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1 Introduction

This document specifies TRIAD, a family of lightweight symmetric-key schemes based on a stream
cipher, and it consists of an authenticated encryption mode Triad-AE, and a hash function Triad-
HASH.

There are various characteristics for lightweight cryptography, and many lightweight ciphers are
designed such that its area size is as small as possible. The feasibility of low-area implementation is
one of the most imporatant aims for lightweight ciphers, but another important index of a lightweight
cipher is low energy consumption. Our new authenticated encryption and hash function called
TRIAD is designed such that its energy consumption is as low as possible and it can be also
implemented in reasonable area size.

In order to realize low energy consumption, we adopt a Trivium-like stream cipher. Unfortu-
nately, we cannot use Trivium directly because its security level is only 80 bits. A simple solution
to achieve 112/128-bit security by a Trivium-based construction is to increase the state size, but
this make a low-area implementation hard. Therefore, TRIAD adopts a new structure while re-
specting the global structure of Trivium accepted by the community. Thanks to the new structure,
its claimed security level increases to 112 bits even though the state size is reduced to 256 bits
(compared to 288 bits in Trivium).

Unlike a block cipher, a stream cipher can accept messages with various bit lengths. This implies
that we do not need a “mode of operation” for confidentiality, and we can save an extra state size.
Similarly to the confidentiality, we consider a message authentication code (MAC) mode without an
extra state size. Our MAC mode is based on a Sponge-like construction, but the internal permutation
is very high speed and low energy.

The concrete parameters and claimed security of Triad-AE are summarized as follows:

• State size is 256 bits.

• Key size is 128 bits.

• The nonce has 96 bits.

• Tag size for the MAC is 64 bits.

• The number of initialization/finalization rounds is 1024.

• Input data are limited to 250 bytes in total.

• Key recovery attacks on Triad-AE require at least 2112 computations on a classical computer
in a single-key setting.

• Under the related-key attack scenario, we claim that there is no attack that is more efficient
than either the generic attack exploiting related keys or 2112 computations.

• A nonce respecting scenario is assumed, and neither unverified plaintext nor its corresponding
tag are released.

• Nonce misuse or releasing unverified plaintext and its corresponding tag effect loss of confi-
dentiality of plaintext but no loss of security of the key.

The hash function Triad-HASH is based in the extended sponge construction [BDPV08, GPP11].
The concrete parameters and claimed security of Triad-HASH are summarized as follows:

• The permutation size is 256 bits.

• The input bitrate is 32 bits.
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• The output bitrate is 128 bits.

• The output size is 256 bits.

• Input data are limited to 250 bytes in total.

• Collision, second preimage and preimage attacks require at least 2112 computations on a clas-
sical computer.

1.1 NIST requirements

NIST requirements are reflected as follows:

- A complete specification is found in Section 2

- A design rationale is given in Section 3

- Security arguments and a preliminary cryptanalysis is found in Section 4

- Performace figures in software and hardware are provided in Section 5

- Test vectors are given in Appendix A

2 Specification

2.1 Overview

TRIAD is a family of lightweight symmetric-key schemes based on a stream cipher, and it consists
of an authenticated encryption mode Triad-AE, and a hash function Triad-HASH.

Triad-AE has an encrypt-and-mac construction, where a stream cipher Triad-SC is used for
encryption and a message authentication code Triad-MAC is used for the mac. Both Triad-SC
and Triad-MAC accept a 128-bit secret key and a 96-bit nonce, and Triad-MAC outputs a 64-bit
tag. The same 128-bit secret key is loaded to both Triad-SC and Triad-MAC, but the claimed
security level is up to 112 bits.

Triad-HASH is based on the sponge construction with a 256-bit permutation Triad-P. The
bit security level of the hash function based on the sponge construction depends on the birthday
paradox for the bit length of the capacity. To achieve 112-bit security, the bit length of the rate part
is 32 bits.

2.2 Notation

TRIAD accepts a 128-bit key K and a 96-bit nonce N , and they are sometimes represented by
using byte arrays as

K = (K[0],K[1],K[2], . . . ,K[15]),

N = (N [0], N [1], N [2], . . . , N [11]),

where K[i] and N [i] denote the ith memory of K and N , respectively.
Byte arrays M for plaintext is also defined similarly, and M [i] denote the ith memory of M .

Sometimes, the jth bit of M [i] is written as M [i]j , i.e.,

M [i] = M [i]1‖M [i]2‖ · · · ‖M [i]8,

where M [i]1 is the msb of M [i]. We also use the same notation for the byte array for the associated
data A and ciphertext C. We assume that the plaintext and associated data are byte string, and
the size of bits is always multiple of 8.

3



2.3 Update Function and Triad-P
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Figure 1: TRIAD update function TriadUpd

Algorithm 1 TRIAD Update Function

1: procedure TriadUpd(a, b, c,msg)
2: t1 ← a68 ⊕ a80 ⊕ b85 · c85
3: t2 ← b64 ⊕ b88
4: t3 ← c68 ⊕ c88
5: z ← t1 ⊕ t2 ⊕ t3
6: t1 ← t1 ⊕ a73 · a79 ⊕ b66 ⊕msg
7: t2 ← t2 ⊕ b65 · b87 ⊕ c84 ⊕msg
8: t3 ← t3 ⊕ c77 · c87 ⊕ a74 ⊕msg
9: (a1, a2, . . . , a80)← (t3, a1, . . . , a79)

10: (b1, b2, . . . , b88)← (t1, b1, . . . , b87)
11: (c1, c2, . . . , c88)← (t2, c1, . . . , c87)
12: return (a, b, c, z)
13: end procedure

TRIAD contains a 256-bit internal state denoted by a = (a1‖a2‖ . . . ‖a80), b = (b1‖b2‖ . . . ‖a88),
and c = (c1‖c2‖ . . . ‖c88), and the internal state is updated by the TRIAD update function TriadUpd.
The input of TriadUpd is 256-bit internal state (a, b, c) and 1-bit message msg . TriadUpd outputs
the updated internal state and 1-bit key stream z. Figure 1 shows the update function, and Algo-
rithm 1 shows the detailed algorithm.

