
Quartet: A Lightweight Authenticated Cipher

(v1)

Submitter: Bin Zhang
martin zhangbin@hotmail.com, +86-13520126526

TCA, SKLCS, Institute of Software, Chinese Academy of Sciences
100190, Beijing, China

Contents

1 Specification 4
1.1 Parameters . 4
1.2 Recommended Parameter Sets 5
1.3 Operations and Variables . 5
1.4 Mode of Operation . 6
1.5 Description of Quartet . 6

1.5.1 The χ Function . 7
1.5.2 The ρ Function . 7
1.5.3 The λ Function . 8
1.5.4 The τ Function . 9
1.5.5 The Output ζ Function 9
1.5.6 One Initialization Round Rini 10
1.5.7 One Round R in Generating keystream, Processing the

Associated data and Finalization/Tag generation 10
1.5.8 The Initialization Phase 11
1.5.9 Processing the Associated Data 11
1.5.10 Processing the Plaintext 12
1.5.11 Finalization and the Tag Generation 13
1.5.12 The Verification and Decryption 13

2 Security Goals 15

3 Security Analysis 16
3.1 Period and Time/Memory/Data Tradeoffs 16
3.2 Linear Distinguishing Attacks . 16
3.3 Differential Cryptanalysis . 16
3.4 Cube Attacks and Variants . 17
3.5 Guess and Determine Attacks . 17
3.6 Security of the Authenticated Mechanism 17

4 Features 18

1

5 Performance 19
5.1 Hardware . 19
5.2 Software . 19

6 Design Rationale 20

7 Test Vectors 21

2

Introduction

Quartet v1 is a lightweight authenticated cipher with a 128-bit secret key and a
96-bit IV. It is oriented to be efficiently implemented in the constrained hardware
environments and to have a reasonably good performance in software on various
platforms. Quartet v1 is designed bo be secure in the nonce-respecting setting.
So far, no attack faster than 2112 has been identified in the single key model.

3

Chapter 1

Specification

The specification of Quartet v1 is given in this charpter.

1.1 Parameters

Quartet v11 is a stream cipher-based authenticated encryption primitive. It
has three parameters: key length, nonce length and tag length. The parameter
space is as follows. The key length is 16 bytes, the public nonce length is 12
bytes and the tag length is 16-byte or 8-byte. From a 128-bit secret key K
and a 96-bit public Nonce, or initialization vector (IV), Quartet generates the
keystream of length up to 264 bits.

The inputs are a public message number Nonce, i.e., IV , and a secret key
K, a plaintext M = (m0,m1, · · · ,mml−1) of ml bytes, the associated data
A = (ad0, ad1, · · · , adal−1) of al bytes. The length of M is up to 264 bits, i.e.,
less than or equal to 261 bytes. The length of A is up to 250− 1 bytes. There is
no secret message number, i.e., the secret message number is empty. Formally,
the authenticated encryption procedure is

Quartet_AE (K, IV,A,M) = (C, T).

The output of the authenticated encryption is (C, T), where C is the ciphertext
of the plaintext M and T is the authenticated tag of 16-byte or 8-byte, which
authenticates both A and M . The length of the ciphertext is exactly the same
as the plaintext M . Thus, the number of bytes in M plus the tag length in
bytes equals to the output length in bytes.

The verification and decryption procedure takes as input the same secret key
K and the public IV , the associated data A, the ciphertext C and the received
authenticated tag T , and outputs the plaintext M only if the verification of
the tag is correct or ⊥ when the verification of the tag fails. Formally, this
procedure can be written as

Quartet_VD (K, IV,A,C, T) = {M,⊥}.
1We use Quartet to denote Quartet v1 hereafter.

4

1.2 Recommended Parameter Sets

Primary recommended parameter set of Quartet v1: 16-byte (128-bit) key, 12-
byte (96-bit) nonce, 16-byte (128-bit) tag. Second recommended parameter set
of Quartet v1: 16-byte (128-bit) key, 12-byte (96-bit) nonce, 8-byte (64-bit)
tag.

1.3 Operations and Variables

The following operations and variables are used in the description.

