/////////////////////////////////////////////////////////////////////////////// // sparkle_avr.S: AVR Assembler implementation of the SPARKLE permutation. // // This file is part of the SPARKLE submission to NIST's LW Crypto Project. // // Version 1.1.2 (2020-10-30), see for updates. // // Authors: The SPARKLE Group (C. Beierle, A. Biryukov, L. Cardoso dos // // Santos, J. Groszschaedl, L. Perrin, A. Udovenko, V. Velichkov, Q. Wang). // // License: GPLv3 (see LICENSE file), other licenses available upon request. // // Copyright (C) 2019-2020 University of Luxembourg . // // ------------------------------------------------------------------------- // // This program is free software: you can redistribute it and/or modify it // // under the terms of the GNU General Public License as published by the // // Free Software Foundation, either version 3 of the License, or (at your // // option) any later version. This program is distributed in the hope that // // it will be useful, but WITHOUT ANY WARRANTY; without even the implied // // warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // // GNU General Public License for more details. You should have received a // // copy of the GNU General Public License along with this program. If not, // // see . // /////////////////////////////////////////////////////////////////////////////// #include "avr/io.h" // 32-bit word registers #define WR0 R0,R1,R2,R3 #define WR1 R4,R5,R6,R7 #define WR2 R8,R9,R10,R11 #define WR3 R12,R13,R14,R15 #define WR4 R16,R17,R18,R19 #define WR5 R20,R21,R22,R23 // Temporary registers #define t0 R16 #define t1 R17 #define t2 R18 #define t3 R19 // Other register names #define ZERO R20 #define NS R22 #define SCNT R23 #define NB R24 #define BCNT R25 // 32-bit offset values #define OF0 0,1,2,3 #define OF1 4,5,6,7 #define OF2 8,9,10,11 #define OF3 12,13,14,15 // Start of the code section (placed in flash memory) .section .text .balign 2 /////////////////////////////////////////////////////////////////////////////// ///////////// MACROS FOR 32-BIT ARITHMETIC AND LOGICAL OPERATIONS ///////////// /////////////////////////////////////////////////////////////////////////////// // Addition of two 32-bit words: A = A + B .macro ADDWORD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req ADD \a0, \b0 ADC \a1, \b1 ADC \a2, \b2 ADC \a3, \b3 .endm // Bitwise AND of two 32-bit words: A = A AND B .macro ANDWORD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req AND \a0, \b0 AND \a1, \b1 AND \a2, \b2 AND \a3, \b3 .endm // Bitwise XOR of two 32-bit words: A = A XOR B .macro XORWORD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req EOR \a0, \b0 EOR \a1, \b1 EOR \a2, \b2 EOR \a3, \b3 .endm // Moving 32-bit word B to 32-bit word A: A = B .macro MOVWORD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req MOVW \a0, \b0 MOVW \a2, \b2 .endm // ELL-Operation of a 32-bit word: A = ELL(B) .macro ELLWORD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req MOVW t0, \b2 MOVW \a2, \b0 MOVW \a0, t0 EOR \a0, \a2 EOR \a1, \a3 .endm /////////////////////////////////////////////////////////////////////////////// ////////// MACROS FOR