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1 Introduction

We propose SAEAES, a family of AES-based AEAD (Authenticated Encryption with Associ-
ated Data) schemes suitable for lightweight applications. SAEAES is an instantiation of the
block cipher-based mode of operation SAEB [13] with the standard block cipher AES [17].
SAEB stands for Small (Simple, Slim, Sponge-based) AEAD from Block cipher). SAEAES
is named by replacing the B for block cipher with AES.

SAEB: a lightweight AEADmode of operation for block ciphers published at CHES2018 [13].
It is designed with the five requirements: (1) minimum state size, (2) inverse free, (3) XOR
only, (4) online, and (5) efficient handling of static associated data. SAEB realizes compact
implementations with respect to RAM/resister size and ROM/circuit size.

AES: the block cipher standardized by NIST as the Federal Information Processing Stan-
dard Publications (FIPS Pub) 197 [17]. Its security and implementation have been ex-
tensively studied. Many computational platforms offer AES accelerators in the form of a
special instruction or a coprocessor. Current standard AEAD schemes such as AES-CCM [16]
and AES-GCM [15] are also based on AES. Therefore, the users of these schemes can easily
migrate to SAEAES.

The document is organized as follows. The specification of SAEAES is described in
Section 2. The security claims of SAEAES are given in Section 3. The design rationale of
SAEAES is shown in Section 4. The implementation results are summarized in Section 5.
We give a brief comment on the third party analysis in Section 6.
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2 Specification

We describe the SAEB mode of operation followed by the specification of the SAEAES family.

2.1 SAEB

Basic Notations. In this section, the following notations are used.

– λ: an empty string.
– 0i: an i-bit string of i zeros for an integer i ≥ 0, and 00 := λ.
– ij : a j-bit representation of i for integers j, i > 0, e.g, 1i = 0i−11, 2i = 0i−210, and

3i = 0i−211
– |x|: the bit length of a bit string x.
– msbl(x): the most significant l-bit string of a bit string x for an integer l ≥ 0 such that

l ≤ |x|.
– lsbl(x): the least significant l-bit string of a bit string x for an integer l ≥ 0 such that

l ≤ |x|.
– {0, 1}∗: the set of all bit strings.
– {0, 1}i: the set of i-bit strings for an integer i ≥ 0 and {0, 1}0 := {λ}.
– {0, 1}≤i := {0, 1}0 ∪ {0, 1}1 ∪ · · · ∪ {0, 1}i the set of bit strings whose bit lengths are

equal to or less than i for an integer i ≥ 0.
– (x1, . . . , xl)

r←− x: a bit string x is partitioned into l blocks x1, . . . , xl for an integer
r ≥ 0, such that x = x1∥ · · · ∥xl, |xi| = r for i = 1, . . . , l − 1, and if x ̸= λ and |x| < lr
then 1 ≤ |xl| < r; if x ̸= λ and |x| = lr then |xl| = r; if x = λ then l = 1 and x1 = λ.

Notations for the Underlying Block Cipher. We use the following notations for the
underlying block cipher of SAEB.

– k: a positive integer and the key length of the underlying block cipher.
– n: a positive integer greater than 2 and the block length of the underlying block cipher.
– E : {0, 1}k × {0, 1}n → {0, 1}n: the underlying block cipher of SAEB.
– K ∈ {0, 1}k: a block cipher key.
– EK : {0, 1}n → {0, 1}n: the underlying block cipher having a key K ∈ {0, 1}k.

Internal Parameters. SAEB is a nonce-based AEAD mode of operation. The internal
parameters of SAEB are defined as follows.