Triad-P and Triad-P̄ are a cryptographic permutation based on TriadUpd. They repeats
TriadUpd 1024 times, and Triad-P̄ absorb “1” in the first round. Triad-P is used in Triad-SC
and Triad-HASH, and Triad-P̄ is used in Triad-MAC.

2.4 Triad-AE

Figure 2 summarizes the encryption of Triad-AE.
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Algorithm 2 Triad-P and Triad-P̄

1: procedure TriadP(a, b, c)
2: for i = 1 to 1024 do
3: (a, b, c, z)← TriadUpd(a, b, c, 0)
4: end for
5: return (a, b, c)
6: end procedure

1: procedure TriadPB(a, b, c)
2: (a, b, c, z)← TriadUpd(a, b, c, 1)
3: for i = 2 to 1024 do
4: (a, b, c, z)← TriadUpd(a, b, c, 0)
5: end for
6: return (a, b, c)
7: end procedure

Triad-AE provides authenticated encryption with associated data (AEAD) and accepts a 128-
bit key K, 96-bit nonce N , variable-length byte array for message M , and variable-length byte array
for associated data A. The encryption of Triad-AE outputs a byte array for ciphertexts C and its
length is the same as that of message. Additionally, the encryption of Triad-AE outputs a 8-byte
array for the tag T .

Algorithm 3 Encryption and Decryption Algorithms of Triad-AE

1: procedure EncryptTriadAE(K,N,M,A)
2: C ← TriadSC(K,N,M)
3: T ← TriadMAC(K,N,M,A)
4: return (C, T )
5: end procedure

1: procedure DecryptTriadAE(K,N,AD,C, T )
2: M ← TriadSC(K,N,C)
3: V ← TriadMAC(K,N,M,A)
4: if V = T then
5: return M
6: else
7: return ⊥
8: end if
9: end procedure

Algorithm 3 shows the encryption and decryption algorithms of Triad-AE. Triad-AE consists
of a stream cipher Triad-SC and message authentication code Triad-MAC. The encryption of
Triad-AE first encrypt M by using Triad-SC. Then, Triad-MAC generates a 64-bit tag T
independently of Triad-SC. The decryption of Triad-AE first decrypt C by using Triad-SC.
Then, a 64-bit tag is computed, and it verifies the delivered tag. Decrypted message is returned if
the delivered tag is verified, but the message is not returned if it is not verified.

Triad-SC. Triad-SC encrypts message M with mlen bytes and output ciphertext C with mlen
bytes. Algorithm 4 shows the algorithm of Triad-SC, where a constant is defined as

(con[3]‖con[2]‖con[1]‖con[0]) = 0xFFFFFFFE. (1)
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AEAD Mode of Operations
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Figure 2: Encryption of Triad-AE

Algorithm 4 Triad-SC

1: procedure TriadSC(K,N,M)
2: (a1‖ · · · ‖a80)← (N [0]‖K[4]‖con[3]‖K[3]‖con[2]‖K[2]‖con[1]‖K[1]‖con[0]‖K[0])
3: (b1‖ · · · ‖b88)← (N [11]‖ · · · ‖N [1])
4: (c1‖ · · · ‖c88)← (K[15]‖ · · · ‖K[5])
5: (a, b, c)← TriadP(a, b, c)
6: for i = 0 to mlen− 1 do
7: for j = 8 to 1 do
8: (a, b, c, z)← TriadUpd(a, b, c, 0)
9: C[i]j ←M [i]j ⊕ z

10: end for
11: end for
12: return C
13: end procedure
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Note that TriadSC can be used to decrypt the ciphertext.

Triad-MAC. Triad-MAC generates a tag T from M with mlen bytes and A with adlen bytes.
First, we apply the byte-length padding to the associated data A, and the padded associated data
is denoted by Ā. Since we restrict the size of the associated data up to 250 − 1 bytes, the byte size
of Ā becomes adlen + 7. In detail,

Ā[i] =



A[i] 0 ≤ i ≤ adlen

adlen&0xFF i = adlen + 1

(adlen� 8)&0xFF i = adlen + 2

(adlen� 16)&0xFF i = adlen + 3

(adlen� 24)&0xFF i = adlen + 4

(adlen� 32)&0xFF i = adlen + 5

(adlen� 40)&0xFF i = adlen + 6

(adlen� 48)&0xFF i = adlen + 7

Algorithm 5 shows the algorithm of Triad-MAC, where a constant is defined as Eq. (1).

Algorithm 5 Triad-MAC

1: procedure TriadMAC(K,N,M)
2: (a1‖ · · · ‖a80)← (N [0]‖K[4]‖con[3]‖K[3]‖con[2]‖K[2]‖con[1]‖K[1]‖con[0]‖K[0])
3: (b1‖ · · · ‖b88)← (N [11]‖ · · · ‖N [1])
4: (c1‖ · · · ‖c88)← (K[15]‖ · · · ‖K[5])
5: (a, b, c)← TriadPB(a, b, c)
6: for i = 0 to adlen + 7− 1 do
7: for j = 8 to 1 do
8: (a, b, c, z)← TriadUpd(a, b, c, Ā[i]j)
9: end for

10: end for
11: for i = 0 to mlen− 1 do
12: for j = 8 to 1 do
13: (a, b, c, z)← TriadUpd(a, b, c,M [i]j)
14: end for
15: end for
16: (a, b, c)← TriadPB(a, b, c)
17: for i = 0 to 7 do
18: for j = 8 to 1 do
19: (a, b, c, T [i]j)← TriadUpd(a, b, c, 0)
20: end for
21: end for
22: return T
23: end procedure

2.5 Triad-HASH

Triad-HASH follows the extended sponge construction [BDPV08, GPP11] with a 256-bit permu-
tation Triad-P with capacity c = 224, input bitrate r = 32, output bitrate r′ = 128, digest size
n = 256, and internal state size t = 256 as shown in Fig. 3

The extended sponge construction consists of three phases.
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Figure 3: Extended Sponge Construction

Initialization: The message IN with inlen bytes is padded by appending a single 1 bit followed by
the minimal number of 0 bits to reach a length that is a multiple of 32, and formatted into
hlen 32-bit blocks M ′1, . . . ,M

′
hlen. Note that M ′i+1 = (in[4i+ 3]‖in[4i+ 2]‖in[4i+ 1]‖in[4i]) for

any 0 ≤ i < hlen− 1. The initial value of the internal state is given as

{b1, . . . , b44} = 10110111111000010101000101100010100010101110,

= (e− 2) · 244 = 0xb7e151628ae,

{b45, . . . , b88} = 00100100001111110110101010001000100001011010,

= (π − 3) · 244 = 0x243f6a8885a,

and the remaining bits are initialized by zero.