LOADING/STORING STATE WORDS AND ROUND CONSTANTS ///////// /////////////////////////////////////////////////////////////////////////////// // Load 32-bit word via X-pointer from RAM using post-increment addressing mode .macro LDXINCR a0:req, a1:req, a2:req, a3:req LD \a0, X+ LD \a1, X+ LD \a2, X+ LD \a3, X+ .endm // Load 32-bit word via Z-pointer from RAM using displacement addressing mode .macro LDZDISP a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req LDD \a0, Z+\b0 LDD \a1, Z+\b1 LDD \a2, Z+\b2 LDD \a3, Z+\b3 .endm // Load 32-bit word via Z-pointer from RAM using post-increment addressing mode .macro LDZINCR a0:req, a1:req, a2:req, a3:req LD \a0, Z+ LD \a1, Z+ LD \a2, Z+ LD \a3, Z+ .endm // Load 32-bit word from program memory using post-increment addressing mode .macro LDZPCMI a0:req, a1:req, a2:req, a3:req LPM \a0, Z+ LPM \a1, Z+ LPM \a2, Z+ LPM \a3, Z+ .endm // Store 32-bit word via X-pointer to RAM using pre-decrement addressing mode .macro STXDECR a0:req, a1:req, a2:req, a3:req ST -X, \a3 ST -X, \a2 ST -X, \a1 ST -X, \a0 .endm // Store 32-bit word via X-pointer to RAM using post-increment addressing mode .macro STXINCR a0:req, a1:req, a2:req, a3:req ST X+, \a0 ST X+, \a1 ST X+, \a2 ST X+, \a3 .endm // Store 32-bit word via Z-pointer to RAM using pre-decrement addressing mode .macro STZDECR a0:req, a1:req, a2:req, a3:req ST -Z, \a3 ST -Z, \a2 ST -Z, \a1 ST -Z, \a0 .endm // Store 32-bit word via Z-pointer to RAM using displacement addressing mode .macro STZDISP a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req STD Z+\b0, \a0 STD Z+\b1, \a1 STD Z+\b2, \a2 STD Z+\b3, \a3 .endm // Store 32-bit word via Z-pointer to RAM using post-increment addressing mode .macro STZINCR a0:req, a1:req, a2:req, a3:req ST Z+, \a0 ST Z+, \a1 ST Z+, \a2 ST Z+, \a3 .endm /////////////////////////////////////////////////////////////////////////////// ////// MACROS FOR RIGHT-ROTATION OF A 32-BIT WORD FOLLOWED BY ADD OR XOR ////// /////////////////////////////////////////////////////////////////////////////// // A = A + (B >>> 31) .macro RR31ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req // Move word B to temporary word T MOVW t0, \b0 MOVW t2, \b2 // Rotate word T one bit to the left ADD t0, t0 ADC t1, t1 ADC t2, t2 ADC t3, t3 ADC t0, ZERO // Add word T to word A ADD \a0, t0 ADC \a1, t1 ADC \a2, t2 ADC \a3, t3 .endm // A = A XOR (B >>> 31) .macro RR31XOR a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req // Move word B to temporary word T MOVW t0, \b0 MOVW t2, \b2 // Rotate word T one bit to the left ADD t0, t0 ADC t1, t1 ADC t2, t2 ADC t3, t3 ADC t0, ZERO // XOR word T to word A EOR \a0, t0 EOR \a1, t1 EOR \a2, t2 EOR \a3, t3 .endm // A = A + (B >>> 24) .macro RR24ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req // Add word B with implicit 24-bit right-rotation to word A ADD \a0, \b3 ADC \a1, \b0 ADC \a2, \b1 ADC \a3, \b2 .endm // A = A XOR (B >>> 24) .macro RR24XOR a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req // XOR word B with implicit 24-bit right-rotation to word A EOR \a0, \b3 EOR \a1, \b0 EOR \a2, \b1 EOR \a3, \b2 .endm // A = A + (B >>> 17) .macro