- The bitwise logic AND is denoted by ·

- The bitwise exclusive OR is denoted by ⊕

- The bit or bit-string concatenation is denoted by ‖

- The bitwise right shift of a 32-bit word is �32

- The bitwise left rotation of a 32-bit word is ≪32

- The bitwise right rotation of a 64-bit word is ≫64

- The associated data is A, which will not be encrypted or decrypted

- One byte of the associated data is adi

- The byte length of the associated data is al with 0 ≤ al < 250 − 1

- The plaintext is M with one byte of plaintext as mi and the 64-bit plain-
text word Mi,8 = mi+7‖mi+6‖mi+5‖mi+4‖mi+3‖mi+2‖mi+1‖mi

- The byte length of the plaintext is ml with 0 ≤ ml < 261

- The ciphertext is C with one byte of ciphertext as ci and the 64-bit ci-
phertext word Ci,8 = ci+7‖ci+6‖ci+5‖ci+4 ‖ci+3‖ci+2‖ci+1‖ci

- The authenticated tag is T of length 16-byte or 8-byte

- K = (K15,K14, · · · ,K1,K0), the 128-bit secret key used in Quartet, where
Ki for 0 ≤ i ≤ 15 are the byte values with K0 being the least significant
byte and K15 being the most significant byte

- IV = (IV11, IV10, · · · , IV1, IV0), the 96-bit initialization vector IV used
in Quartet, where IVi for 0 ≤ i ≤ 11 are the byte values with IV0 being
the least significant byte and IV11 being the most significant byte

- Di for 0 ≤ i ≤ 3 are the 8-bit constants used in Quartet

- The jth bit (0 ≤ j ≤ 63) of a 64-bit word xi is xi[j], where xi[0] is the
least significant bit and xi[63] is the most significant bit

5

Figure 1.1: The authenticated encryption mode of Quartet v1

1.4 Mode of Operation

The mode of operation of Quartet is depicted in Figure 1.1, where F is the state
updating function that operate on an internal state of 256 bits, and f is the
output function that generates a 64-bit keystream word at each time instant.
For a more detailed description, please see the following sections.

1.5 Description of Quartet

As depicted in Fig.1.2, there are 4 64-bit lanes involved in the algorithm: x0,
x1, x2 and x3. We define 5 functions based on these 4 64-bit lanes: the χ
function is the only non-linear function in the state updating of Quartet, which
updates xi by taking xi, xi+1 and xi+2 as inputs with the index addition being
the addition modulo 4; the ρ function is a linear function on one 64-bit lane,
which divides the 64-bit lane into 2 32-bit words and rotates each 32-bit word
left by the same number of bits; the λ function is also a linear function, but
operates on one 64-bit lane xi. It is defined by two rotation parameters ri,1 and
ri,2 as λ(xi, ri,1, ri,2); the constant addition function τ and the output function
ζ which produces a 64-bit keystream word at each step. Next, we will present
Quartet’s components one-by-one.

6

Figure 1.2: The 4 64-bit lanes in Quartet

1.5.1 The χ Function

We first look at the internal state, i.e., the 4 64-bit lanes in Fig.1.2. Based on
x0, x1, x2 and x3, the only non-linear function in Quartet is the χ function
defined as

χ(xi, xi+1, xi+2) : xi ← xi ⊕ (xi+2 ⊕ 1) · xi+1, for 0 ≤ i ≤ 3.

Precisely for 0 ≤ i ≤ 3, the corresponding state updating functions are:

χ(x0, x1, x2) : x0 ← x0 ⊕ (x2 ⊕ 1) · x1
χ(x1, x2, x3) : x1 ← x1 ⊕ (x3 ⊕ 1) · x2
χ(x2, x3, x0) : x2 ← x2 ⊕ (x0 ⊕ 1) · x3
χ(x3, x0, x1) : x3 ← x3 ⊕ (x1 ⊕ 1) · x0 .

Note that the χ function operates on the 64-bit lanes directly, which can be ef-
ficiently implemented in hardware/software environments. Besides, the χ func-
tion is similar to the corresponding χ function in Keccak [3], but with a different
input variable order.

1.5.2 The ρ Function

The ρ function is defined as below. It divides the 64-bit lane xi into 2 32-bit
words and rotates each 32-bit word left by the same number of bits ni.

ρ(xi) : xi ← ((xi �32 32) · 0xffffffff ≪32 ni)‖(xi · 0xffffffff ≪32 ni),

7

where 0 ≤ i ≤ 3. Precisely for 0 ≤ i ≤ 3, the corresponding state updating
functions are:

ρ(x0) : x0 ← ((x0 �32 32) · 0xffffffff ≪32 n0)‖(x0 · 0xffffffff ≪32 n0),

ρ(x1) : x1 ← ((x1 �32 32) · 0xffffffff ≪32 n1)‖(x1 · 0xffffffff ≪32 n1),

ρ(x2) : x2 ← ((x2 �32 32) · 0xffffffff ≪32 n2)‖(x2 · 0xffffffff ≪32 n2),

ρ(x3) : x3 ← ((x3 �32 32) · 0xffffffff ≪32 n3)‖(x3 · 0xffffffff ≪32 n3).

The left rotation constants are listed in the following table. These constants are

Table 1.1: The left rotation constants on 32-bit word in Quartet

variable n0 n1 n2 n3
value 20 23 5 26

chosen to maximize the linear diffusion effect in Quartet.