Absorbing: the 32-bit input message blocks are XORed into the first 32 bits of the state, interleaved
with applications of the permutation Triad-P.

Squeezing: 32-byte array Z = ([31]‖ · · · ‖Z[1]‖Z[0]) is returned as the hash value. Then, the first
128 bits of the state are returned as an output (Z[15]‖ · · · ‖Z[0]). With a single application of
the permutation Triad-P, the first 128 bits of the updated states are returned as an output
(Z[31]‖ · · · ‖Z[16]).

3 Design Rationale

3.1 Perspective of Our Design

Our goal is to design an extremely low-energy authenticated encryption algorithm with associated
data (AEAD), and to design a lightweight hash function whose components share the same function
as the AEAD. According to the observations shown by [BMA+18], a stream-cipher based construc-
tion is preferable over one that is based on a block cipher. Further, the fact that a natural unroll
implementation can be possible is the most preferable, and they reported that Trivium is one of
the most low-energy ciphers. To achieve our design goal, we intended to choose Trivium in the
internal primitive, but thus is impossible as it accepts only an 80-bit key. Therefore, we design a
Trivium-like stream cipher such that it can accept a 128-bit key and so that its claimed security
becomes 112 bits.
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Algorithm 6 Triad-HASH

1: procedure TriadHash(K,N,M)
2: (a1, ‖ · · · ‖a80)← (0, . . . , 0)
3: (b1‖ · · · ‖b44)← 0xb7e151628ae
4: (b45‖ · · · ‖b88)← 0x243f6a8885a
5: (c1, ‖ · · · ‖c88)← (0, . . . , 0)
6: for i = 1 to hlen do
7: (a1, . . . , a32)← (a1, . . . , a32)⊕M ′i
8: (a, b, c)← TriadP(a, b, c)
9: end for

10: (Z[15]‖ · · · ‖Z[0])← (a1‖ · · · ‖a80‖b1‖ · · · ‖b48)
11: (a, b, c)← TriadP(a, b, c)
12: (Z[31]‖ · · · ‖Z[16])← (a1‖ · · · ‖a80‖b1‖ · · · ‖b48)
13: end procedure

3.2 From Stream Cipher to AEAD

Our goal is to design AEAD, and we construct it by using a stream cipher. One method is to
absorb the message into the internal state while generating key stream, but this will cause security
risks: Since the update function of the internal state is very sparse, such construction will leak much
information of the internal state by controlling absorbed message. Another method is to use the
message-authentication code based on the universal hashing such as [FS03] or the Galois Message
Authentication Code (GMAC), but the multiplier over Galois field is required. In [FS03], they
reported that the multiplier over GF(264) needs 36,000 gate, and this is not lightweight.

To save area size and energy consumption, our solution is to design a dedicated MAC from the
update function of the stream cipher. We guarantee that a large enough number of AND gates must
be active to find a collision of the internal state. Please refer to Sect. 4.5 for details. Since the update
function for the MAC part can be fully shared with that for the encryption part, the required area
size is saved. Besides, it inherits the advantage of the stream cipher, i.e., the energy consumption is
dramatically low.

3.3 From Trivium to TRIAD

As already pointed out, Trivium does not accept a 128-bit key. According to a well-known criterion,
i.e., the internal state size must be larger than the double of the key size [Bab95, Gol97], Trivium
could potentially achieve 128-bit security because the internal state size is 288 bits. Unfortunately,
Trivium cannot achieve 128-bit security even if a 128-bit key can be loaded to the internal state,
as an attack with complexity of about 299.5 is known [MB07]. This attack implies that just a small
tweak of Trivium is not sufficient for our use. Therefore, we design a new stream cipher but it
inherits the design philosophy of Trivium as much as possible.

From “Multiple of 3” to “Multiple of 2”. Trivium adopts the so-called “multiple of 3” prop-
erty, where the linear tap position is chosen from bits indexed by 3i, and it is introduced for security
against correlation attacks (or distinguishers). Then, the internal state can be decomposed into
three linear parts, and these linear parts are connected nonlinearly. To find linear approximations
for the correlation attack, one method is to use linear trails in which all AND gates are approximated
by 0. However, the linear tap positions are chosen so that such a linear approximation is expected
to have at least 72 active AND gates. If we try to find more complicated linear approximations in
which AND gates are not always approximated by 0, we can expect that such a linear approximation
will not be good because at least two linear parts are active.

9



While the “Multiple of 3” property is good against the correlation attack, Maximov then re-
ported that it caused a security degradation against the guess-and-determine attack [MB07]. In
their advanced guess-and-determine attack, attackers first guess and determine one part of three
linear parts, and the complexity is at least c× 2288/3−66/3 = c× 274. The factor c is the complexity
to solve nonlinear system and not negligible. If we additionally guess any bits such that c is small
enough, the complexity becomes c× 283.5 and c ≈ 216.

We want to inherit the good property of the “multiple of 3” but such a choice is not always
suitable. While the easiest and simplest countermeasure is to increase the state size, such a design
is not preferable for the availability of the low-area and low-energy implementation. Therefore, we
adopt “multiple of 2” property instead. Although it inherits some good properties of the “multiple
of 3” it is not as favorable against the correlation attack but is still reasonable because of it turns
out to have a sufficient security margin.

On the positive side, it makes more difficult to mount the advanced guess-and-determine attack.
Note that the complexity of the best correlation attack against Trivium is 2144, although that of
the advanced guess-and-determine attack is 299.5. We believe that our choice is reasonable when we
consider a balanced security margin.

From 288-Bit State to 256-Bit State. When we adopt the “multiple of 2” instead of the
“multiple of 3,” the register size no longer needs to be a multiple of 3. According to the well-known
criterion about the internal state size and security, 112× 2 = 224-bit state is the possible minimum.
However, there is no security margin in such a construction, and it makes the conversion to the
hash function with 112-bit security difficult. Therefore, our choice is to use a 256-bit state for a
reasonable security margin and ease of the conversion to the hash function.

