
ACE: An Authenticated Encryption
and Hash Algorithm

Submission to the NIST LWC Competition

Submitters/Designers:
Mark Aagaard, Riham AlTawy, Guang Gong,
Kalikinkar Mandal, and Raghvendra Rohit∗

∗Corresponding submitter:
Email: rsrohit@uwaterloo.ca

Tel: +1-519-888-4567 x45650

Communication Security Lab
Department of Electrical and Computer Engineering

University of Waterloo
200 University Avenue West

Waterloo, ON, N2L 3G1, CANADA

http://comsec.uwaterloo.ca/

March 29, 2019

http://comsec.uwaterloo.ca/

Contents

1 Introduction 4
1.1 Notations . 5
1.2 Outline . 6

2 Specification 7
2.1 Parameters . 7

2.1.1 ACE AEAD algorithm . 7
2.1.2 ACE Hash algorithm . 8

2.2 Recommended Parameter Set . 8
2.3 The ACE Permutation . 8

2.3.1 The nonlinear function SB-64 8
2.3.2 Round and step constants . 9

2.4 AEAD Algorithm: ACE-AE-128 . 10
2.4.1 Rate and capacity part of state 12
2.4.2 Padding . 12
2.4.3 Loading key and nonce . 13
2.4.4 Initialization . 13
2.4.5 Processing associated data . 13
2.4.6 Encryption . 13
2.4.7 Finalization . 14
2.4.8 Decryption . 14

2.5 Hash Algorithm: ACE-H-256 . 14
2.5.1 Message padding . 15
2.5.2 Loading initialization vector . 15
2.5.3 Initialization . 15
2.5.4 Absorbing and squeezing . 15

3 Security Claims 17

4 Security Analysis 18
4.1 Diffusion . 18
4.2 Differential and Linear Cryptanalysis 18

ii

ACE: Submission to the NIST LWC competition

4.2.1 Expected bounds on the maximum probabilities of differential
and linear characteristics . 19

4.3 Algebraic Properties . 19
4.4 Self Symmetry-based Distinguishers . 21
4.5 Security of ACE-AE-128 and ACE-H-256 22

5 Design Rationale 23
5.1 Choice of the Mode: sLiSCP Sponge Mode 23
5.2 ACE State Size . 24
5.3 ACE Step Function . 25
5.4 Nonlinear Layer: Simeck box (SB-64) 25
5.5 Linear Layer: π = (3, 2, 0, 4, 1) . 26
5.6 Round and Step Constants . 26

5.6.1 Rationale . 26
5.6.2 Generation of round and step constants 26

5.7 Number of Rounds and Steps . 28
5.8 Choice of Rate Positions . 29
5.9 Statement . 29

6 Hardware Design and Analysis 30
6.1 Hardware Design Principles . 30
6.2 Interface and Top-level Module . 31
6.3 The ACE module . 32

6.3.1 ACE datapath . 32
6.3.2 ACE FSM and lfsr c . 34

6.4 Hardware Implementation Results . 34
6.4.1 Hardware tools configuration . 34
6.4.2 Performance results . 35

7 Efficiency Analysis in Software 36
7.1 Software: High-performance CPU . 36
7.2 Software: Microcontroller . 39

A Other NIST-LWC Submissions 45

B Test Vectors 46
B.1 Simeck Sbox . 46
B.2 ACE Permutation . 47
B.3 ACE-AE-128 . 47
B.4 ACE-H-256 . 47

C Constants: Sequence to Hex Conversion 48

iii

Chapter 1

Introduction

ACE, often known as one of the strongest cards in a deck of cards, is an 320-bit
lightweight permutation. It is designed to achieve a balance between hardware cost and
software efficiency for both Authenticated Encryption with Associated Data (henceforth
“AEAD”) and hashing functionalities, while providing sufficient security margins. To
accomplish these goals, ACE components and its mode of operation are adopted from
well known and analyzed cryptographic primitives. In a nutshell, the design of ACE,
its security, functionalities and the features it offers are described as follows.

• ACE core operations. Bitwise XORs and ANDs, left cyclic shifts and 64-bit word
shuffles

• ACE nonlinear layer. Unkeyed round-reduced Simeck block cipher [27] with block-
size of 64-bits, which provides good cryptographic properties and low hardware
cost

• ACE linear layer. Five 64-bit words are shuffled in an (3, 2, 0, 4, 1) order, which
offers good resistance against differential and linear cryptanalysis

• ACE security. Simple analysis and good bounds for security using automated tools
such as CryptoSMT solver [22] and Gurobi [1]

• Functionality. All-in-one primitive, provides both AEAD and hashing functionali-
ties using the same hardware circuit

• ACE mode of operation. Unified sponge duplex mode [4] with keyed initialization
and finalization phases forthe AEAD algorithm

• Security of ACE modes. 128-bit security

• Hardware performance. Achieves a throughput of 476 Mbps and has an area of
4286 GE in CMOS 65 nm ASIC

• Software performance. Bit-sliced implementation of ACE permutation achieves a
speed of 9.97 cycles/byte.