– r1: a positive integer less than n− 1 and the bit length of an associated data block.
– r2: a positive integer less than n− 1 and the bit length of a nonce.
– r: a positive integer less than n− 1 and the bit length of a plaintext/ciphertext block.
– τ : a positive integer equal to or less than n and the bit length of an authentication

tag.
– c1 := n− r1.
– c2 := n− r2.
– c := n− r.
– K := {0, 1}k: the set of keys of SAEB.
– N := {0, 1}r2 : the set of nonces of SAEB.
– P := {0, 1}∗: the set of plaintexts of SAEB.
– C := {0, 1}∗: the set of ciphertexts of SAEB.
– AD := {0, 1}∗: the set of associated data of SAEB.
– T := {0, 1}τ : the set of tags of SAEB.
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One-Zero Padding. SAEB uses a one-zero padding function. For an integer i > 0 and a
bit string x such that |x| < i, the one-zero padding function ozpi : {0, 1}≤i−1 → {0, 1}i is
defined as ozpi(x) = x∥10i−1−|x|.

Specification of SAEB. The encryption algorithm of SAEB using a keyed block cipher EK ,
denoted by SAEB.Enc[EK ], takes the following three inputs

– an r2-bit nonce N ∈ N ,
– variable-length associated data A ∈ AD,
– a variable-length plaintext P ∈ P,

and returns a pair of

– a ciphertext C ∈ {0, 1}|P |,
– a τ -bit authentication tag T ∈ T .

The decryption algorithm of SAEB using a keyed block cipher EK , denoted by SAEB.Dec[EK ],
takes the following three inputs

– an r2-bit nonce N ∈ N ,
– variable-length associated data A ∈ AD,
– a pair of a variable-length ciphertext C ∈ C and a τ -bit authentication tag T ∈ T ,

and returns either

– the invalid symbol ⊥̸∈ P or
– a plaintext P ∈ {0, 1}|C|.

Algorithm 1 shows the encryption and decryption algorithms of SAEB. In these algo-
rithms, the subroutine Hash is used to process associated data and a nonce. Fig. 1 shows
Hash for empty associated data A = λ (left) and non-empty associated data A ̸= λ (right).
In the encryption routine SAEB.Enc, the core algorithm Core.Enc processes a plaintext P
and generates an authentication tag T . Fig. 2 shows Core.Enc for an empty plaintext P = λ
(left) and a non-empty plaintext P ̸= λ (right). In the decryption routine SAEB.Dec, the
core algorithm Core.Dec processes a ciphertext C and generates an authentication tag T ′.
Fig. 3 shows Core.Dec for an empty ciphertext C = λ (left) and a non-empty ciphertext
C ̸= λ (right).
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Algorithm 1 SAEB

▶ Encryption SAEB.Enc[EK ](N,A, P )

1: iv← Hash[EK ](N,A)
2: (C, T )← Core.Enc[EK ](iv, P )
3: return (C, T )

▶ Decryption SAEB.Dec[EK ](N,A, (C, T ))

1: iv← Hash[EK ](N,A)
2: (P, T ′)← Core.Dec[EK ](iv, C)
3: if T = T ′ then return P
4: if T ̸= T ′ then return ⊥

▷ Subroutine Hash[EK ](N,A)

1: sa← 0n; A1, . . . , Aa
r1←− A

2: for i = 1 to a− 1 do msbr1(sa)← msbr1(sa)⊕Ai; sa← EK(sa)
3: if |Aa| = r1 then sa← sa⊕ (Aa∥1c1)
4: if |Aa| < r1 then sa← sa⊕ (ozpr1(Aa)∥2c1)
5: sa← EK(sa); iv← sa⊕ (N∥3c2)
6: return iv

▷ Subroutine Core.Enc[EK ](iv, P )

1: sm← EK(iv); P1, . . . , Pp
r←− P

2: for i = 1 to p− 1 do msbr(sm)← msbr(sm)⊕ Pi; Ci ← msbr(sm); sm← EK(sm)
3: if |Pp| = r then sm← sm⊕ (Pp∥1c); Cp ← msbr(sm)
4: if |Pp| < r then sm← sm⊕ (ozpr(Pp)∥2c); Cp ← msb|Pp|(sm)
5: sm← EK(sm); T ← msbτ (sm)
6: return (C1∥C2∥ · · · ∥Cp, T )