Additional AND Gate. Compared with Trivium, the modifications such as smaller register size
or “multiple of 2” property might cause new security risks. To compensate for such degradation,
one additional AND gate is used in TRIAD, i.e., there are four AND gates in the update function.
Then, how to insert the additional AND gate is important. Since the original three AND gates are
put in each register, we put the additional AND gate such that it mixes different registers. As shown
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Figure 4: Seven choices to XOR additional AND

in Fig. 4, we have seven choices of positions that the output of the additional AND gate is XORed.
Among them, the key stream zt can have a nonlinear term in the cases of (1), (2), (3), and (7), and
such a construction achieves good security against the guess-and-determine attack. However, in the
case of (7), the additional AND gate does not contribute to security enhancement of the MAC mode.
Therefore, we should choose from the three cases (1), (2), and (3). As a result, we chose the case
(1) because it is the lowest energy option on the hardware simulation.
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Sizes of Three Registers. Because of the “multiple of 2” property, each state size must be an
even number. To determine each state size, we tried various cases under the hardware simulation. We
found that the energy consumption, especially when we unrolled the circuit to perform more round
function updates in a single clock cycle, was minimized when register sizes are balanced. The reason
for this can be intuitively understood as follows: we know that when we unroll round functions, the
gates for successive modules stack in front of each other [BMA+18]. The signal transients/glitches
produced due to the signal delays traversing these gates are a major source of dynamic energy
consumption in the circuit. When the register sizes are unbalanced, while still keeping the first 64
locations of each register untapped for efficient unrolling, the situation reaches a flexing point when
we try to unroll the circuit for more than 64 times. For example if we unroll 128 times, the smaller
register sees more gates stacked infront of it, due to which it contributes more to teh dynamic power.
A balanced register structure evenly distributes the cluster of gates ( in the sense of the total signal
delay incurred from input to output of teh register ) and keeps the dynamic power from increasing
disproportionately for one register.

When a 256-bit state is divided into three register sizes equally, sizes of each register become 84,
86, and 86. However, regarding software efficiency, bytewise register size is preferable, and thus, we
have chosen sizes of each register as 80, 88, and 88.

Choosing Tap Positions. Finally, we need to choose linear and nonlinear tap positions. As
already mentioned in Sect. 3.1, a natural unroll implementation should be possible. Similarly to
Trivium, we chose a construction that allows natural unrolling up to 64 rounds. Then, all tap
positions must not be chosen from the left 64 bits.

We first choose the linear tap positions, and they are chosen from bits indexed by 2i due to
“multiple of 2” property. We applied variants of the matrix method in [Gol96]. Note that the
counting number of active AND gates becomes independent of nonlinear tap positions when all AND
gates are approximated by 0. Thus, we picked parameters whose number of active AND gates is as
large as possible. According to exhaustive search, 96 = 24× 4 active AND gates were the maximum
possible, and we chose such a tap position.

We next choose the nonlinear tap positions, and they are chosen from bits indexed by 2i + 1
due to “multiple of 2” property. Unlike Trivium, the nonlinear tap positions are not consecutive.
Interestingly, in some of our experiments, when positions of two tapped bits of the AND gate (keeping
one of the taps fixed at the second last bit) were not too close and not very far either, the energy
consumption was found to be lower.

From the aspect of security, we estimated the correlation of linear trails found by the method
that is used to choose linear tap positions. Due to the modification from “multiple of 3” to “multiple
of 2”, all active AND gates of the linear trails are not always independent. It should not degrade
security compared with that of Trivium. In a search for optimizing energy efficiency and low
correlation, we found that the present design choice that achieves a correlation that is at most 2−72.

4 Report of Cryptanalysis

4.1 Time-Memory-Data Trade-off Attacks

A time-memory-data trade-off attack (TMDTA) is a well-known generic attack against stream ci-
phers. There are five parameters:

• N represents the size of the search space.

• P represents the time required by the preprocessing phase of the attack.

• M represents the amount of random access memory available to the attacker.
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• T represents the time required by the realtime phase of the attack.

• D represents the amount of realtime data available to the attacker.

The simplest time-memory tradeoff attack on stream ciphers was independently described by
Babbage [Bab95] and Golic [Gol97]. Then, the tradeoff curve becomes TM = N with 1 ≤ T ≤ D
and P = M . The total attack complexity is minimized when T = P , and it implies the so-called
birthday bound. In our case of N = 2256, T and P are minimized when T = M = P = 2128. As it
is beyond the claimed security of 112 bits, Triad-AE can avoid the simplest time-memory tradeoff
attack.

An advanced time-memory-data trade-off attack was proposed by Biryukov and Shamir [BS00].
An improved tradeoff curve is given as TM2D2 = N2 with D2 ≤ T ≤ N and P = N/D. This
tradeoff curve is useful to reduce D and M , but considering the limitations of D2 ≤ T ≤ N and
P = N/D, the relation of N2 ≤ TP 2 is obtained. It means that it is impossible to have both P and
T less than 2n/2. Therefore, for N = 2256, P or T must be more than 2128.

4.2 Correlation Attack

We follow the security evaluation when Trivium was designed. There are two-types of correlation
attacks. The first type exploits correlations between linear combinations of key stream bits and
internal state bits and the goal is to recover the internal state. Another type is the distinguishing
attack, where correlations between the key stream bits themselves are exploited.

The first-type of correlation attack is useful for the LFSR based stream ciphers. However, it
has not been successfully applied to the NFSR based stream ciphers although about one decade has
passed since Trivium was proposed. As the designers of Trivium also claimed, it is not clear how
attackers exploit the first-type correlation attack.

The second-type correlation attack can be applied. Similarly to the case of Trivium, we evalu-
ated linear trails in which the output of all AND gates is approximated by 0. We chose preferable
parameters such that the found linear trail has at least 96 active AND gates. An example of a
correlated linear combination of key stream bits is

z0 + z12 + z20 + z24 + z36 + z44 + z56 + z98 + z106 + z116 + z172 + z182 + z190 + z256. (2)

Then, each AND gate is active 24 times, and it has 24 × 4 = 96 active AND gates in total. If all
active AND gates are independent, the corresponding correlation is 2−96. Unfortunately, since weak
property called “multiple of 2” is used in TRIAD instead of “multiple of 3” of Trivium, these
exact minimum numbers of active AND gates highly depend. However, the highest correlation of
the found linear trails becomes at most 2−72 by choosing nonlinear tap positions appropriately.

