corollary B.5. Let (k,m, n, t) = (128, 96, 160, 64). Let T = {0, 1, . . . , 2154} ×
{0, 1, 2}. Consider Dumbo: Elephant = (enc, dec) of Section 2 based on

:::
the

:::::::::::
permutation Spongent-π[160], modeled as a random 160-bit permutation, and
on ϕ1 : {0, 1}160 → {0, 1}160 of (3). For any adversary A making at most qe
construction encryption queries, qd construction decryption queries, each query
at most ` padded nonce and associated data and message blocks, and in total
at most σ ≤ 2158 padded nonce and associated data and message blocks, and p
primitive queries,

Advae
Dumbo(A) ≤ `

(
qe
2

)
/2160 +

296qd
2160 − 1

e(qe+1)qe/2
160

+
4σ2 + 4σp+ 4σ + p

2160
+

p

2128
,

Recall that NIST’s call for lightweight authenticated encryption schemes [72]
requested security up to an online complexity of around 250 bytes. By limiting
the total online complexity σ to 250/(n/8) blocks, the bound of Corollary B.5
is at most 1 for p ≤ 2112.

B.4.2 Jumbo: 176-Bit Elephant

We will prove that the 176-bit LFSR defined by (4) has maximal length, and
that the tweak space used in Elephant with this LFSR is 2−n-proper with respect
to (ϕ1, ϕ2).

Proposition B.6. Let n = 176. Let ϕ1 : {0, 1}176 7→ {0, 1}176 be the LSFR
given in (4), and ϕ2 = ϕ1⊕ id. The tweak space T = T1×T2 = {0, 1, . . . , 2173}×
{0, 1, 2} is 2−n-proper with respect to (ϕ1, ϕ2).

Proof. The proof is identical to that of Proposition B.4, with the difference
that for the 176 × 176 matrix V that represents ϕ1 of (4), the corresponding
polynomial

p(x) = x176 + x154 + x135 + x19 + 1

is irreducible and primitive. The discrete logarithm ` = logx(x+ 1) in the field
F2[x]/p(x) and its related 2` are computed as

` = 18881376151403786777481463432029450294100461562220699 ≈ 2173.66 ,

2` = 37762752302807573554962926864058900588200923124441398 ≈ 2174.66 .
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Again, dividing the tweak space into 3 sets according to the value b ∈ {0, 1, 2},
the smallest difference is between set b = 0 and set b = 1, or b = 1 and b = 2,
which is bigger than 2173. Hence, by ensuring that 0 ≤ a ≤ 2173, we have that for
any two distinct (a, b), (a′, b′) ∈ {0, 1, . . . , 2173}×{0, 1, 2}, ϕb2◦ϕa1 6= ϕb

′

2 ◦ϕa
′

1 .

We directly obtain that Jumbo is secure in the random permutation model.

Corollary B.7. Let (k,m, n, t) = (128, 96, 176, 64). Let T = {0, 1, . . . , 2173} ×
{0, 1, 2}. Consider Jumbo: Elephant = (enc, dec) of Section 2 based on

:::
the

:::::::::::
permutation Spongent-π[176], modeled as a random 176-bit permutation, and
on ϕ1 : {0, 1}176 → {0, 1}176 of (4). For any adversary A making at most qe
construction encryption queries, qd construction decryption queries, each query
at most ` padded nonce and associated data and message blocks, and in total
at most σ ≤ 2174 padded nonce and associated data and message blocks, and p
primitive queries,

Advae
Jumbo(A) ≤ `

(
qe
2

)
/2176 +

2112qd
2176 − 1

e(qe+1)qe/2
176

+
4σ2 + 4σp+ 4σ + p

2176
+

p

2128
,

As before, limiting the total online complexity σ to 250/(n/8) blocks, the
bound of Corollary B.7 is at most 1 for p ≤ 2127.

B.4.3 Delirium: 200-Bit Elephant

We will prove that the 200-bit LFSR defined by (5) has maximal length, and
that the tweak space used in Elephant with this LFSR is 2−n-proper with respect
to (ϕ1, ϕ2).

Proposition B.8. Let n = 200. Let ϕ1 : {0, 1}200 7→ {0, 1}200 be the LSFR
given in (5), and ϕ2 = ϕ1⊕ id. The tweak space T = T1×T2 = {0, 1, . . . , 2197}×
{0, 1, 2} is 2−n-proper with respect to (ϕ1, ϕ2).