▷ Subroutine Core.Dec[EK ](iv, C)

1: sm← EK(iv); C1, . . . , Cp
r←− C

2: for i = 1 to p− 1 do Pi ← msbr(sm)⊕ Ci; msbr(sm)← Pi ⊕msbr(sm); sm← EK(sm)
3: if |Cp| = r then Pp ← msbr(sm)⊕ Cp; sm← sm⊕ (Pp∥1c)
4: if |Cp| < r then Pp ← msb|Cp|(sm)⊕ Cp; sm← sm⊕ (ozpr(Pp)∥2c)
5: sm← EK(sm); T ′ ← msbτ (sm)
6: return (P1∥P2∥ · · · ∥Pp, T

′)

2.2 Specification of SAEAES

Interface. The SAEAES encryption algorithm receives four byte-string inputs and returns
a byte-string output. The four inputs are (i) a variable-length plaintext, (ii) variable-length
associated data, (iii) a fixed-length nonce, and (iv) a fixed-length key. The single output
is the concatenation of a variable-length ciphertext and an authentication tag.

The SAEAES decryption algorithm receives four byte-string inputs and returns a byte-
string output. The four inputs are (i) the concatenation of a variable-length ciphertext
and an authentication tag, (ii) variable-length associated data, (iii) a fixed-length nonce,
and (iv) a fixed-length key. If the verification is successful, the output is a variable-length
plaintext. Otherwise, the output is an invalid symbol.
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Fig. 1. Hash.
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Parameter Candidates. The following parameters are fixed in the SAEAES family:

– Block length of the underlying block cipher n : 128 bits (16 bytes).
– Nonce length r2 : 120 bits (15 bytes).
– Plaintext/ciphertext block length r : 64 bits (8 bytes).

The following parameters vary depending on a member of the SAEAES family:

– Key length k : 128 bits (16 bytes), 192 bits (24 bytes), 256 bits (32 bytes).
– associated data block length r1 : 64 bits (8 bytes), 120 bits (15 bytes).
– Tag length τ : 64 bits (8 bytes), 128 bits (16 bytes).

Block Ciphers. SAEAES uses the standard block cipher AES of FIPS Pub 197 [17]. AES
can process a 128-bit data block, using a key of length 128, 192, or 256 bits.

– For the members of SAEAES with k = 128, the 128-bit key version of AES denoted by
AES-128 is used.
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Table 1. Parameters

Identifier k n r2 r1 r τ

SAEAES128 64 64 128 128 120 64 64 64
SAEAES128 64 128 128 128 120 64 64 128
SAEAES128 120 64 128 128 120 120 64 64
SAEAES128 120 128 128 128 120 120 64 128
SAEAES192 64 64 192 128 120 64 64 64
SAEAES192 64 128 192 128 120 64 64 128
SAEAES192 120 128 192 128 120 120 64 128
SAEAES256 64 64 256 128 120 64 64 64
SAEAES256 64 128 256 128 120 64 64 128
SAEAES256 120 128 256 128 120 120 64 128

– For the members of SAEAES with k = 192, the 192-bit key version of AES denoted by
AES-192 is used.

– For the members of SAEAES with k = 256, the 256-bit key version of AES denoted by
AES-256 is used.

SAEAES uses the Advanced Encryption Standard (AES) algorithm. We decided not to in-
clude the specification of AES in this document for the sake of avoiding ambiguity. We refer
to FIPS Pub 197 [17] for the complete specification of AES.

Members of SAEAES. Table 1 summarizes the 10 members of SAEAES and their param-
eters. A member is determined by a triplet (k, r1, τ) and the member with (k, r1, τ) is
identified by SAEAESk r1 τ . For each of the 10 members, the lengths of associated data
and plaintexts per key should be at least 0 byte and at most 264-1 bytes.