1.5.3 The λ Function

The λ function is defined as below. It is also a linear function, but operates on
the 64-bit lane itself. It is used to provide diffusion within each of the 64-bit
lane. The λ function operating on the lane xi with the two rotation parameters
ri,1 and ri,2 is denoted by λ(xi, ri,1, ri,2).

λ(xi, ri,1, ri,2) : xi ← xi ⊕ (xi ≫64 ri,1)⊕ (xi ≫64 ri,2),

where 0 ≤ i ≤ 3. Precisely for 0 ≤ i ≤ 3, the corresponding state updating
functions are:

λ(x0, r0,1, r0,2) : x0 ← x0 ⊕ (x0 ≫64 r0,1)⊕ (x0 ≫64 r0,2),

λ(x1, r1,1, r1,2) : x1 ← x1 ⊕ (x1 ≫64 r1,1)⊕ (x1 ≫64 r1,2),

λ(x2, r2,1, r2,2) : x2 ← x2 ⊕ (x2 ≫64 r2,1)⊕ (x2 ≫64 r2,2),

λ(x3, r3,1, r3,2) : x3 ← x3 ⊕ (x3 ≫64 r3,1)⊕ (x3 ≫64 r3,2).

Table 1.2: The right rotation constants on 64-bit lanes for the keystream gen-
eration in Quartet

lane x0 x1 x2 x3
variable (r0,1, r0,2) (r1,1, r1,2) (r2,1, r2,2) (r3,1, r3,2)
value (1, 6) (10, 17) (7, 41) (61, 39)

8

For the different functionalities in AEAD, we set different combinations of
the right rotation constants in Quartet.

Precisely, for the normal keystream generation, the combination of right
rotation constants is shown in Table 1.2.

When processing the associated data A, the combination of right rotation
constants is shown in Table 1.3.

Table 1.3: The right rotation constants on 64-bit lanes for processing the asso-
ciated data in Quartet

lane x0 x1 x2 x3
variable (r0,1, r0,2) (r1,1, r1,2) (r2,1, r2,2) (r3,1, r3,2)
value (1, 6) (10, 17) (7, 41) (19, 28)

For the finalization phase to produce the tag T , the combination of right
rotation constants is shown in Table 1.4.

Table 1.4: The right rotation constants on 64-bit lane for the finalization and
tag generation in Quartet

lane x0 x1 x2 x3
variable (r0,1, r0,2) (r1,1, r1,2) (r2,1, r2,2) (r3,1, r3,2)
value (61, 39) (10, 17) (7, 41) (19, 28)

The purpose of these different combinations of right rotation constants is
to make the domain separation in AEAD, i.e., we use different state updating
functions when dealing with different kinds of functionality. Besides, all of the
right rotation constants are used in ASCON [13] as well, and are known to be
a permutation on the input lane itself.

1.5.4 The τ Function

The τ function is used to perform the constant addition in the initialization
phase. Since there are 24 rounds of initialization in Quartet, it adds a round
constant cr to the lane x3 in the 256-bit internal state at each round.

τ(x3) : x3 ← x3 ⊕ cr, for 0 ≤ r ≤ 23.

These round constants are shown in Table 1.5, which are chosen to prevent
various attacks [16, 17].

1.5.5 The Output ζ Function

The output function ζ in Quartet is defined as

ζ(x0, x1, x2, x3) : zt ← x2 ⊕ x3 ⊕ (x1 ⊕ 1) · (x0 ≫64 nz),

9

Table 1.5: The round constants in Quartet

round 0 1 2 3 4 5 6 7
cr 0xf0 0xe1 0xd2 0xc3 0xb4 0xa5 0x96 0x87

round 8 9 10 11 12 13 14 15
cr 0x78 0x69 0x5a 0x4b 0x13 0x26 0x0c 0x19

round 16 17 18 19 20 21 22 23
cr 0x32 0x25 0x0a 0x15 0x2a 0x1d 0x3a 0x2b

where nz = 11 is the right rotation number of the lane x0. Quartet generates a
64-bit keystream word zt at each time instant t.

1.5.6 One Initialization Round Rini

In the initialization phase, one round Rini of the state updating consists of a
series of operations done on the 4 64-bit lanes (x0, x1, x2, x3).

Rini = τ ◦ λ(x2, r2,1, r2,2) ◦ ρ(x1) ◦ χ(x3, x0, x1) ◦
λ(x1, r1,1, r1,2) ◦ ρ(x0) ◦ χ(x2, x3, x0) ◦
λ(x0, r0,1, r0,2) ◦ ρ(x3) ◦ χ(x1, x2, x3) ◦
λ(x3, r3,1, r3,2) ◦ ρ(x2) ◦ χ(x0, x1, x2),

where ◦ is the composition operation of the different mappings.