Proof. The proof is identical to that of Proposition B.4, with the difference
that for the 200 × 200 matrix V that represents ϕ1 of (5), the corresponding
polynomial

p(x) = x200 + x93 + x91 + x82 + x78 + x71 + x69 + x67 + x65

+ x60 + x52 + x49 + x47 + x41 + x39 + x38 + x34 + x30 + x27

+ x26 + x25 + x23 + x21 + x19 + x17 + x16 + x15 + x13 + 1

is irreducible and primitive. The discrete log ` = logx(x + 1) in the field
F2[x]/p(x) and its related 2` are computed as

` = 692180606625676931900534627786122994390018641930530681719698

≈ 2198.78 ,

2` = 1384361213251353863801069255572245988780037283861061363439396

≈ 2199.78 .
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Again, dividing the tweak space into 3 sets according to the value b ∈ {0, 1, 2},
the smallest difference is between set b = 2 and set b = 0, which is bigger than
2197. Hence, by ensuring that 0 ≤ a ≤ 2197, we have that for any two distinct
(a, b), (a′, b′) ∈ {0, 1, . . . , 2197} × {0, 1, 2}, ϕb2 ◦ ϕa1 6= ϕb

′

2 ◦ ϕa
′

1 .

We directly obtain that Delirium is secure in the random permutation model.

Corollary B.9. Let (k,m, n, t) = (128, 96, 200, 128). Let T = {0, 1, . . . , 2197}×
{0, 1, 2}. Consider Delirium: Elephant = (enc, dec) of Section 2 based on

:::
the

:::::::::::
permutation Keccak-f [200], modeled as a random 200-bit permutation, and on
ϕ1 : {0, 1}200 → {0, 1}200 of (5). For any adversary A making at most qe
construction encryption queries, qd construction decryption queries, each query
at most ` padded nonce and associated data and message blocks, and in total
at most σ ≤ 2198 padded nonce and associated data and message blocks, and p
primitive queries,

Advae
Delirium(A) ≤ `

(
qe
2

)
/2200 +

272qd
2200 − 1

e(qe+1)qe/2
200

+
4σ2 + 4σp+ 4σ + p

2200
+

p

2128
,

As before, limiting the total online complexity σ to 274/(n/8) blocks, the
bound of Corollary B.9 is at most 1 for p ≤ 2127.

C Proof of Theorem B.2 (on SiM)

The proof closely follows Granger et al. [49] and is performed using the H-
coefficient technique [29,76].

LetK
$←− {0, 1}k, P

$←− perm(n), and π̃
$←− perm(T , n), where T is 2−α-proper

with respect to LFSRs (ϕ1, . . . , ϕz). Consider a computationally unbounded

adversaryA that tries to distinguishO := (ẼP
K ,P

±) from P := (π̃,P±). Without
loss of generality, we can consider it to be deterministic: for any probabilistic
adversary there exists a deterministic one that has at least the same success
probability. The interaction of A with its oracle (O or P) is gathered in a view
ν. Denote by DO (resp., DP) the probability distribution of views in interaction
with O (resp., P). Denote by V the set of “attainable views”, i.e., views ν such
that Pr (DP = ν) > 0.

Lemma C.1 (H-coefficient technique). Consider a partition V = Vgood ∪ Vbad

of the set of views into “good” and “bad” views. Let ε ∈ [0, 1] be such that
Pr(DO=ν)
Pr(DP=ν) ≥ 1− ε for all ν ∈ Vgood. Then,

∆A (O ; P) ≤ ε+ Pr (DP ∈ Vbad) . (13)

For view ν = {(x1, y1), . . . , (xq, yq)} consisting of q input/output tuples,
we denote by O ` ν the event that oracle O satisfies that O(xi) = yi for all
i = {1, . . . , q}.
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The remainder of the proof is structured as follows. We specify the views
of an adversary in Section C.1 and define the bad views in Section C.2. The
probability of bad views is analyzed in Section C.3 and the probability ratio for
good views is considered in Section C.4. Section C.5 concludes the proof.