Primary Member. SAEAES128 64 128 is the primary member of SAEAES.
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3 Security

3.1 Security Claims

The security of SAEAES is ensured with respect to the indistinguishability between SAEAES

and an ideal nonce-based AEAD scheme, under a single-key and nonce-respecting setting.
Adversary’s queries to SAEAES or the ideal AEAD scheme are called online queries, and
queries to the encryption resp. decryption oracle is called encryption resp. decryption
queries. The decryption queries mean forgery attempts by an adversary. Hereafter, the
time complexity of an adversary is called offline complexity. The security claims of the
members of SAEAES are summarized as followings.

– Attacks on the members of SAEAES with 128-bit key, SAEAES128 64 64, SAEAES128 64 128,
SAEAES128 120 64, SAEAES128 120 128, require
• at least 2112 offline complexity,
• at least 262 keyed block cipher calls in total by all encryption queries,
• at least 258 keyed block cipher calls in total by all decryption queries, or
• at least 258 keyed block cipher calls in total in the Hash procedures by all encryption
queries.

– Attacks on the members of SAEAES with 192-bit key, SAEAES192 64 64, SAEAES192 64 128,
SAEAES192 120 128, require
• at least 2168 offline complexity,
• at least 262 keyed block cipher calls in total by all encryption queries,
• at least 258 keyed block cipher calls in total by all decryption queries, or
• at least 258 keyed block cipher calls in total in the Hash procedures by all encryption
queries.

– Attacks on the members of SAEAES with 256-bit key, SAEAES256 64 64, SAEAES256 64 128,
SAEAES256 120 128, require
• at least 2224 offline complexity,
• at least 262 keyed block cipher calls in total by all encryption queries,
• at least 258 keyed block cipher calls in total by all decryption queries, or
• at least 258 keyed block cipher calls in total in the Hash procedures by all encryption
queries.

The above claims are ensured by combining the following two steps.

Security Claims of AES. The first step considers the pseudo-random-permutation (PRP)
security of AES-128, AES-192 and AES-256. The definition of PRP-security is given in
Subsection 3.2. We claim the following security levels of these block ciphers.

– Attacks on AES-128 require at least 2112 offline complexity or at least 264 keyed block
cipher calls by online queries.

– Attacks on AES-192 require at least 2168 offline complexity or at least 264 keyed block
cipher calls by online queries.

– Attacks on AES-256 require at least 2224 offline complexity or at least 264 keyed block
cipher calls by online queries.

These claims are based on the existing cryptanalyses on AES, and the cryptanalyses are
summarized in Subsection 3.3.
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Security Claims of SAEAES with Secure PRP. The second step considers the indistin-
guishability between SAEAES and an ideal nonce-based AEAD scheme, where the underly-
ing keyed block cipher is assumed to be a secure PRP (more precisely, the PRP-security
advantage of the keyed block cipher is negligible). The security definition (nAE-security)
is given in Subsection 3.2. We claim the following security levels of SAEAES with a secure
PRP.

– Attacks on SAEAES with a secure PRP require
• at least 262 keyed block cipher calls in total by all encryption queries,
• at least 258 keyed block cipher calls in total by all decryption queries, or
• at least 258 keyed block cipher calls in total in the Hash procedures by all encryption
queries.

The claim is based on the security of SAEB, and the security bound is given in Subsec-
tion 3.4.

3.2 Security Definitions

Notations. In this section, the notations given in Subsection 2.1 and the following ones
are used. For a finite set X , x ↞ X means that an element is drawn uniformly at random
from X and is assigned to x. Let Perm(B) be the set of all permutations over a non-empty
set B. A random permutation in Perm(B) is defined as π ↞ Perm(B). An output of an
adversary A with oracle access to O is denoted by AO. Let E = AES-128 if k = 128,
E = AES-192 if k = 192 and E = AES-256 if k = 256. Let Π = SAEAESk r1 τ . Let
Π.Enc[EK ] be the encryption algorithm of Π using EK , and Π.Dec[EK ] be the decryption
algorithm of Π using EK .