1.5.7 One Round R in Generating keystream, Processing
the Associated data and Finalization/Tag genera-
tion

In the keystream generation phase, the associated data processing phase and
the finalization/tag generation phase, one round of state updating consists of
the following operations done on the internal state.

R = λ(x2, r2,1, r2,2) ◦ ρ(x1) ◦ χ(x3, x0, x1) ◦
λ(x1, r1,1, r1,2) ◦ ρ(x0) ◦ χ(x2, x3, x0) ◦
λ(x0, r0,1, r0,2) ◦ ρ(x3) ◦ χ(x1, x2, x3) ◦
λ(x3, r3,1, r3,2) ◦ ρ(x2) ◦ χ(x0, x1, x2),

where ◦ is the composition operation of the different mappings. Note that
the combinations of the right rotation constants in the λ function are taken
according to the specification in section 1.5.3.

10

1.5.8 The Initialization Phase

The initialization of Quartet consists of first loading the key and IV into the
state, and then running the cipher for 24 steps.

The Key/IV loading scheme is as follows.

x0 = K7‖K6‖K5‖K4‖K3‖K2‖K1‖K0,

x1 = IV7‖IV6‖IV5‖IV4‖IV3‖IV2‖IV1‖IV0,
x2 = D3‖D2‖D1‖IV11‖IV10‖D0‖IV9‖IV8,
x3 = K15‖K14‖K13‖K12‖K11‖K10‖K9‖K8.

where K = K0, · · · ,K15 is the 16 secret key bytes and IV = IV0, · · · , IV11 is
the 12 IV bytes, where K0 and IV0 are the least significant bytes, while K15

and IV15 are the most significant bytes.
The constants Di for 0 ≤ i ≤ 3 are defined as follows.

D0 = 0xff

D1 = 0x3f

D2 = 0x00

D3 = 0x80.

There are 24 rounds in the initialization phase in Quartet currently, which is
shown as below.

1. Load the key, IV and constants into (x0, x1, x2, x3) as specified above.

2. for i = 0 to 23 do

run Rini as defined in section 1.5.6 with the right rotation constants
in Table 1.2

3. x0 ← x0 ⊕ (K7‖K6‖K5‖K4‖K3‖K2‖K1‖K0)

4. x1 ← x1 ⊕ (K15‖K14‖K13‖K12‖K11‖K10‖K9‖K8)

Note that in the initialization phase, the keystream word is not used to update
the internal state in Quartet.

1.5.9 Processing the Associated Data

After the initialization, the associated data A is used to update the state.

1. for i = 0 to al − 1 do.

absorb adi as x1 = x1 ⊕ adi
run R as defined in section 1.5.7 with the right rotation constants in

Table 1.3

11

2. for i = 0 to 11 do.

run R as defined in section 1.5.7 with the right rotation constants in
Table 1.2

3. x3 = x3 ⊕ 1

Note that even when there is no associated data, we still need to run the cipher
for 12 steps. When we process the associated data, the keystream word is not
used to update the state. We should properly take the right rotation constants
according to the specification in section 1.5.3 in the λ function. Then we xor
1 bit to the lane x3 so as to separate the associated data from the plaintex-
t/ciphertext.

1.5.10 Processing the Plaintext

After processing the associated data, at each step of the encryption, eight plain-
text bytes Mi,8 = mi+7‖mi+6‖mi+5‖mi+4‖mi+3‖mi+2‖mi+1‖mi are encrypted
to the eight ciphertext bytes Ci,8 = ci+7‖ci+6‖ci+5‖ci+4 ‖ci+3‖ci+2‖ci+1‖ci, and
then are used to update the state. If the last plaintext block is not a full block,
append a single 1 and the smallest number of 0s to pad it to 64 bits, and the
padded full block is used to update the state, but only the partial block with
all the padded 0s is encrypted.

1. for i = 0 to bml
8 c − 1 do

compute the 64-bit keystream word zi

Ci,8 = zi ⊕Mi,8

absorb Mi,8 as x0 = x0 ⊕Mi,8

run R as defined in section 1.5.7 with the right rotation constants in
Table 1.2

2. if ((ml mod 8) 6= 0) then

compute the 64-bit keystream word zbml
8 c

Cbml
8 c,ml mod 8

= Trunc[zbml
8 c
⊕Mbml

8 c,ml mod 8
], where

Mbml
8 c,ml mod 8

= 0x00 · · · 00‖mbml
8 c+ml mod 8−1‖ · · · ‖mbml

8 c+0

and Trunc[·] is the truncated operation on the input argument which only
keeps the least significant ml mod 8 bytes.

absorb the partial plaintext block as

x0 = x0 ⊕ 0x00 · · · 01‖mbml
8 c+ml mod 8−1‖ · · · ‖mbml

8 c+0

run R as defined in section 1.5.7 with the right rotation constants in
Table 1.2

12

When we process the plaintext, the keystream word is not used to update the s-
tate. We should properly take the right rotation constants according to the spec-
ification in section 1.5.3 in the λ function. The cipher specification is changed
so as to separate the processing of plaintext/ciphertext and the finalization.