For example, let us consider the case of Eq. (2). For simplicity, let ari , bri , and cri be the ith bit
of a, b, and c in the rth round, respectively. We define ãi, b̃i, and c̃i as ã80−i+r = ari , b̃88−i+r = bri ,
and c̃88−i+r = cri , respectively. Then, we have the following relations:

ft = ãt + b̃t+22 + ãt+12 + b̃t+88 + b̃t+3 · c̃t+3 + ãt+1 · ãt+7 = 0,

gt = b̃t + c̃t+4 + b̃t+24 + c̃t+88 + b̃t+1 · b̃t+23 = 0,

ht = c̃t + ãt+6 + c̃t+20 + ãt+80 + c̃t+1 · c̃t+11 = 0,

zt = (ãt + ãt+12 + b̃t+3 · c̃t+3) + (b̃t + b̃t+24) + (c̃t + b̃t+20)

= (b̃t+88 + b̃t+22 + ãt+1 · ãt+7) + (c̃t+88 + c̃t+4 + b̃t+1 · b̃t+23) + (ãt+80 + ãt+6 + c̃t+1 · c̃t+11).

Once the linear combination of key stream bits is determined, we can deterministically get the
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corresponding linear trail. By analyzing the linear trail, we can get three sets A, B, and C such that

z0 + z12 + z20 + z24 + z36 + z44 + z56 + z98 + z106 + z116 + z172 + z182 + z190 + z256

+
∑
i∈A

ft+i +
∑
i∈B

gt+i +
∑
i∈C

ht+i

do not have any linear independent term, and it results in the sum of 96 AND in detail. However,
these AND are not always independent. For example, the correlation of the sum of 2 AND, ãt · ãt+2 +
ãt+2 · ãt+4, is 2−1 not 2−2. We analyzed this Boolean function and compute the correlation by using
the similar technique shown in [TIM+18]. As a result, the corresponding correlation is 2−72.

Correlation attacks exploiting more complicated linear trails might exist, but it is not exposed to
any risk unless the correlation exceeds 2−56. Besides, since we adopt an additional AND gate for the
conservative security from the structure of Trivium, we expect that there are no such correlation
attacks.

4.3 Cube Attack

The cube attack was proposed by Dinur and Shamir in [DS09] and can be regarded as a variant
of a higher-order differential attack [Lai94]. Since the cube attack is eventually the best attack
against the initialization of Trivium, we need to guarantee that the initialization of TRIAD is
secure against the cube attack. In CRYPTO 2017, Todo et al. proposed a method to evaluate
the security against cube attacks theoretically [TIHM17]. This technique evaluates the propagation
of the division property [Tod15, TM16] and estimate the reachable algebraic degree. While the
estimated degree is an upper bound, the accuracy is high enough and other methods to estimate the
degree more accurately have not been known yet.

Among 256 bits in the internal state, a80, b88, and c88 can take the lowest degree, and the key
stream bit has higher degree than these three bits. We estimated the upper bound of degree for these
four bits, where a mixed integer linear programming (MILP) was used to estimate them [XZBL16,
Inc15]. Table 1 shows these algebraic degrees.

Table 1: Upper bounds of algebraic degree

Rounds

Target 300 350 400 450 500 550 600 650 700 750 800 850 900

a80 9 16 26 33 54 81 110 166 226 255 255 255 255
b88 8 16 24 32 54 74 106 161 217 255 255 255 255
c88 8 16 24 33 54 79 109 164 220 255 255 255 255
z 16 30 44 60 93 139 188 249–252 255 255 255 255 255

Note that TriadUpd is a permutation for given message and control bits. Therefore, the reachable
algebraic degree is up to 255, and algebraic degrees of all three bits reach 255 after 750 rounds. The
time complexity of cube attacks exploiting degree d is at leat 2d, and it implies that algebraic degree
exploited by attackers is at most 112. The number of rounds in the initialization of TRIAD is 1024,
and this gives a large enough security margin.

When the permutation is used as the sponge function, the existence of a zero-sum partition is
often discussed. Probably, Triad-P will not have zero-sum partition because the iterated inverse
function of TriadUpd increases the degree dramatically. On the other hand, we think that we do not
need to claim non existence of the zero-sum partition because it does not derive any security risk.
Keccak standardized by NIST for SHA3 also has the full-round zero-sum partition [BDPA15, DL11].
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4.4 Guess-and-Determine Attack

The goal of a guess-and-determine attack is to guess a part of state bits in an appropriate way,
in order to derive equations relating state bits and keystream bits. These equations potentially
enable to restrict the state space, so that the complexity of determining the state may be lower than
exhaustive search.

As TRIAD resembles Trivium, we check the feasibility of guess-and-determine attacks against
TRIAD that are similar to those against Trivium.

In Trivium, 64 equations relating state bits and keystream bits are linear by design. There are
essentially two guess-and-determine attacks against Trivium known to get more linear equations, a
basic one, and an elaborate one due to [MB07].

The basic attack exploits the property of Trivium that the inputs to the AND gates in the state
update function are in consecutive positions. This requires to guess only every second state bit to
get linear equations. One of these guess-and-determine attacks on Trivium has complexity 2135.
In TRIAD, inputs to the AND gates are non consecutive, and one AND even takes its inputs from
different registers. In addition, there are four rather than three AND gates in the state update as
in Trivium. Both facts will prevent this type of guess-and-determine attack on TRIAD.

The elaborate attack in [MB07] makes a guess on the state of the shortest of the the three
registers, of length 84 bits. As Trivium follows the “multiple of 3” strategy, the state can be
divided into three disjoint parts that are connected by AND gates. In [MB07] it is demonstrated
that after about 261 update steps a configuration may appear where a sufficient number of ANDs will
happen to vanish to get enough linear equations. In principle, a similar approach can be considered
for TRIAD, as it follows a “multiple of 2” structure. This would divide the state space of 256 bits
into two parts of 128 bits each. The data for a same secret key and nonce are restricted to 250 bytes.
This together with the property that TRIAD has four rather than three AND gates, will make such
kind of elaborate guess-and-determine very unlikely.