Security Definition of Block Cipher. The security of SAEAES is ensured as long as
EK is a secure pseudo-random permutation (PRP). The advantage function of a PRP-
adversary A that outputs a bit is defined as

Advprp
E (A) =Pr[K ↞ {0, 1}k;AEK = 1]− Pr[π ↞ Perm(B);Aπ = 1] ,

where the probabilities are taken over A, K and π.

Security Definition of AEAD. The indistinguishability between (Π.Enc[EK ],Π.Dec[EK ])
and an ideal AEAD scheme ($,⊥), used in [14, 19], is considered where $ is a random-bits
oracle that has the same interface as Π.Enc[EK ] and for query (N,A, P ) returns a random
bit string of length |Π.Enc[EK ](N,A, P )|; ⊥ is an oracle that returns the reject symbol
⊥ for any query. The security is called nAE-security. Formally, we consider an adversary
A that first interacts with either (Π.Enc[EK ],Π.Dec[EK ]) or ($,⊥), and then returns a
decision bit b ∈ {0, 1}. The nAE-advantage function of A is defined as

AdvnAE
Π (A) = Pr[K ↞ K;AΠ.Enc[EK ],Π.Dec[EK ] = 1]− Pr[A$,⊥ = 1] .

We demand that A is nonce-respecting (all nonces by encryption queries are distinct), that
A never asks a trivial decryption query (N,A, (C, T )) such that there is a prior encryption
query (N,A, P ) with (C, T ) = Π.Enc[EK ](N,A, P ), and that A never repeats a query.
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Table 2. Summary of cryptanalysis on AES in the single-key setting. “Time” shows offline com-
plexity, “Data” shows the number of keyed block cipher calls, and “Memory” shows memory sizes
in blocks. The second attack on the 9-round AES-192 (3-11) in [10] considers AES-192 from rounds
3 to 11.

Identifier Rounds Time Data Memory Technique Ref.

AES-128 7 297 299 298 MitM [9]
10 2126.59 2 260 Biclique [7]
10 2125.99 256 260 Biclique [20]

AES-192 8 2172 2107 296 MitM [9]
9 2186.5 2121 2177.5 MitM [10]

9 (3-11) 2182.5 2117 2165.5 MitM [10]
12 2190.83 2 260 Biclique [7]
12 2189.76 248 260 Biclique [20]

AES-256 9 2203 2120 2203 MitM [9]
10 2253 2111 2211.2 MitM [11]
14 2254.94 3 260 Biclique [7]
14 2254.28 240 260 Biclique [20]

3.3 Security of AES

We summarize the state-of-the-art cryptanalyses of AES that SAEAES relies on. So far, no
practical single-key attack against AES is known.

So far, the best single-key attack of full-round AES is the biclique attack. It was proposed
by Bogdanov et al. [8] and then improved by Bogdanov et al. [7] and Tao and Wu [20].
It has a slight advantage over brute-force attack as summarized in Table 2. However, as
described by the authors of the original paper [8], it does not threaten the practical use
of AES in any way. Besides, for reduced-round variants of AES, there are improved attacks
based on meet-in-the-middle (MitM) attack as summarized in Table 2.

In summary, there is no attack in the single-key setting

– that breaks the PRP-security of AES-128 with less than 2112 offline complexity or 264

keyed block cipher calls,
– that breaks the PRP-security of AES-192 with less than 2168 offline complexity or 264

keyed block cipher calls, or
– that breaks the PRP-security of AES-256 with less than 2224 offline complexity or 264

keyed block cipher calls.

Remark 1. We also note that there are efficient related-key attacks on full-round AES-192

and AES-256 [6, 5]. However, it does not affect the security of SAEAES because we claim
the single-key security only.

3.4 Security of SAEAES with Secure PRP

The nAE-security bound of SAEB is given below. The proof is given in [13].