C.1 Views

The adversary can make q construction queries to ẼP
K or π̃, all in forward di-

rection only. Each such query is made for some tweak āi = (a1, . . . , az)i and
message input Mi, and results in an output Ci. The q queries are summarized
in a view

νc = {(ā1,M1, C1), . . . , (āq,Mq, Cq)} .

The adversary can make p primitive queries to P±, and these are likewise sum-
marized in a view

νp = {(X1, Y1), . . . , (Xp, Yp)} .

After the conversation of A with its oracle, but before it makes its final decision,
we reveal the key material used in the interaction. This can be done without
loss of generality; it only improves the adversarial success probability. The first

value that is revealed is a value K. In the real world, this is the key K
$←− {0, 1}k

that is actually used by the construction oracle; in the ideal world, it is a dummy

key K
$←− {0, 1}k. The second value that is revealed is a value L ∈ {0, 1}n. In

the real world, it is the value L = P(K‖0n−k); in the ideal world, it is a dummy

key L
$←− {0, 1}n.3 The revealed data is summarized in a view

νk = {(K,L)} .

The complete view is defined as ν = (νc, νp, νk). We assume that the adversary
never makes any duplicate query, hence νc and νp contain no duplicate elements.

C.2 Definition of Good and Bad Views

In the real world, all tuples in νp define exactly one input-output pair for P.
Likewise, the sole tuple in νk is an input-output pair for P. Using this tuple,
one can observe that any tuple (āi,Mi, Ci) ∈ νc also defines an input-output
pair for P, namely (

Mi ⊕maskāiK , Ci ⊕maskāiK
)
.

If among all these q+ p+ 1 input-output pairs defined by ν, there are two that
have colliding input or output values, we consider ν to be a bad view. The

3In the original analysis of MEM [49], the mask involves a computation P(K‖N) for nonce
N . This not only complicates the values that have to be revealed; it also results in a larger
view and hence a higher collision probability among tuples in the view.
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reason for this is that such a view never occurs in the real world, making the
ratio in Lemma C.1 only valid for ε = 1. Therefore, formally, ν is called “bad”
if one of the following conditions is satisfied, where we recall that νk = {(K,L)}
is a singleton:

badc,c : for some distinct (ā,M,C), (ā′,M ′, C ′) ∈ νc:

maskāK(L)⊕maskā
′

K(L) ∈ {M ⊕M ′, C ⊕ C ′} ,
badc,p : for some (ā,M,C) ∈ νc and (X,Y ) ∈ νp:

maskāK(L) ∈ {M ⊕X,C ⊕ Y } ,
badc,k : for some (ā,M,C) ∈ νc:

maskāK(L) ∈ {M ⊕K‖0n−k, C ⊕ L} ,
badp,k : for some (X,Y ) ∈ νp:

X = K‖0n−k or Y = L .

We write bad = badc,c ∨ badc,p ∨ badc,k ∨ badp,k.

C.3 Probability of Bad View in Ideal World

Our goal is to bound Pr (DP ∈ Vbad), the probability of a bad view in the ideal
world P = (π̃,P±). For brevity, denote by DP ∝ bad the event that DP satisfies
bad. By the union bound,

Pr (DP ∝ bad) = Pr (DP ∝ badc,c ∨ badc,p ∨ badc,k ∨ badp,k)

≤ Pr (DP ∝ badc,c) + Pr (DP ∝ badc,p)

+ Pr (DP ∝ badc,k) + Pr (DP ∝ badp,k) . (14)

We will analyze the four probabilities separately, thereby noticing that (i) K
$←−

{0, 1}k and L
$←− {0, 1}n are random variables, and (ii) as the adversary only

makes forward construction queries, each tuple (ā,M,C) ∈ νc satisfies that C
is randomly drawn from a set of size at least 2n − q.

Event badc,c. For badc,c, let (ā,M,C), (ā′,M ′, C ′) ∈ νc be any two distinct
tuples. If ā = ā′, then necessarily M 6= M ′ and C 6= C ′, and badc,c holds with
probability 0. Otherwise, if ā 6= ā′, we can deduce from 2−α-properness of T ,
namely property 2 of Definition B.1, that event badc,c holds with probability at
most 2/2α. Thus, summing over all

(
q
2

)
possible choices of queries,

Pr (DP ∝ badc,c) ≤
q(q − 1)

2α
.