1.5.11 Finalization and the Tag Generation

After processing all the plaintext bytes, we generate the authentication tag T .

1. for i = 0 to 23 do.

run R as defined in section 1.5.7 with the right rotation constants in
Table 1.4

The authentication tag T is the xored result of the secret key K and the last 2
keystream words generated from the newest internal state, i.e.,

T = (zfin+1‖zfin)⊕(K15‖K14‖K13‖K12‖K11‖K10‖K9‖
K8‖K7‖K6‖K5‖K4‖K3‖K2‖K1‖K0).

For the 64-bit tag, only the xored result of the least significant 64 bits of K and
the last 1 keystream word generated from the newest internal state is adopted as
the tag value. Note that in the finalization phase, the state is updated according
to the specification in section 1.5.3 in the λ function. This is mainly used for
the domain separation.

1.5.12 The Verification and Decryption

The verification and decryption procedures are very similar to the encryption
and tag generation rountine. The exact values of key size, IV size, and tag size
should be known to the verification and decryption processes. The decryption
starts with the initialization as in section 1.5.8 and the processing of authen-
ticated data as in section 1.5.9. Then the ciphertext is decrypted as follows.
Note that if the last ciphertext block is not a full block, decrypt only the partial
ciphertext block. The partial plaintext block is padded in the same way as in
1.5.10, and the padded full plaintext block is used to update the state.

1. let ml = cl − 16 or ml = cl − 8 with cl being the output byte length of
Quartet_AE

2. for i = 0 to bml
8 c − 1 do

compute the 64-bit keystream word zi

Mi,8 = zi ⊕ Ci,8

absorb Mi,8 as x0 = x0 ⊕Mi,8

run R as defined in section 1.5.7 with the right rotation constants in
Table 1.2

13

3. if ((ml mod 8) 6= 0) then

compute the 64-bit keystream word zbml
8 c

Mbml
8 c,ml mod 8

= Trunc[zbml
8 c
⊕ Cbml

8 c,ml mod 8
], where

Mbml
8 c,ml mod 8

= 0x00 · · · 00‖mbml
8 c+ml mod 8−1‖ · · · ‖mbml

8 c+0

and Trunc[·] is the truncated operation on the input argument which only
keeps the least significant ml mod 8 bytes.

absorb the partial plaintext block as

x0 = x0 ⊕ 0x00 · · · 01‖mbml
8 c+ml mod 8−1‖ · · · ‖mbml

8 c+0

run R as defined in section 1.5.7 with the right rotation constants in
Table 1.2

The finalization phase in the decryption process is the same as that in the
encryption process in section 1.5.11. We emphasize that if the verification fails,
the decrypted plaintext and the newly generated authentication tag should not
be given as output.

14

Chapter 2

Security Goals

In Quartet, each (key, IV) pair is used to protect only one message. If verification
fails, the new tag and the decrypted ciphertext should not be given as output.

Algorithm Encryption Authentication (128/64-bit tag)
Quartet 112-bit 128/64-bit

There is no secret message number in Quartet. The public message number is
a nonce, i.e., the IV. The cipher does not promise any integrity or confidentiality
if the legitimate key holder uses the same nonce (IV) to encrypt two different
(plaintext, associated data) pairs under the same key.

If some padding scheme is needed, Quartet adopts the same padding scheme
as that in [13]. Precisely, if the plaintext block size is mr bits, the padding
scheme just appends a single 1 and the smallest number of 0s to the plaintext
M such that the length of the padded plaintext is a multiple of mr bits. Thus
the resulting padded plaintext is split into blocks of mr bits,

padmr(M) = M‖ 1‖ 0mr−1−(|M | mod mr) if |M | > 0.

Similarly, the same padding process is applied to split the associated data A
into blocks of ar bits, except if the length of the associated data A is zero. In
this case, no padding is applied and no associated data is processed, i.e.,

padar(A) =

{
A‖ 1‖ 0ar−1−(|A| mod ar), if |A| > 0

∅, if |A| = 0
.

The security claim of Quartet is the 112-bit security in the single key setting.
For the forgery attacks on the authentication tag, the security level is the same
as the tag size and the IV is not allowed to be re-used. If the tag verification
failed, no output should be generated.

15

Chapter 3

Security Analysis

In this section, we will analyze the security of Quartet with respect to several
attacks.