4.5 Forgery Attack

Triad-MAC is a message authentication code and is designed by using TriadUpd. Attackers first
query a message M for a known or chosen nonce N and get a tag T . For any difference ∆, if the
internal state absorbing M ⊕∆ collides with that absorbing M , the forgery attack is successful.

Note that Triad-MAC is independent of Triad-SC, and the internal state of Triad-MAC is
secret for attackers. Therefore, attackers need to use probabilistic events for two colliding internal
states. In other words, if many active AND gates are forced, we can guarantee that attackers
are unlikely to succeed in a forgery attack. Assuming a 1-bit difference is induced at clock t, we
evaluate the minimum number of active AND gates under the condition that attackers can induce
any difference from clock t+ 1 to clock t+ r − 1. Table 2 shows the number of active AND gates.

Table 2: Number of active AND gates

Rounds r 160 192 224 256 288 320 352 384

# active AND gates 19 26 36 53 62 85 89 89

Since the bit length of the tag of Triad-MAC is 64 bits, attackers can trivially forge any
ciphertext by trying 264 tags. To avoid the nontrivial forgery attack, we need to guarantee at least
64 active AND gates. As a result, Triad-MAC guarantees 89 active AND gates.
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4.6 Security of Hash Function

Triad-HASH follows the extended sponge construction [GPP11]. If the underlying permutation
Triad-P does not have any structural weakness, the following bounds apply for its collision, second,
preimage and preimage resistance.

Collision min{2n/2, 2c/2}

Second-preimage min{2n, 2c/2}

preimage min{2min{n,t},max{2min{n,t}−r′), 2c/2}}

For n = 256, c = 224, r = 32, r′ = 128 and t = 256, these concrete bounds are given as in Table. 3.

Table 3: Security of collision, 2nd preimage and preimage attacks.

Collision 2nd preimage Preimage

2112 2112 2128

4.7 Fault Attacks

Fault attacks on stream ciphers as well as lightweight block ciphers is a well researched topic as
is apparent from numerous papers in literature [BMS12, BM13, HR08]. If the attacker is able to
apply time and/or location synchronized bit flipping faults to either the state register or the LFSR,
he may be able to determine the internal state of the cipher by comparing the faulty and fault-free
keystream bits and formulating enough equations to solve for the internal state. Once the internal
state is found, the can be calculated, just by clocking back the state to its initial position. Thus
it will always be possible to mount fault attacks on unprotected lightweight designs provided the
adversary is resourceful enough and he can rekey the cipher multiple times using the same key and
nonce. The ability of the adversary to rekey the device is essential as the main attack strategy of the
adversary to deduce internal state by ovserving difference between faulty and faultfree ciphertext
pairs. Thus the attck must necessarily cause the attacker to abuse nonce misuse privileges. Thus
if a fault attack is to be thwarted, the cipher needs to be implemented with adequate protection
circuitry.

4.8 Security of Related-Key Attacks

The secret key and nonce are loaded into the initial state of Triad-AE, and then Triad-P or
Triad-P̄ is applied. If the underlying permutations do not have any structural weakness, there is
no significant difference between the key and nonce. Therefore, we think that Triad-AE is also
secure against related-key attacks.

4.9 Security under Unpreferable Use

Triad-AE should be used under the nonce respecting setting, and security risks will be caused
under the unpreferable use. Then, we consider two cases: nonce repeat and releasing unverified
plaintexts.

When the nonce is repeated, the same internal state and key stream sequence are generated. It
clearly implies that confidentiality is no longer maintained. On the other hand, we claim that the
secret key K cannot be recovered even if the nonce is repeated.
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Next, we consider the case that unverified plaintexts are released. Attackers can query any ci-
phertext to a decryption oracle and get corresponding plaintext regardless of the tag verification.
Similarly to the case of nonce repeat, confidentiality is no longer maintained. However, the informa-
tion that attackers can newly get is only key stream, and the internal state is never recovered from
the key stream. Therefore, we also claim that the secret key K cannot be recovered if unverified
plaintexts are released.

5 Performance

5.1 Hardware Implementation

One of the findings of [BMA+18], was that unrolled implemetations of lightweight stream ciphers
like Trivium [CP08] are very energy efficient. [BMA+18] showed that for encrypting multiple blocks
of data, an implementation of Trivium that is unrolled to perform 160 round update computations
in one clock cycle is more energy efficient than even Midori-128, [BBI+15], a block cipher designed
specifically for energy efficiency. This was surprising because Trivium was initially designed to be
efficiently unrollable to perform 64 round function computations in one clock cycle. However as
the authors of [BMA+18] argued, since the Trivium round function is essentially very lightweight
and unrolling even beyond 64 rounds does not increase hardware complexity significantly. It also
does not increase the circuit depth that contributes to formation of transient glitches which is the
principal source of dynamic power consumption in lightweight circuits [BBR16]. On the other hand,
unrolling a circuit n times, brings down the time required to encrypt a given amount of data by
a factor of n clock cycles. So although the power consumption of increasingly higher degree of
unrolled circuits always increases, the reduction in time required leads inevitably to energy savings,
for optimal values of n.

Trivium is a remarkably well designed cipher in many ways. It achieves efficiency in energy
consumption, and a decade of intense scrutiny by the community has not been able to successfully
cryptanalyze the full version of the cipher. However it is well known that the cipher does not
provide 128 bit security, as outlined in [MB07], and so our motivation was to redesign the cipher to
guarantee 128 bit security. Any attempt by us to design a cipher similar to Trivium, ran into familiar
problems: a candidate cipher with good energy performance had a high linear correlation coefficient
i.e. we could find a linear sum of output bits biased towards zero with probability signifcantly more
than half, and a cipher having low enough correlation coefficent consumed much more energy than
Trivium. We could not seem to do better than to simply increase the state size by a factor of 2
and scale the taps accordingly.