RR17ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req // Move word B to temporary word T MOVW t0, \b0 MOVW t2, \b2 // Rotate word T one bit to the right BST t0, 0 ROR t3 ROR t2 ROR t1 ROR t0 BLD t3, 7 // Add word T with implicit 16-bit right-rotation to word A ADD \a0, t2 ADC \a1, t3 ADC \a2, t0 ADC \a3, t1 .endm // A = A XOR (B >>> 17) .macro RR17XOR a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req // Move word B to temporary word T MOVW t0, \b0 MOVW t2, \b2 // Rotate word T one bit to the right BST t0, 0 ROR t3 ROR t2 ROR t1 ROR t0 BLD t3, 7 // XOR word T with implicit 16-bit right-rotation to word A EOR \a0, t2 EOR \a1, t3 EOR \a2, t0 EOR \a3, t1 .endm // A = A + (B >>> 16) .macro RR16ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req // Add word B with implicit 16-bit right-rotation to word A ADD \a0, \b2 ADC \a1, \b3 ADC \a2, \b0 ADC \a3, \b1 .endm // A = A XOR (B >>> 16) .macro RR16XOR a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req // XOR word B with implicit 16-bit right-rotation to word A EOR \a0, \b2 EOR \a1, \b3 EOR \a2, \b0 EOR \a3, \b1 .endm // A = A + (B >>> 15) .macro RR15ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req // Move word B to temporary word T MOVW t0, \b0 MOVW t2, \b2 // Rotate word T one bit to the left ADD t0, t0 ADC t1, t1 ADC t2, t2 ADC t3, t3 ADC t0, ZERO // Add word T with implicit 16-bit right-rotation to word A ADD \a0, t2 ADC \a1, t3 ADC \a2, t0 ADC \a3, t1 .endm // A = A XOR (B >>> 15) .macro RR15XOR a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req // Move word B to temporary word T MOVW t0, \b0 MOVW t2, \b2 // Rotate word T one bit to the left ADD t0, t0 ADC t1, t1 ADC t2, t2 ADC t3, t3 ADC t0, ZERO // XOR word T with implicit 16-bit right-rotation to word A EOR \a0, t2 EOR \a1, t3 EOR \a2, t0 EOR \a3, t1 .endm // A = A + (B >>> 8) .macro RR08ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req // Add word B with implicit 8-bit right-rotation to word A ADD \a0, \b1 ADC \a1, \b2 ADC \a2, \b3 ADC \a3, \b0 .endm // A = A XOR (B >>> 8) .macro RR08XOR a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req // XOR word B with implicit 8-bit right-rotation to word A EOR \a0, \b1 EOR \a1, \b2 EOR \a2, \b3 EOR \a3, \b0 .endm // A = A + (B >> 16) .macro RS16ADD a0:req, a1:req, a2:req, a3:req, b0:req, b1:req, b2:req, b3:req // Add word B with implicit 16-bit right-shift to word A ADD \a0, \b2 ADC \a1, \b3 ADC \a2, ZERO ADC \a3, ZERO .endm /////////////////////////////////////////////////////////////////////////////// //////////////////// PROLOGUE: PUSH CALLEE-SAVED REGISTERS //////////////////// /////////////////////////////////////////////////////////////////////////////// // Push callee-saved registers on the stack .macro PROLOGUE PUSH R0 PUSH R2 PUSH R3 PUSH R4 PUSH R5 PUSH R6 PUSH R7 PUSH R8 PUSH R9 PUSH R10 PUSH R11 PUSH R12 PUSH R13 PUSH R14 PUSH R15 PUSH R16 PUSH R17 // initialize pointers and loop-counters MOVW XL, R24 MOV NB, R22 MOV NS, R20 ADD NB, NB ADD NB, NB CLR ZERO .endm /////////////////////////////////////////////////////////////////////////////// ///////////////////// EPILOGUE: POP CALLEE-SAVED REGISTERS //////////////////// /////////////////////////////////////////////////////////////////////////////// // Pop callee-saved registers from the stack .macro EPILOGUE POP R17 POP R16 POP R15 POP R14 POP R13 POP R12 POP R11 POP R10 POP R9 POP R8 POP R7 POP R6 POP R5 POP R4 POP R3 POP R2 POP R0 CLR R1 .endm /////////////////////////////////////////////////////////////////////////////// ////////////////////// ADDITION OF STEP COUNTER TO STATE ////////////////////// /////////////////////////////////////////////////////////////////////////////// .macro ADD_STEP_CNT LDI ZL, lo8(RCON) LDI ZH, hi8(RCON) MOV t0, SCNT ANDI t0, 7 ADD t0, t0 ADD t0, t0 ADD ZL, t0 ADC ZH, ZERO LDZPCMI WR0 ADIW XL, 4 LDXINCR WR1 XORWORD WR1, WR0 STXDECR WR1 SBIW ZL, 4 SUB ZL, t0 SBC ZH, ZERO ADIW XL, 8 LD t0, X EOR t0, SCNT ST X, t0 SBIW XL, 12 .endm /////////////////////////////////////////////////////////////////////////////// //////////////////////////////// ARXBOX LAYER ///////////////////////////////// /////////////////////////////////////////////////////////////////////////////// .macro ARXBOX_LAYER MOV BCNT, NB ; set branch-counter to NB .LARXLOOP1: LDXINCR WR0 ; load state-word X LDXINCR WR1 ; load state-word Y LDZPCMI WR2 ; load round constant C RR31ADD WR0, WR1 ; X = X + (Y >>> 31) RR24XOR WR1, WR0 ; Y = Y XOR (X >>> 24) XORWORD WR0, WR2 ; X = X XOR C RR17ADD WR0, WR1 ; X = X + (Y >>> 17) RR17XOR WR1, WR0 ; Y = Y XOR (X >>> 17) XORWORD WR0, WR2 ; X = X XOR C ADDWORD WR0, WR1 ; X = X + (Y >>> 0) RR31XOR WR1, WR0 ; Y = Y XOR (X >>> 31) XORWORD WR0, WR2 ; X = X XOR C RR24ADD WR0, WR1 ; X = X + (Y >>> 24) RR16XOR WR1, WR0 ; Y = Y XOR (X >>> 16) XORWORD WR0, WR2 ; X = X XOR C SBIW XL, 8 ; decrement X-pointer by 8 STXINCR WR0, ; store state-word X STXINCR WR1, ; store state-word Y SUBI BCNT, 4 ; decrement branch-counter by 4 CPSE BCNT, ZERO ; test whether branch-counter is 0 RJMP .LARXLOOP1 ; if not then jump back to start SUB XL, NB ; set X-pointer to address of state[nb] SBC XH, ZERO ; propagate carry SUB XL, NB ; set X-pointer to address of state[0] SBC XH, ZERO ; propagate carry .endm /////////////////////////////////////////////////////////////////////////////// //////////////////////////////// LINEAR LAYER ///////////////////////////////// /////////////////////////////////////////////////////////////////////////////// .macro LINEAR_LAYER PUSH NS ; push NS to get one more register PUSH SCNT ; push SCNT to get one more register MOVW ZL, XL ; set Z-pointer to address of state[0] LDXINCR WR0 ; WR0 = X[0] (WR0 contains tmpx) MOVWORD WR1, WR0 ; WR1 = X[0] (WR1 contains x0) LDXINCR WR2 ; WR2 = Y[0] (WR2 contains tmpy) MOVWORD WR3, WR2 ; WR3 = Y[0] (WR3 contains y0) MOV BCNT, NB ; set branch-counter to NB SUBI BCNT, 8 ; first iteration of loop below is peeled off .LLINLOOP1: LDXINCR WR4 ; load state-word X[i] XORWORD WR0, WR4 ; xor X[i] to tmpx LDXINCR WR4 ; load state-word Y[i] XORWORD WR2, WR4 ; xor Y[i] to tmpy SUBI BCNT, 8 ; decrement branch-counter BRNE .LLINLOOP1 ; jump back to start if branch-counter is not 0 ELLWORD WR0, WR0 ; perform ELL operation on tmpx ELLWORD WR2, WR2 ; perform ELL operation on tmpy ADIW XL, 8 ; X-pointer contains now address of state[j+nb] MOV BCNT, NB ; set branch-counter to NB SUBI BCNT, 8 ; last iteration of loop below is peeled off .LLINLOOP2: LDXINCR WR4 ; WR4 = state[j+nb] XORWORD WR4, WR2 ; WR4 = state[j+nb] ^ tmpy LDZDISP WR5, OF2 ; WR5 = state[j] XORWORD WR4, WR5 ; WR4 = state[j+nb] ^ tmpy ^ state[j] STXDECR WR5 ; state[j+nb] = WR5 STZINCR WR4 ; state[j-2] = WR4 ADIW XL, 4 ; increment X-pointer manually LDXINCR WR4 ; WR4 = state[j+nb+1] XORWORD WR4, WR0 ; WR4 = state[j+nb+1] ^ tmpx LDZDISP WR5, OF2 ; WR5 = state[j+1] XORWORD WR4, WR5 ; WR4 = state[j+nb+1] ^ tmpx ^ state[j+1] STXDECR WR5 ; state[j+nb+1] = WR5 STZINCR WR4 ; state[j-1] = WR4 ADIW XL, 4 ; increment X-pointer manually SUBI BCNT, 8 ; decrement branch-counter BRNE .LLINLOOP2 ; jump back to start if branch-counter is not 0 MOVW XL, ZL ; X-pointer contains address of state[nb-1] ADIW XL, 8 ; X-pointer contains address of state[nb] LDXINCR WR4 ; WR4 = state[nb] XORWORD WR4, WR2 ; WR4 = state[nb] ^ tmpy XORWORD WR4, WR1 ; WR4 = state[j+nb] ^ tmpy ^ x0 STXDECR WR1 ; state[nb] = x0 STZINCR WR4 ; state[nb-2] = WR4 ADIW XL, 4 ; increment X-pointer manually LDXINCR WR4 ; WR4 = state[nb+1] XORWORD WR4, WR0 ; WR4 = state[nb+1] ^ tmpx XORWORD WR4, WR3 ; WR4 = state[j+nb+1] ^ tmpx ^ y0 STXDECR WR3 ; state[nb+1] = y0 STZINCR WR4 ; state[nb-1] = WR4 SBIW XL, 4 ; decrement X-pointer manually CLR ZERO ; ZERO register was "misused" above SUB XL, NB ; restore original address of X-pointer SBC XH, ZERO ; restore original address of X-pointer POP SCNT ; restore original content of SCNT POP NS ; restore original content of NS .endm /////////////////////////////////////////////////////////////////////////////// ///////////////////////////// SPARKLE PERMUTATION ///////////////////////////// /////////////////////////////////////////////////////////////////////////////// // Function prototype: // ------------------- // void sparkle_avr(uint32_t *state, int brans, int steps) // // Parameters: // ----------- // state: pointer to an uint32-array containing 2*brans state words // brans: number of branches (must be either 4, 6, or 8) // steps: number of steps // // Return value: // ------------- // None .global sparkle_avr .type sparkle_avr, @function .func sparkle_avr sparkle_avr: PROLOGUE ; push callee-saved registers CLR SCNT ; clear step-counter .LMAINLOOP: ADD_STEP_CNT ; macro to add step counter to state ARXBOX_LAYER ; macro for the arxbox layer LINEAR_LAYER ; macro for the linear layer INC SCNT ; increment step-counter CPSE SCNT, NS ; test whether step-counter equals ns RJMP .LMAINLOOP ; if not then jump back to start of loop EPILOGUE ; pop callee-saved registers RET .endfunc .size sparkle_avr, .-sparkle_avr /////////////////////////////////////////////////////////////////////////////// ///////////////////////// ROUND CONSTANTS FOR SPARKLE ///////////////////////// /////////////////////////////////////////////////////////////////////////////// .section .progmem.data .balign 4 // .global RCON .type RCON, @object .size RCON, 32 RCON: .long 0xB7E15162, 0xBF715880, 0x38B4DA56, 0x324E7738 .long 0xBB1185EB, 0x4F7C7B57, 0xCFBFA1C8, 0xC2B3293D .end