Event badc,p. For badc,p, let (ā,M,C) ∈ νc and (X,Y ) ∈ νp be any two
tuples. We can deduce from 2−α-properness of T , namely property 1 of Defini-
tion B.1, that event badc,p holds with probability at most 2/2α. Thus, summing
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over all qp possible choices of queries,

Pr (DP ∝ badc,p) ≤
2qp

2α
.

Event badc,k. For badc,k, let (ā,M,C) ∈ νc be any tuple. We consider the
two equations of badc,k separately. For the first equation,

maskāK(L) = M ⊕K‖0n−k ,

we will use that L
$←− {0, 1}n is a randomly generated value independent of K.

We can deduce from 2−α-properness of T , namely property 1 of Definition B.1,
that this equation holds with probability at most 1/2α.

For the second equation,

maskāK(L) = C ⊕ L ,

we will use that all construction queries are made in forward direction, and that
C is randomly drawn from a set of size at least 2n−q elements. Above equation
thus holds with probability at most 1/(2n − q).

Thus, summing over all q possible choices of queries,

Pr (DP ∝ badc,k) ≤ q

2α
+

q

2n − q
.

Event badp,k. For badp,k, let (X,Y ) ∈ νp be any tuple. As K
$←− {0, 1}k and

L
$←− {0, 1}n, the tuple sets badp,k with probability at most 1/2k + 1/2n. Thus,

summing over all p possible choices of queries,

Pr (DP ∝ badp,k) ≤ p

2k
+

p

2n
.

Conclusion. Concluding, we obtain for (14):

Pr (DP ∝ bad) ≤ q2 + 2qp

2α
+

2q + p

2n
+

p

2k
. (15)

using that 2n − q ≥ 2n−1.

C.4 Probability Ratio for Good Views

Consider any good view ν ∈ Vgood. We will prove the inequality Pr (DO = ν) ≥
Pr (DP = ν). The proof is a direct simplification of that of Granger et al. [49],
noting that in our case, νk consists of just one element. The proof is included
for completeness.
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Real World. In the real world O = (ẼP
K ,P

±), goodness of the view means
that ν = (νc, νp, νk) defines exactly q + p + 1 input-output pairs for P and νk

consists of a random value K
$←− {0, 1}k, and there are no two of them that

collide on the input or output. Therefore, we obtain:

Pr (DO = ν) = Pr
(
K ′

$←− {0, 1}k : K ′ = K
)
·

Pr
(
P

$←− perm(n) : ẼP
K ` νc ∧ P ` νp ∧ P ` νk

)
=

1

2k
· (2n − (q + p+ 1))!

2n!
. (16)

Ideal World. In the ideal world P = (π̃,P±), the view ν = (νc, νp, νk) consists
of three lists of independent tuples: νc defines exactly q input-output pairs for
π̃, νp defines exactly p input-output pairs for P, and νk consists of two random

values (K,L)
$←− {0, 1}k × {0, 1}n. For counting, it is convenient to group the

tuples in νc depending on the tweak value ā. For T ∈ T , define

qT = |{(ā,M,C) ∈ νc | ā = T}| ,

where
∑
T∈T qT = q. We obtain:

Pr (DP = ν) = Pr
(

(K ′, L′)
$←− {0, 1}k × {0, 1}n : (K ′, L′) = (K,L)

)
·

Pr
(
π̃

$←− perm(T , n) : π̃ ` νc
)
·

Pr
(
P

$←− perm(n) : P ` νp
)

=
1

2k+n
·
∏
T∈T

(2n − qT )!

2n!
· (2n − p)!

2n!

=
1

2k
· (2n − 1)!

2n!
·
∏
T∈T

(2n − qT )!

2n!
· (2n − p)!

2n!

≤ 1

2k
· (2n − (q + p+ 1))!

2n!
, (17)

using that for any σ, τ ≤ 2n
:::::::::
σ + τ ≤ 2n

:
we have (2n−σ)!

2n! · (2n−τ)!
2n! ≤ (2n−(σ+τ))!

2n! .

Conclusion. Combining (16) and (17), we obtain that for any good view
ν ∈ Vgood:

Pr (DO = ν)

Pr (DP = ν)
≥ 1 . (18)

44



C.5 Conclusion

By the H-coefficient technique (Lemma C.1), we directly obtain from (15) and
(18):

Advtprp

Ẽ
(A) ≤ 0 +

q2 + 2qp

2α
+

2q + p

2n
+

p

2k
.