Our initial target was to design a cipher with 256 bit state to have an efficient lightweight
implementation. After several experiments we came to the conclusion that in order to guarantee
security agaist linear and guess and determine attacks we needed an additional AND gate in the
circuit. In the past there have been similar designs proposed that advocate the use of additonal AND
gates in the Trivium framework. Two such proposals are those made in the appendix of [MB07]
and in Trivia-SC [CCHN15]. [MB07] suggested the use of 3 additional AND gates which increase
the energy consumption significantly. [CCHN15] suggested adding the output of the additional AND
gate to the output bit: this would not be able to take advantage of modern standard cell libraries
that have provision for 3-input XOR gates. The output bit in Trivium is already produced by a
3-input XOR: adding another component would necessitate placement of another gate that leads to
increased signal delay and additonal glitching.

Therefore our goal to to design a cipher with a single AND gate with proper security margins in
place evolved in the manner as follows. We experimented with parameter sets that consisted of a) size
of the registers, b) location of all the taps c) location of addition of the output of the additional AND
gate. For parameter sets that met security requirements, we implemented the design in hardware

16



Update Function

State register

Key || IV || Constant

Z

⊕⊕

· · · M||Adlen||AD||01023||1
b

b TAG

CT

ENC/MAC

SEL

Figure 5: Hardware circuit for Triad-AE

and ran simulations to evaluate the energy consumption. The current design Triad-SC was chosen
by experimenting with around 300 candidate designs.

5.1.1 Triad-SC

The first step was naturally to design an energy efficient stream cipher with Trivium as a reference
point. We wanted flexibility of unrolling to be one of the design requirements, not only because
energy efficiency is generally achieved at higher unrolled circuits, but also it gives the implementer
the option to choose design as per the current area, power, throughput requirements. In table 4,
we tabulate synthesis results of Triad-SC against lightweight stream ciphers and block ciphers in
literature. These results place Triad-SC reasonably well in the design space.

5.1.2 Circuit Details

Figure 5 details the hardware circuit for the encryption and MAC routines of Triad-AE. The mode
is designed in a manner so as to not require any additional state bits apart from the ones used
in the stream cipher circuit. Thus we have a 256 bit state register which directly feeds the state
update function. The initial input (denoted by Key || IV || Constant in the above figure) to the AE
routine is loaded onto the state register which is updated by the round function in each clock cycle
with additional message/associated data input. During the encryption stage, the output filter of the
round function produces keystream that is added to message to produce ciphertext.

The round function circuit can be implemented in an unrolled fashion to perform more update
computations and generate more keystream bits per clock cycle. The circuit can indeed be efficiently
described in VHDL as per the guidelines given in [BMA+18, Appendix A]. In this document we
present results for n = 1, 8, 32, 64, 128, 256, 1024. The input data to be absorbed is a bit
string of form 101023 (Initialization)||AD||Adlen||M ||101023 (Finalization)||016 (MAC) during the
MAC generation stage. For, an n times unrolled circuit, the above string is padded with zeros to
make it a multiple of n and fed n bits at a time through the input port. For the encryption stage the
input is 101023 (Initialization)||M . Note that this time the message is not absorbed into the state,
but just added with the keystream. So signals to control the addition of the input bitstream to the
state, and to the keystream are be generated centrally depending on the length of the message and
associated data.
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# Cipher n Area Power Energy (nJ)

(GE) (µw) 16B 64B 256B

1 Grain v1 1 1005 38.9 1.120 2.614 8.589

16 2673 86.6 0.156 0.364 1.195

32 3934 165.1 0.149 0.347 1.139

64 7474 561.3 0.281 0.617 1.965

2 Grain-128 1 1455 57.8 2.220 4.439 13.317

32 3579 126.8 0.152 0.304 0.913

64 6336 282.7 0.170 0.339 1.018

3 Trivium 1 1870 78.4 10.035 13.046 25.088

64 3051 128.7 0.257 0.335 0.643

128 4593 207.1 0.207 0.269 0.518

256 7755 419.5 0.209 0.294 0.545

4 Kreyvium 1 2892 140.8 18.022 23.429 45.056

64 4579 202.8 0.406 0.527 1.014

128 5050 221.4 0.221 0.288 0.553

256 8612 452.6 0.226 0.317 0.588

5 PRESENT 1 1440 52.2 0.345 1.378 5.512

2 1968 91.3 0.310 1.242 4.967

3 2500 149.0 0.358 1.430 5.721

6 Midori64 1 1542 60.6 0.206 0.824 3.297

2 2017 100.6 0.181 0.724 2.897

3 2826 273.8 0.383 1.533 6.133

7 Triad-SC 1 1425 50.5 5.818 7.756 15.513

64 3040 122.5 0.220 0.294 0.588

128 4733 200.2 0.180 0.240 0.480

256 8165 426.3 0.213 0.256 0.512

Table 4: Comparison of energy for different degrees of unrolling, n denotes # unrolled rounds,
Energy/bit figure calculated over 1000 blocks.
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Figure 6: Hardware circuit for Triad-HASH

For Triad-HASH, the circuit is slightly different. Firstly, the round function is a lot more
lightweight, since it does not have to generate keystream bits, and so the output filter fuction can be
omitted. At the beginning, the Initialization Constant is loaded on to the state register after adding
with the first block of message. Thereafter, the Triad-P permutation is run for 1024 rounds before
the next block of message is xored. Again the update function can be implemented in an unrolled
fashion with various degrees of unrolling. Note that if n is the degree of unrolling, each message
block is absorbed after 1024

n cycles. Thus an ABSORB signal controlling the addition of the message
to the state is generated centrally depending on the degree of unrolling.

5.1.3 Timing

For a dataset with associated data length = a bytes and message length = m bytes, the MAC
generation needs to perform RMAC = 1024 + 8a+ 56 (For absorbing Adlen ) + 8m+ 1024 + 16 =
2120 + 8(a + m) round update functions. Similarly encryption would take RENC = 1024 + 8m
round updates. Thus any n-round unrolled implementation of Triad-AE would take

⌈
RENC

n

⌉
clock cycles to encrypt and

⌈
RMAC

n

⌉
clock cycles to produce MAC. Triad-HASH needs 1024 round

function updates to execute Triad-P, after absorbing every 4 bytes of message, and another 1024
to finalize the digest. Thus if the length of the 10∗ padded message is w∗ 4-byte blocks then
RHASH = 1024w∗ + 1024 round updates are required. Any n-round unrolled implementation of the
round function requires

⌈
RHASH

n

⌉
clock cycles to hash.