4

ACE: Submission to the NIST LWC competition

1.1 Notations

Notation Description

X � Y,X ⊕ Y,X||Y bitwise AND, XOR and concatenation of X and Y

|X| length of X in bits

{0, 1}n, {0, 1}?, φ length n bitstring, variable length bitstring, empty string

1n, 0n length n bitstring with all 1’s, 0’s

Li left cyclic shift operator, i.e., for x ∈ {0, 1}n,
Li(x) = (xi, xi+1, . . . , xn−1, x0, x1, . . . , xi−1)

word a 64-bit binary string

S 320 bit state of ACE

Sr, Sc r-bit rate part and c-bit capacity part of S (r = 64, c = 256)

A,B,C,D,E Five 64-bit words of S, i.e., S = A||B||C||D||E
Si state at i-th iteration (also step) of ACE permutation

A[j] j-th byte of word A starting from right

Ai1, A
i
0 upper and lower half of word Ai

K,N, T key, nonce and tag

k, n, t length of key, nonce and tag in bits (k = n = t = 128)

AD,M,C associated data, plaintext and ciphertext (in blocksADi,Mi, Ci)

IV, iv fixed initialization vector and its length in bits

H, h message digest (in blocks Hi) and its length, h = 256

`X length of X in words where X ∈ {AD,M,C,H}

step one round of ACE permutation (see Figure 2.1)

round one round of Simeck unkeyed function (see Figure 2.2)

SB-64 nonlinear operation of ACE permutation

u number of rounds, u = 8

s number of steps, s = 16

rci0, rc
i
1, rc

i
2 8-bit round constants

sci0, sc
i
1, sc

i
2 8-bit step constants

ACE-AE-k ACE AEAD algorithm (k = 128)

ACE-H-h ACE Hash algorithm (h = 256)

5

ACE: Submission to the NIST LWC competition

1.2 Outline

The rest of the document is organized as follows. In Chapter 2, we present the com-
plete specification of the ACE permutation, ACE AEAD and ACE hash algrithms. We
summarize the security claims of our submission in Chapter 3 and provide the detailed
security analyis in Chapter 4. In Chapter 5, we present the rationale behind our design
and justify the parameter choices. The details of our hardware implementations and
performance results in CMOS 65 nm ASIC and FPGA are provided in Chapter 6. In
Chapter 7, we discuss the efficiency of ACE in software including bit-sliced and micro-
controller implementations. Finally, we conclude with references and test vectors in
Appendix B.

6

Chapter 2

Specification

2.1 Parameters

ACE is an 320-bit permutation that operates in an unified duplex sponge mode [4] and
offers both AEAD and hashing functionalities in a single hardware circuit. The AEAD
algorithm (ACE-AE-k) and the hash algorithm (ACE-H-h) are parameterized by the
size k of the secret key and the length of the message digest h in bits, respectively.
Both the algorithms process the same amount of data per permutation call (i.e, rate r
is same) and hence r value is ignored in the individual parameters’ description.

2.1.1 ACE AEAD algorithm

The AEAD algorithm ACE-AE-k is a combination of two algorithms, an authenticated
encryption algorithm ACE-E and the verified decryption algorithm ACE-D.

An authenticated encryption algorithm ACE-E takes as input a secret keyK of length
k bits, a public message number N (nonce) of size n bits, a block header AD (a.k.a,
associated data) and a message M . The output of ACE-E is an authenticated ciphertext
C of same length as M , and an authentication tag T of size t bits. Mathematically,
ACE-E is defined as

ACE-E : {0, 1}k × {0, 1}n × {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}t

with
ACE-E(K,N,AD,M) = (C, T).

The decryption and verification algorithm takes as input the secret key K, nonce
N , associated data AD, ciphertext C and tag T , and outputs the plaintext M of same
length as C only if the verification of tag is correct, and ⊥ if the tag verification fails.
More formally,

ACE-D(K,N,AD,C, T) ∈ {M,⊥}.

7

ACE: Submission to the NIST LWC competition

2.1.2 ACE Hash algorithm

A hash algorithm takes as input a message M , and the standard initialization vector
IV of length iv bits, and returns a fixed size output H, called hash or message digest.
Formally, the hash algorithm using ACE permutation is specified by

ACE-H-h : {0, 1}∗ × {0, 1}iv → {0, 1}h

with H = ACE-H-h(M, IV).