D Proof of Theorem B.3 (on Elephant)

Let K
$←− {0, 1}k, P

$←− perm(n), and rand be a function that for each in-
put (N,A,M) returns a random string of size |M | + t bits. Consider a de-
terministic computationally unbounded adversary A that tries to distinguish
O := (encPK , dec

P
K ,P

±) from P := (rand,⊥,P±):

Advae
Elephant(A) = ∆A

(
encPK , dec

P
K ,P

± ; rand,⊥,P±
)
. (19)

As a first step, we will describe an alternative authenticated encryption scheme

AE′ based on a tweakable permutation π̃
$←− perm(T , n), where T is 2−α-proper

with respect to LFSRs (ϕ1, ϕ2). Its encryption function enc and decryption
function dec are given in Algorithms 3 and 4, respectively. Unlike the original
functions enc and dec of Algorithms 1 and 2, the functions enc and dec are not
explicitly keyed, but are instead implicitly keyed by the use of random secret
tweakable permutation π̃.

Algorithm 3 encryption enc

Input: (N,A,M)
Output: (C, T )

1: M1 . . .M`M
n←−M

2: for i = 1, . . . , `M do
3: Ci ←Mi⊕π̃((i−1, 0), N‖0n−m)

4: C ← bC1 . . . C`M c|M |
5: T = 0
6: A1 . . . A`A

n←− N‖A‖1
7: C1 . . . C`C

n←− C‖1
8: for i = 1, . . . , `A do
9: T ← T ⊕ π̃((i− 1, 2), Ai)

10: for i = 1, . . . , `C do
11: T ← T ⊕ π̃((i− 1, 1), Ci)

12: return (C, bT ct)

Algorithm 4 decryption dec

Input: (N,A,C, T )
Output: M or ⊥

1: C1 . . . C`M
n←− C

2: for i = 1, . . . , `M do
3: Mi ← Ci⊕π̃((i−1, 0), N‖0n−m)

4: M ← bM1 . . .M`M c|C|
5: T̄ = 0
6: A1 . . . A`A

n←− N‖A‖1
7: C1 . . . C`C

n←− C‖1
8: for i = 1, . . . , `A do
9: T̄ ← T̄ ⊕ π̃((i− 1, 2), Ai)

10: for i = 1, . . . , `C do
11: T̄ ← T̄ ⊕ π̃((i− 1, 1), Ci)

12: return bT̄ ct = T ? M : ⊥
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By a simple hybrid argument, we obtain for the distance of (19):

(19) ≤ ∆A

(
encPK , dec

P
K ,P

± ; encSiM
P
K , decSiM

P
K ,P±

)
+ ∆A

(
encSiM

P
K , decSiM

P
K ,P± ; encπ̃, decπ̃,P±

)
+ ∆A

(
encπ̃, decπ̃K ,P

± ; rand,⊥,P±
)
. (20)

The first distance of (20) equals 0 by design of AE′. The second distance of (20) is

at most ∆A′
(
SiMP

K ,P
± ; π̃,P±

)
= Advtprp

SiM (A′), where A′ is an adversary that

makes 2σ construction queries and p primitive queries in order to simulate A’s
oracles. For the third distance of (20), access to P does not help the adversary,
and the oracle can be dropped. We obtain from (20):

(19) ≤ Advtprp
SiM (A′) + ∆A

(
encπ̃, decπ̃ ; rand,⊥

)
≤ Advtprp

SiM (A′) + ∆A

(
encπ̃, decπ̃ ; encπ̃,⊥

)
+ ∆A

(
encπ̃,⊥ ; rand,⊥

)
. (21)

In order to upper bound the two remaining distances of (21), we will intro-
duce the following two functions. First, define h : {0, 1}∗ × {0, 1}∗ → {0, 1}t
as

h(X,Y ) =

⌊(
`X⊕
i=1

π̃((i, 2), Xi)

)
⊕

(
`Y⊕
i=1

π̃((i− 1, 1), Yi)

)⌋
t

,

whereX1 . . . X`X
n←− X‖1 and Y1 . . . Y`Y

n←− Y ‖1. For permutation π
$←− perm(n),

define the MAC function

macπ,h(Z,X, Y ) = bπ(Z)ct ⊕ h(X,Y ) , (22)

and let vfyπ,h be the corresponding verification function. We will use a result of
Bernstein [10] on Wegman-Carter-Shoup [82, 92] authenticators, translated to
our setting.