5.1.4 Performance

In Table 5 and 6 we present the synthesis results for Triad-AE and Triad-HASH. The following
design flow was used: first the design was implemented in VHDL. Then, a functional verification
was first done using Mentor Graphics Modelsim software. The designs were synthesized using the
standard cell library of the 90nm logic process of STM (CORE90GPHVT v2.1.a) with the Synopsys
Design Compiler, with the compiler being specifically instructed to optimize the circuit for area. A
timing simulation was done on the synthesized netlist. The switching activity of each gate of the
circuit was collected while running post-synthesis simulation. The average power was obtained using
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Synopsys Power Compiler, using the back annotated switching activity.

Design n Area Power Energy(nJ)

(GE) (µW) AD PT AD PT AD PT

0B 16B 16B 16B 16B 32B

Triad-AE 1 1354 61.6 20.957 21.746 23.324

8 1598 69.8 2.967 3.078 3.302

32 2444 99.0 1.059 1.099 1.139

64 3573 137.9 0.745 0.772 0.800

128 5861 226.2 0.611 0.634 0.656

256 10486 502.7 0.704 0.754 0.754

1024 38191 5427.5 2.714 2.714 2.714

Table 5: Implementation results for Triad-AE. (Power reported at 10 MHz)

Design n Area Power Energy(nJ)

(GE) (µW) 0B 8B 16B 32B 48B 64B

Triad-HASH 1 1344 69.1 14.152 21.228 28.303 42.455 56.607 70.758

8 1466 74.4 1.905 2.857 3.809 5.714 7.619 9.523

32 1964 91.7 0.587 0.880 1.174 1.761 2.348 2.934

64 2630 108.7 0.348 0.522 0.696 1.044 1.391 1.739

128 4016 172.6 0.276 0.414 0.552 0.828 1.105 1.381

256 6791 357.3 0.286 0.429 0.572 0.858 1.143 1.429

1024 23467 3436.5 0.687 1.031 1.375 2.062 2.749 3.436

Table 6: Implementation results for Triad-HASH. (Power reported at 10 MHz)

Tables 5 and 6 unearth interesting results about the energy consumption of Triad-AE and
Triad-HASH. Table 5 lists the energy consumed for performing the encryption and MAC routines
of Triad-AE for different datalengths whereas table 6 lists the corresponding energy consumed to
hash messages of given lengths. As outlined in [BMA+18], we obtain a quasi-parabolic behaviour
wrt to unrolling. For both Triad-HASH and Triad-AE, the 128x unrolling is the most efficent
energywise whereas the 32x or the 64x implementation provides a good balance between number of
clock cycles required to process, area and energy. We also provide a 1024x implementation for high
throughput requirements.

5.2 Software Implementation

Although the main target of TRIAD is hardware, we can have good performance on the high-end
software. We show how to implement TRIAD efficiently by using the SIMD in the Intel architecture.

Since updated three bits are never used after 64 rounds, the specification allows us to compute
64 rounds simultaneously. When each register in the internal state of TRIAD can be stored into
each register, BIT-SHIFT, XOR, and AND operations can allow us to compute 64 rounds. In the
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case of Intel CPU, we store these three registers into 128-bit xmm registers. Unfortunately, there is
no single BIT-SHIFT instruction for the whole of the xmm register. For example, PSLLQ instruction
shift the top and bottom 64 bits independently. Only BYTE-SHIFT instruction is available for the
whole of the xmm register. To solve this issue, we restrict that the number of unrolled rounds is up
to 56 rounds, and then, we can collect the necessary 56-bit value in the top 64 bits by using two
operations, PSLLDQ and PSLLQ.

xmm

PSLLDQ xmm,1

PSLLQ xmm,5

xmm

xmm

xmm

PSLLDQ xmm,2

PSLLQ xmm,5

xmm

xmm

Figure 7: BIT-SHIFT for TriadUpd

The left figure of Fig. 7 shows an example to extract 56-bit value from the 77-th bit of the third
register. The third register is shifted by 2 bytes to the left in PSLLDQ, and it is shifted by 5 bits
to the left in PSLLQ. Eventually, the 77-th bit is shifted to the 56-th bit. Note that only 1 byte is
shifted in PSLLDQ, the 77-th bit vanishes in PSLLQ.

Another important fact is that Triad-SC and Triad-MAC shares almost the same operation.
The difference is only the absorb of message and generation of key stream, and the main update
function is the same. Therefore, we use 256-bit ymm registers instead of xmm registers, and Triad-
SC and Triad-MAC are processed in the top and bottom 128 bits, respectively. Namely, while
Triad-AE has the two streams, they are fully parallelizable.

Table 7: Cycle per Byte on Intel Core i7-7660U (Kaby Lake)

# of encrypted bytes 32 64 1024 8192 65536

cycles per Byte
Triad-AE 24.46 14.81 3.81 3.18 3.06

Triad-HASH 94.25 84.10 76.15 74.16 73.86

Table 7 summarizes the benchmarks of Triad-AE and Triad-HASH, where Intel Core i7-7660U
(Kaby Lake) is used. The speed of Triad-AE is 3.06 cpb and fast enough. Triad-HASH is slower
than Triad-AE, but this is because that the claimed security is 112 bits in spite of 256-bit state.
We think that this processing speed is not slow for the hash function with such an extremely small
state.
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A Test Vectors

A.1 Triad-AE

Key 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C, 0D, 0E, 0F

Nonce 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B

PT

AD

CT D1, 6D, CC, A6, B3, 34, CB, 84

Key 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C, 0D, 0E, 0F

Nonce 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B

PT 00

AD 00

CT F5, D4, 1A, F0, 01, D9, D7, 53, 67

A.2 Triad-HASH

Msg

MD BB, 98, 1A, 14, EF, A8, EA, 5D, 30, 8E, 79, 55, F7, 40, 2C, 94

1B, 20, 9E, A4, 13, 19, FE, EE, 3D, 57, 1A, 4C, 44, 17, 5E, 6E

Msg 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B, 0C, 0D, 0E, 0F

MD 35, 54, 06, 34, 1E, BF, B7, 08, 68, C2, 5A, 10, A7, 18, 3F, B7

6B, F2, D7, C0, 21, 86, 17, FD, 0B, 41, E1, 1E, 16, 87, EA, 34
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