3.1 Period and Time/Memory/Data Tradeoffs

The 256-bit state of Quartet ensures that the period of the keystream is large
enough for any practical applications, but the exact value of the keystream pe-
riod of Quartet is difficult to predict in theory. Besides, the 256-bit size internal
state also eliminates the threat of the known form of the time/memory/data
tradeoff attacks [4, 5, 15] with respect to 112-bit security, when taking into
account the pre-computation/memory/time/data complexities.

3.2 Linear Distinguishing Attacks

We have used the linear sequential circuit approximation (LSCA) method [14]
to evaluate the strength of Quartet against linear distinguishing attacks.

There is no linear trial with a weight of less than 56 active non-linear oper-
ations found so far. Further, we have restricted the length of each keystream
generated from a (key, IV) pair to be less than or equal to 264 bits, thus we feel
that Quartet is immune to the linear distinguishing attacks.

3.3 Differential Cryptanalysis

In order to investigate the immunity of Quartet against differential attacks, we
introduce a single bit difference at each internal state position and try to trace
the propagation of this difference. We gather the difference biases after several
number of initialization rounds and try to distinguish it from the purely random
case.

16

Our experiments so far showed that for the full 24 rounds of initializa-
tion and the 12 middle rounds before the first keystream bit, Quartet is non-
distinguishable with the purely random case with respect to the single bit dif-
ferential cryptanalysis.

3.4 Cube Attacks and Variants

Cube attacks, formally introduced by Dinur and Shamir [1, 11, 12, 21], is a
generic key extraction technique exploiting the simple algebraic structure of
some output bits after a reasonable size of cube summation. The success of
cube attacks highly depends on the sparsity of the superpoly.

Our experiments so far showed that for the full 24 rounds of initialization
and the 12 middle rounds before the first keystream bit, Quartet seems to be
secure against the current forms of cube attacks.

3.5 Guess and Determine Attacks

In guess-and-determine attacks, the adversary usually guesses the content of
some partial internal state, and then tries to derive the rest part of the internal
state with the knowledge of the corresponding keystream segment. We have
tried some simple form of guess-and-determine attacks, and have not found an
attack that has a complexity less than 2112.

3.6 Security of the Authenticated Mechanism

We have considered some simple forms of forgery attacks [2] against the final-
ization and tag generation phase, our experiments so far showed that for the full
24 rounds of finalization, Quartet seems to be secure against the simple forms
of forgery attacks.

17

Chapter 4

Features

Quartet has the following useful features.

• New structure of stream ciphers. Quartet is the result of some efforts to
parallelize the execution of the whole cipher. The challenge in this design
approach is to achieve faster encryption/diffusion speed, and this problem
is solved by using four parallel 64-bit lanes and mixing them in a proper
way. Thus it is expensive to eliminate the difference in the internal state,
and it is relatively easy to analyze the authentication security.

• The 5 ASCON linear diffusion functions are used in a different and flexible
way. This feature benefits lightweight hardware implementation.

• Quartet allows parallel computation. In Quartet, a 64-bit keystream word
is generated at each time instance. This parallel feature benefits high speed
hardware and software implementation.

• Efficient in Hardware. Quartet has an internal state of 256-bit, smaller
than that of Trivium [8], which will have a low hardware area.

• Efficient in Software. In Quartet, the operation unit is 64-bit lanes, so its
software speed is reasonably fast.

• Quartet has several advantages over AES-GCM: Quartet is more hardware
efficient than AES-GCM (especially for constrained hardware resource and
energy consumption). On the general computing devices (no AES-NI and
no polynomial computing circuits), Quartet is more efficient than AES-
GCM in software. The code size of Quartet is also small.

18

Chapter 5

Performance

5.1 Hardware

Since Quartet only has a 256-bit internal state and consists of only 4 64-bit
lanes, the hardware performance is expected to be reasonably good.

5.2 Software

We have implemented Quartet in C language. We tested the speed on an In-
tel Core i5-4300U 1.9GHz processor running 64-bit Windows 10. The current
reference implementation reaches a speed of 8.82 cycles/byte. After further opti-
mization, it is expected that the software speed will be faster than this reference
value.

19

Chapter 6

Design Rationale

Quartet is designed to be efficient in the constrained hardware environments,
and also efficient in software on some platforms.