Note that IV and N refer to two different things. IV is for a hash function and is
fixed, while N is for an AEAD algorithm and never repeated for a fixed key.

2.2 Recommended Parameter Set

In Table 2.1, we list the recommended parameter set for the AEAD and hash fuction-
alities using the ACE permutation. The length of each parameter is given in bits and d
denotes the amount of allowed data (including both AD and M) before a re-keying is
required.

Table 2.1: Recommended parameter set for ACE-AE-128 and ACE-H-256
Functionality Algorithm r k n t log2(d) h iv

AEAD ACE-AE-128 64 128 128 128 124 - -

Hash ACE-H-256 64 - - - - 256 24

2.3 The ACE Permutation

ACE is an iterative permutation that takes a 320-bit state as an input and outputs an
320-bit state after iterating the step function ACE-step for s = 16 times (Figure 2.1).
The nonlinear operation SB-64 is applied on even indexed words (i.e., A, C and E, see
Figure 2.1) and hence the permutation name. We present the algorithmic description
of ACE in Algorithm 1.

2.3.1 The nonlinear function SB-64

In ACE, we use unkeyed reduced-round Simeck block cipher [27] with block size 64 and
u = 8 as the nonlinear operation, and denote it by SB-64. Below we provide the details
of SB-64, henceforth referred to as Simeck box.

8

ACE: Submission to the NIST LWC competition

Ai Bi Ci Di Ei

64 64 64 64 64

SB-64 SB-64 SB-64rci0 rci1 rci2

156||sci0 156||sci1 156||sci2

Ai+1 Bi+1 Ci+1 Di+1 Ei+1

Figure 2.1: ACE-step

Definition 1 (SB-64: Simeck box [4]) Let rc = (q7, q6, . . . , q0) where qj ∈ {0, 1} and
0 ≤ j ≤ 7. A Simeck box is a permutation of a 64-bit input, constructed by iterating the
Simeck-64 block cipher for 8 rounds with round constant addition γj = 131||qj in place
of key addition.

x1 x0

f(5,0,1)

32
32

γ7, · · · , γ1, γ0
32 32

Figure 2.2: Simeck box (SB-64)

An illustrated description of the Simeck box is shown in Figure 2.2 and is given by

(x9||x8)← SB-64(x1||x0, rc)
where

xj ← f(5,0,1)(xj−1)⊕ xj−2 ⊕ γj−2, 2 ≤ j ≤ 9

and f(5,0,1) : {0, 1}32 → {0, 1}32 is defined as

f(5,0,1)(x) = (L5(x)� x)⊕ L1(x).

2.3.2 Round and step constants

The step function of ACE is parameterized by two sets of triplets (rci0, rc
i
1, rc

i
2) and

(sci0, sc
i
1, sc

i
2) where each rcij and scij is of length 8 bits and j = 0, 1, 2. We call them

9

ACE: Submission to the NIST LWC competition

Algorithm 1 ACE permutation

1: Input: S0 = A0||B0||C0||D0||E0

2: Output: S16 = A16||B16||C16||D16||E16

3: for i = 0 to 15 do:
4: Si+1 ← ACE-step(Si)
5: return S16

6: Function ACE-step(Si):
7: Ai ← SB-64(Ai1||Ai0, rci0)
8: Ci ← SB-64(Ci

1||Ci
0, rc

i
1)

9: Ei ← SB-64(Ei
1||Ei

0, rc
i
2)

10: Bi ← Bi ⊕ Ci ⊕ (156||sci0)
11: Di ← Di ⊕ Ei ⊕ (156||sci1)
12: Ei ← Ei ⊕ Ai ⊕ (156||sci2)
13: Ai+1 ← Di

14: Bi+1 ← Ci

15: Ci+1 ← Ai

16: Di+1 ← Ei

17: Ei+1 ← Bi

18: return (Ai+1||Bi+1||Ci+1||Di+1||Ei+1)

19: Function SB-64(x1||x0, rc):
20: rc = (q7, q6, . . . , q0)
21: for j = 2 to 9 do
22: xj ← (L5(xj−1)� xj−1)⊕ L1(xj−1)⊕ xj−2 ⊕ (131||qj−2)
23: return (x9||x8)

round constants and step constants, respectively. As shown in Figure 2.1, the round
constant triplet (rci0, rc

i
1, rc

i
2) is used within the Simeck boxes while the step constant

(sci0, sc
i
1, sc

i
2) is XORed to the words B, D and E.

In Table 2.2 we list the hexadecimal values of the constants and show the procedure
to generate these constants in Section 5.6.2.