Theorem 1. Let A be an nAE-adversary that makes qE encryption queries and qD de-
cryption queries, and runs in time t. Let σE and σD be the total numbers of block cipher
calls by encryption and decryption queries, respectively, and σ := σE + σD the total num-
ber of block cipher calls by all queries. Let σA be the total number of block cipher calls
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in Hash in SAEB.Enc (only encryption queries). For any positive integer ρ, there exists a
PRP-adversary B making at most σ queries and running in time t+O(σ) such that

AdvnAE
SAEB(A) ≤ 2σ2

2n
+

(ρ− 1)(σA + σD)

2c
+ 2r

(
eσE

ρ2r

)ρ

+
qD
2τ

+Advprp
E (B) .

Putting the parameters of the members of SAEAES, i.e., r = c = 64 (and n = 128) and
putting ρ = 16,

AdvnAE
SAEB(A) ≤ 2σ2

2128
+

15 · (σA + σD)

264
+ 264 ·

( eσE

16 · 264
)16

+
qD
2τ

+Advprp
E (B)

≤ 2σ2

2128
+

15 · (σA + σD)

264
+
(eσE

264

)16

+
qD
2τ

+Advprp
E (B) .

Hence, assuming the PRP-advantage Advprp
E (B) is negligible compared with other

terms in the bound, the bound is less than 1/2 as long as σE ≤ 262, σD ≤ 258, and
σA ≤ 258.

3.5 Security of SAEAES Under Nonce Misuse

The nAE-security of SAEAES is broken under a nonce-misuse setting, where the same nonce
is repeated for some encryption queries in the single-key setting.

Theorem 2. For each of members of SAEAES, denoted by Π, there exists a nonce-misuse
adversary A that makes two distinct encryption queries and runs in time O(1) such that

AdvnAE
Π (A) ≥ 1− 1

2r
.

Proof. A nonce-misuse adversary A (the same nonce is repeated) is defined below.

– Make an encryption query (N (1), A(1), P (1)) = (0r2 , λ, 0r) and receive the ciphertext
C(1) and the tag T (1).

– Make an encryption query (N (2), A(2), P (2)) = (0r2 , λ, 1r) and receive the ciphertext
C(2) and the tag T (2).

– If C(1) ⊕ C(2) = 1r then return 1.
– Return 0.

In the world with SAEAES, the probability that A returns 1 is 1. On the other hand,
in the world with an ideal nonce-based AEAD scheme, the first r-bit ciphertext blocks of
C(1) and C(2) are chosen independently and uniformly at random from {0, 1}r, thus the
probability that A returns 1 (i.e., C(1) ⊕ C(2) = 1r) is 1/2r. Hence, the lower bound in
Theorem 2 is obtained.

⊓⊔
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4 Design Rationale

4.1 Design Goal of SAEB

SAEB is designed as a lightweight block cipher-based AEAD scheme that can be imple-
mented with limited computational resources both in software and in hardware. We pri-
oritized the following four desirable properties for lightweight AEAD schemes.

1. Minimum State Size: The state size is equal to the block size n, which is the
minimal amount of memory required to keep storing the internal sate during the
AEAD computation. The n-bit state is minimal in the sense that at least n-bit state
is necessary to maintain the birthday security.

2. Inverse Free: A block cipher decryption is not needed. This property obviously con-
tributes to lightweight implementation, in particular when the structure of decryption
of a block cipher is significantly different that of encryption, such as AES.

3. XOR Only: The entire AEAD scheme consists of a block cipher component and XOR
operations only. Equivalently, its mode-of-operation part consists of XOR operations
only. This property also makes small and fast implementation possible. Note that
AES-GCM requires an additional component GHASH, which cannot be implemented with
XOR operations only,

4. Online: An input data stream is sequentially processed only once without necessity of
storing the entire stream for second read. An offline algorithm must prepare a buffer
memory that can accommodate a data stream of the maximal possible length, which
is costly and not suitable for embedded applications.