Lemma D.1. Let π
$←− perm(n), and h : {0, 1}∗ × {0, 1}∗ → {0, 1}t be 2−α-

XOR-uniform and independent of π. Consider the message authentication code
macπ,h and its corresponding verification function vfyπ,h of (22). For any ad-
versary A making at most qe ≤ 2n−1 MAC queries and qd forgery attempts,

∆A

(
macπ,h, vfyπ,h ; macπ,h,⊥

)
≤ qd · 2−α · e(qe+1)qe/2

n

.

The proof will be given in Section D.1.
One can reduce a distinguishing attack for the first distance of (21) to a

forgery on macπ,h with π := π̃((0, 2), ·). Hence, using Lemma D.1 along with
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the fact that h is 2n−t(2n − 1)−1-XOR-uniform, we obtain

∆A

(
encπ̃, decπ̃K ; encπ̃,⊥

)
≤ ∆A′

(
macπ,h, vfyπ,h ; macπ,h,⊥

)
≤ 2n−tqd

2n − 1
e(qe+1)qe/2

n

, (23)

where A′ has the same resources as A.
For the second distance of (21), we remark that every query is made for a

unique nonce, and in more detail:

• The i-th block of ciphertext equals π̃((i− 1, 0), N)⊕Mi, where Mi is the
i-th block of plaintext;

• The tag equals bπ̃((0, 2), N‖A′)ct ⊕ h(A′′, C), where A′ equals the first
n −m bits of padded associated data and A′′ equals the rest, and where
h never evaluates π̃ for tweak (·, 0) or (0, 2).

The tweakable permutation π̃ is independent for different tweaks, but two dif-
ferent inputs for the same tweak never collide. Therefore, this second distance
of (21) satisfies

∆A

(
encπ̃,⊥ ; rand,⊥

)
≤ `
(
qe
2

)
/2n . (24)

We thus obtain from (21), (23), and (24):

(19) ≤ Advtprp
SiM (A′) +

2n−tqd
2n − 1

e(qe+1)qe/2
n

+ `

(
qe
2

)
/2n ,

and this completes the proof of Theorem B.3.

D.1 Proof of Lemma D.1 (On macπ,h)

We write ft(N) = bπ(N)ct for brevity. Define the maximum k-interpolation
probability of ft as the maximum of

Pr (ft(x1) = y1, . . . , ft(xk) = yk) (25)

taken over any distinct x1, . . . , xk ∈ {0, 1}n and any y1, . . . , yk ∈ {0, 1}t.
Bernstein [10, Theorem 5.1] states that if ft has maximum qe-interpolation

probability at most δ/2tqe and maximum (qe + 1)-interpolation probability at
most 2−αδ/2tqe , then the message authentication code macπ,h of (22) satisfies4

∆A

(
macπ,h, vfyπ,h ; macπ,h,⊥

)
≤ qd · 2−α · δ .

4A sharp eye may note that the size of the range of ft is at most the size of its domain,
therewith violating the condition “#N ≤ #G” in [10, Theorem 5.1]. However, close inspection
of the proof reveals that the condition is not used.
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The maximum k-interpolation probability of ft, for k ≤ qe + 1 ≤ 2n−1 + 1,
satisfies:

Pr (ft(x1) = y1, . . . , ft(xk) = yk) ≤
k∏
i=1

2n−t

2n − (i− 1)

= 2−tk ·
k∏
i=1

(
1 +

i− 1

2n − (i− 1)

)

≤ 2−tk ·
k∏
i=1

(
1 +

2(i− 1)

2n

)
≤ 2−tk · e2

∑k
i=1

i−1
2n

= ek(k−1)/2n

/2tk ,

where we used that k − 1 ≤ 2n−1. As 2−α ≥ 2−t, the bound satisfies the
constraints put forward by Bernstein for δ = e(qe+1)qe/2

n

.
We remark that for t = n, i.e., for fn an injective function, Bernstein com-

puted the same maximum k-interpolation probability in [10, Theorem 4.2] and
derived a similar bound on the security of macπ,h in [10, Theorem 5.3].
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