In order to be efficient in hardware, we adopt 4 64-bit lanes in Quartet as
Keccak [3], since it is well-known that the latter is quite efficient in hardware.
In order to resist the traditional attacks (correlation attacks [6, 7, 18, 19, 20, 22]
and algebraic attacks [9, 10]) on stream cipher, the state is updated in a nonlin-
ear way. We inject the message into the internal state so that we could obtain
authentication security almost for free. The challenge is that in a word-oriented
stream cipher based on nonlinear state updating functions, it is difficult to trace
the differential propagation in the state, especially if we want to achieve high
authentication security (such as 128-bit). Our design focus is to solve this prob-
lem so that the authentication security could be relatively easily analyzed. Our
solution is to use the 5 ASCON [13] linear diffusion functions in a flexible way to
ensure that once there is difference in the state, the number of difference bits in
the state would be sufficiently large before the difference gets eliminated. When
there are difference bits in the state, the linear functions and the non-linear
χ function introduces the difference noise into the state quickly to reduce the
success rate of forgery attack. If an attacker intends to modify the ciphertex-
t, the difference in the keystream bits would also affect the state through the
decrypted plaintext bits. In order to make the domain separation in AEAD,
different state updating functions are adopted in the different functionalities.
Separating the plaintext from the associated data means that an attacker can-
not use part of the plaintext bits as associated data, and vice versa. Separating
the encryption/decryption from the finalization means that an attacker cannot
use part of the keystream as the authentication tag.

20

Chapter 7

Test Vectors

Some test vectors of Quartet are provided in this chapter.
===
Length of plaintext: 1 bytes
Length of associated data: 0 bytes
The key is: 00000000000000000000000000000000
The iv is: 000000000000000000000000
The plaintext is: 01
The associated data is
The ciphertext is: 91
The tag is: 30791089f8a5eb139852fcf282a68732
The verification is successful in decryption
The decrypted plaintext is: 01
===
Length of plaintext: 1 bytes
Length of associated data: 1 bytes
The key is: 01000000000000000000000000000000
The iv is: 000000000000000000000000
The plaintext is: 00
The associated data is 00

The ciphertext is: 01
The tag is: a40149cddef108b485738413fa249760
The verification is successful in decryption
The decrypted plaintext is: 00
===
Length of plaintext: 1 bytes
Length of associated data: 1 bytes
The key is: 00000000000000000000000000000000
The iv is: 010000000000000000000000
The plaintext is: 00
The associated data is 00

The ciphertext is: 9f

21

The tag is: c05e5c187bcc6fccc180b6b1d09e49a8
The verification is successful in decryption
The decrypted plaintext is: 00
===
Length of plaintext: 16 bytes
Length of associated data: 16 bytes
The key is: 01010101010101010101010101010101
The iv is: 010101010101010101010101
The plaintext is: 01010101010101010101010101010101
The associated data is 01010101010101010101010101010101

The ciphertext is: fff66b06d09135e514ef721e62074c20
The tag is: f5aa8feff685ad10fcf6893ea87028dc
The verification is successful in decryption
The decrypted plaintext is: 01010101010101010101010101010101
==
Length of plaintext: 16 bytes
Length of associated data: 16 bytes
The key is: 000102030405060708090a0b0c0d0e0f
The iv is: 000306090c0f1215181b1e21
The plaintext is: 01010101010101010101010101010101
The associated data is 01010101010101010101010101010101

The ciphertext is: 7b3aa38807ae112e09e451dfb19cf84c
The tag is: 66793a2e9a372444a67281a7fccd0212
The verification is successful in decryption
The decrypted plaintext is: 01010101010101010101010101010101
==
Length of plaintext: 73 bytes
Length of associated data: 43 bytes
The key is: 000102030405060708090a0b0c0d0e0f
The iv is: 000306090c0f1215181b1e21
The plaintext is:
00070e151c232a31383f464d545b6269

70777e858c939aa1a8afb6bdc4cbd2d9

e0e7eef5fc030a11181f262d343b4249

50575e656c737a81888f969da4abb2b9

c0c7ced5dce3eaf1f8

The associated data is
00050a0f14191e23282d32373c41464b

50555a5f64696e73787d82878c91969b

a0a5aaafb4b9bec3c8cdd2

The ciphertext is:
6bf3d2752184ea72f43c20a72703b0ba

6515360c76add92cd426bcdcedb30feb

854e1f891485b18398923c78e476b3ac

f8978bea37d1a7292e77124664913092

0b21b7c52315a613a0

22

The tag is: 8afdf079f00d05aa2ae2273a9491ca23
The verification is successful in decryption
The decrypted plaintext is:
00070e151c232a31383f464d545b6269

70777e858c939aa1a8afb6bdc4cbd2d9

e0e7eef5fc030a11181f262d343b4249

50575e656c737a81888f969da4abb2b9

c0c7ced5dce3eaf1f8

23

Bibliography

[1] Aumasson, J.-P., Dinur, I., Meier, W., Shamir, A.: Cube testers and
key recovery attacks on reduced-round MD6 and Trivium, Fast Software
Encryption-FSE’2009, LNCS vol. 5665, Springer, Heidelberg,(2009), pp.
1-22.

[2] Agren, M., Hell, M., Johansson, T.: On hardware-oriented message au-
thentication with applications towards RFID, in Proceedings of the 2011
Workshop on Lightweight Security and Privacy: Devices, Protocols, and
Applications, E. Savas, A. A. Selcuk, and U. Uludag, Eds., pp. 26-33.
(2011).