On top of the above properties, the fifth property regarding associated data is added:

5. Efficient Handling of Static Associated Data: If the same associated data is
used repeatedly (i.e. static associated data), the second and later times can be faster
than the first time due to the precomputation phase thereby reducing computational
cost [18]. AES-GCM and many other block cipher based AEAD schemes satisfy this
property.

SAEB is designed to satisfy all the five properties.

4.2 Design of SAEB

SAEB follows the sponge-based design methodology [2, 3, 4] except that it is based on a
block cipher, not a permutation. SAEB can be thought as a cascaded n-bit block cipher.
The state size of SAEB is n bits, and a block cipher decryption is not used. Therefore, the
properties 1 and 2 are satisfied. All input data (either of associated data, nonce, plaintext
and ciphertext) are absorbed into the internal state using XOR operations before/after
an internal block cipher. Hence, the properties 3 and 4 are satisfied. Since associated
data is absorbed earlier than the nonce, the internal state value right after processing
associated data (and before processing nonce) is independent of the nonce value, and thus
the property 5 is satisfied.

4.3 The Choice of Block Cipher

We decided to use AES because it is standardized, is extensively studied in the research
community, and is widely used in industry.
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5 Implementations

5.1 Embedded Software Implementations

SAEAES has been carefully designed to be particularly suited to embedded applications with
resource constrained environments. Each of its hash, encryption and decryption functions
has almost the same structure with common components, which makes possible software
implementation with a small ROM size, and moreover only one 16-byte buffer is required
to keep storing its internal state during the entire computation, which significantly con-
tributes to RAM size reduction.

SAEAES calls an AES block cipher component internally without necessity of its inversion
function (i.e. inverse free), and the overhead of its ‘mode-of-operation part’, which consists
of a small number of XOR operations only, is extremely small. Hence it is easy to estimate
the encryption speed of SAEAES if you have an existing AES implementation. For instance,
the expected number of cycles required for encrypting 8a-byte associated data and 8m-
byte message is simply (1+a+m)e, where e denotes the number of cycles required for one
block AES encryption. Also note that since nonce N is embedded after the hash function,
the number of cycles can be reduced to (1+m)e, independent of the value of a, under the
scenario that a fixed associated data is used repeatedly with the same key.

Tables 3 and 4 present our implementation results of SAEAES128 64 128 on Renesas
RL78 16-bit microcontroller, which has been used widely in industrial applications such
as vehicle systems. RL78 is a typical accumulator-based CISC processor with eight 8-bit
general registers a,x,b,c,d,e,h,l, which can be also used as four 16-bit general register
pairs ax,bc,de,hl. Our AEAD encryption and decryption codes are written in assembly
language as a subroutine callable from C language and parameters are passed as external
variables in order to minimize ROM/RAM size. We designed two types of implementation:
one for aiming at fast speed and the other for small memory size. All of our codes have
resistance against timing attacks since they run exactly in the same number of cycles as
long as the length of data is the same.

Table 3 shows the number of ROM/RAM bytes of our codes that include both AEAD
encryption and decryption. For comparison, our implementation results of AES-GCM and
AES are also listed, where the AES code, which has adopted the on-the-fly key scheduling
algorithm for minimizing RAM usage of subkey, is used in SAEAES and AES-GCM internally.
The RAM size includes stack consumption but not parameters. As shown in this table, the
memory size of the mode of operation of SAEAES is much smaller than that of the internal
AES routine. In particular, it should be noted that the ROM size of the mode-of-operation
part of our small code is only 180 bytes.

Table 4 shows encryption speed of our codes of SAEAES and AES-GCM with 8-byte
associated data and n-byte message for n = 16, 128, 1024 and ∞. Note that the internal
AES function is called twice in the hash function of SAEAES when the length l of associated
data is 0 ≤ l ≤ 8. Also the decryption speed of SAEAES is almost the same as its encryption
speed. The bottom row presents performance ratio of (1 + a+m)e shown above (a=1 in
this case), which demonstrates that the performance overhead of the mode of operation
of SAEAES is negligible.