[3] Bertoni, G., Daemen, J., Peeters, M. and Van
Assche G.: The Keccak reference, available at
http://keccak.noekeon.org/Keccak-reference-3.0.pdf.

[4] Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data tradeoffs
for stream ciphers, Advances in Cryptology-ASIACRYPT’2000, LNCS vol.
1976, Springer, Heidelberg,(2000), pp. 1-13.

[5] Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1
on a PC. Fast Software Encryption–FSE 2000, LNCS, vol. 1978, pp. 1-18,
Springer, Heidelberg, 2001.

[6] Canteaut A. and Trabbia. M., Improved fast correlation attacks using
parity-check equations of weight 4 and 5. In Preneel B. (eds), Advances
in Cryptology–EUROCRYPT 2000, LNCS vol. 1807, pp. 573–588, Springer
Berlin Heidelberg, 2000.

[7] Chose P., Joux A. and Mitton M., Fast correlation attacks: an algo-
rithmic point of view. In Knudsen L. R. (eds), Advances in Cryptology–
EUROCRYPT 2002. LNCS vol. 2332, Springer Berlin Heidelberg, pp. 209-
221, 2002.

[8] Christophe De Cannière, Preneel, B: Trivium, New Stream Cipher Designs–
The eSTREAM Finalists: 2008, LNCS vol. 4986, Springer, Heidel-
berg,(2008), pp. 244-266.

24

[9] Courtois N. T., Weier. W., Algebraic attacks on stream ciphers with linear
feedback, In Biham E. (eds), Advances in Cryptology–EUROCRYPT’2003,
LNCS vol.2656, Springer-Verlag, pp. 345–359, 2003.

[10] Courtois N. T., Fast algebraic attacks on stream ciphers with linear feed-
back, In Boneh D. (eds), Advances in Cryptology–CRYPTO’2003, LNCS
vol.2729, Springer-Verlag, pp. 176–194, 2003.

[11] Dinur, I., Shamir, A.: Cube attacks on tweakable black box polynomials,
Advances in Cryptology-EUROCRYPT’2009, LNCS vol. 5479, Springer,
Heidelberg,(2009), pp. 278-299.

[12] Dinur, I., Shamir, A.: Breaking Grain-128 with dynamic cube attacks,
Fast Software Encryption-FSE’2011, LNCS vol. 6733, Springer, Heidel-
berg,(2011), pp. 167-187.

[13] Dobraunig C., Eichlseder M., Mendel F. and Schläffer,
M.: ASCON v1.2, Submission to the Caesar Competition,
https://ascon.iaik.tugraz.at/index.html

[14] Golić Jovan Dj.: Correlation properties of a general binary combiner with
memory, Journal of Cryptology, vol.9, Springer-Verlag. pp. 111-126, (1996).

[15] Golić Jovan Dj.: Cryptanalysis of alleged A5 stream cipher, Advances in
Cryptology-EUROCRYPT’1997, LNCS vol.1233, Springer-Verlag. pp. 239-
255, (1997).

[16] Khovratovich D., Nikolić I.: Rotational cryptanalysis of ARX. The 17th
international conference on Fast Software Encryption-FSE’2010. pp. 333-
346. LNCS vol.6147, Springer-Verlag (2010)

[17] Pawe M., Josef P., and Marian S.: Rotational cryptanalysis of round-
reduced Keccak. Fast Software Encryption-FSE’2013, LNCS vol.8424,
Springer-Verlag. pp. 241-262, (2014).

[18] Willi, M., Staffelbach, O.: Fast correlation attacks on certain stream ci-
phers. Journal of Cryptology, 1(3): 159-176, 1989.

[19] Johansson T. and Jönsson F., Improved fast correlation attacks on stream
ciphers via convolutional codes, In Stern J. (eds), editor, Advances
in Cryptology–EUROCRYPT’99, LNCS vol. 1592, pp. 347–362, Springer
Berlin / Heidelberg, 1999.

[20] Johansson T. and Jönsson F., Fast correlation attacks through reconstruc-
tion of linear polynomials, In Bellare M. (eds), Advances in Cryptology–
CRYPTO 2000, LNCS vol. 1880, pp. 300-315, 2000.

[21] Todo Y., Structural Evaluation by Generalzed Integral Property, In Oswald
E. and Fischlin M. (eds), Advances in Cryptology–EUROCRYPT’2015,
LNCS vol. 9056, pp. 287-314, 2015.

25

[22] Zhang B., Xu C., and Meier W., Fast correlation attacks over exten-
sion fields, Large-unit linear approximation and Cryptanalysis of SNOW
2.0, In Gennaro H. and Robshaw M. (eds), Advances in Cryptology–
CRYPTO’2015, LNCS vol. 9215, pp. 643-662, 2015.

26