5.2 Hardware Implementations

Another important target of lightweight cryptography is hardware implementations in
application specific integrated circuit (ASIC) and field-programmable gate array (FPGA).
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Table 3. Implementation Results of SAEAES128 64 128 on RL78 (ROM/RAM bytes)

Fast Small
ROM RAM ROM RAM

SAEAES 1449 46 581 74
AES-GCM 1533 158 983 178

AES 930 26 401 48

Table 4. Implementation Results of SAEAES128 64 128 on RL78 (cycles/byte)

Fast Small
Message Size 16bytes 128bytes 1Kbytes Maximum 16bytes 128bytes 1Kbytes Maximum

SAEAES 915 508 457 450 2240 1250 1126 1109
AES-GCM 3811 1589 1312 1272 9371 3906 3223 3125
AES 222 544

SAEAES/(2 +m)AES 1.028 1.015 1.012 1.011 1.029 1.021 1.019 1.019

We describe the lightweight hardware architecture appeared in the original paper [13]
(Fig. 4).

The implementation is based on the byte-serial AES implementation [12]. It has 56-
bit and 64-bit shift registers for temporarily storing incoming bytes and feeding them to
the AES implementation synchronously. The design has a byte-oriented interface: an 8-bit
input port for feeding the associated data A, nonce N , and message M , (ii) another 8-bit
input port for the AES key K, and (iii) an 8-bit output port for the ciphertext C and tag
T .

Table 5 and Table 6 summarize the post-synthesis performances on ASIC and FPGA,
respectively. The tables show the circuit area, maximum frequency, and latency of AES,
SAEAES, and their difference.

The ASIC performance in Table 5 is evaluated with the NanGate 45-nm CMOS stan-
dard cell library [1]. SAEAES is implemented with 3,502 [GE]: 823 [GE] in addition to 2,679
[GE] for the AES implementation. The SAEAES implementation consumes a message block
in 231 cycles which is the same as the latency of the underlying AES implementation.
It means that the additional operations for SAEB can be finished in parallel to the AES

implementation.
The FPGA performances in Table 6 are evaluated for Xilinx Virtex-7 and Intel Cyclone

V FPGAs. Similarly to the ASIC implementation, the SAEAES implementation can be
realized with minimal overhead in addition to the AES implementation.

5.3 Resistance against Side-Channel and Fault Injection Attacks

SAEAES is composed of AES and some XOR operations. Therefore, it is reasonable to as-
sume that the resistance against side-channel and fault injection attacks is determined
by the underlying AES implementation. AES is the most popular block cipher algorithm
for studying countermeasures against side-channel and fault injection attacks. Threrefore,
implementers can choose appropriate countermeasures against side-channel and fault in-
jection attacks for AES to protect SAEAES.
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Fig. 4. A lightweight hardware architecture of SAEAES (Figure 4 of [13]).

Table 5. Performance of SAEAES in NanGate 45-nm CMOS standard cell library.

Target Circuit Area Max. Freq. Latency
[GE] [MHz] [Cycles]

SAEAES 3,502 122.0 231
AES 2,679 126.4 231
diff. 823 — —

Table 6. Performance of SAEAES in FPGA.

Platform Target Look-up Table Flip-flop Max. Freq. Latency
[LUTs/ALMs] [FFs] [MHz] [Cycles]

Xilinx Virtex-7 SAEAES 348 242 145.9 231
xc7vx330t AES 304 218 144.2 231
ffg1157-1 diff. 44 24 — —

Intel Cyclone V SAEAES 299 410 83.3 231
5CEBA2F17C8 AES 264 283 87.8 231

diff. 35 127 — —

15



6 Third Party Analyses

The original paper of SAEB is reviewed and published in the IACR Transactions on Cryp-
tographic Hardware and Embedded Systems (TCHES) [13].
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[3] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Duplexing the Sponge:
Single-Pass Authenticated Encryption and Other Applications. In SAC 2011, volume 7118
of LNCS, pages 320–337. Springer, 2012.
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