2.4 AEAD Algorithm: ACE-AE-128
In Algorithm 2, we present a high level overview of ACE-AE-128. The encryption
(ACE-E) and decryption (ACE-D) processes of ACE-AE-128 are shown in Figure 2.3. In
what follows, we first illustrate the position of rate and capacity bytes of the state, and
the padding rule. We then describe each phase of ACE-E and ACE-D.

10

ACE: Submission to the NIST LWC competition

Table 2.2: Round and step constants of ACE
Step i Round constants (rci0, rc

i
1, rc

i
2) Step constants (sci0, sc

i
1, sc

i
2)

0 - 3 (07, 53, 43), (0a, 5d, e4), (9b, 49, 5e), (e0, 7f, cc) (50, 28, 14), (5c, ae, 57), (91, 48, 24), (8d, c6, 63)
4 - 7 (d1, be, 32), (1a, 1d, 4e), (22, 28, 75), (f7, 6c, 25) (53, a9, 54), (60, 30, 18), (68, 34, 9a), (e1, 70, 38)
8 - 11 (62, 82, fd), (96, 47, f9), (71, 6b, 76), (aa, 88, a0) (f6, 7b, bd), (9d, ce, 67), (40, 20, 10), (4f, 27, 13)
12 - 15 (2b, dc, b0), (e9, 8b, 09), (cf, 59, 1e), (b7, c6, ad) (be, 5f, 2f), (5b, ad, d6), (e9, 74, ba), (7f, 3f, 1f)

Algorithm 2 ACE-AE-128 algorithm
1: Authenticated encryption ACE-E(K,N,AD,M):

2: S ← Initialization(N,K)

3: if |AD| 6= 0 then:

4: S ← Processing-Associated-Data(S,AD)

5: (S,C)← Encyption(S,M)

6: T ← Finalization(S,K)

7: return (C, T)

8: Initialization(N,K):

9: S ← load-AE(N,K)

10: S ← ACE(S)

11: for i = 0 to 1 do:

12: S ← (Sr ⊕Ki, Sc)

13: S ← ACE(S)

14: return S

15: Processing-Associated-Data(S,AD):

16: (AD0|| · · · ||AD`AD−1)← padr(AD)

17: for i = 0 to `AD − 1 do:

18: S ← (Sr ⊕ADi, Sc ⊕ 0c−2||01)
19: S ← ACE(S)

20: return S

21: Encryption(S,M):

22: (M0|| · · · ||M`M−1)← padr(M)

23: for i = 0 to `M − 1 do:

24: Ci ←Mi ⊕ Sr

25: S ← (Ci, Sc ⊕ 0c−2||10)
26: S ← ACE(S)

27: C`M−1 ← trunc-msb(C`M−1, |M | mod r)

28: C ← (C0, C1, . . . , C`M−1)

29: return (S,C)

30: padr(X):

31: X ← X||10r−1−(|X| mod r)

32: return X

33: trunc-lsb(X,n):

34: return (xr−n, xr−n+1, . . . , xr−1)

1: Verified decryption ACE-D(K,N,AD,C, T):
2: S ← Initialization(N,K)

3: if |AD| 6= 0 then:

4: S ← Processing-Associated-Data(S,AD)

5: (S,M)← Decyption(S,C)

6: T ′ ← Finalization(S,K)

7: if T ′ 6= T then:

8: return ⊥
9: else:

10: return M

11: Decryption(S,C):

12: (C0|| · · · ||C`C−1)← padr(C)

13: for i = 0 to `C − 2 do:

14: Mi ← Ci ⊕ Sr

15: S ← (Ci, Sc ⊕ 0c−2||10)
16: S ← ACE(S)

17: M`C−1 ← Sr ⊕ C`C−1

18: C`C−1 ← trunc-msb(C`C−1, |C| mod r)||trunc-lsb(M`C−1, r−|C| mod r))

19: M`C−1 ← trunc-msb(M`C−1, |C| mod r)

20: M ← (M0,M1, . . . ,M`C−1)

21: S ← ACE(C`C−1, Sc ⊕ 0c−2||10)
22: return (S,M)

23: Finalization(S,K):

24: for i = 0 to 1 do:

25: S ← ACE(Sr ⊕Ki, Sc)

26: T ← tagextract(S)

27: return T

28: trunc-msb(X,n):

29: if n = 0 then:

30: return φ

31: else:

32: return (x0, x1, . . . , xn−1)

11

ACE: Submission to the NIST LWC competition

ACE ACE ACE ACE ACE ACE ACE ACE ACE ACE
load-AE(N,K)

c

r

tagextract(S)

t

0x00 0x00 0x01 0x01 0x02 0x02 0x02 0x00 0x00

K0 K1 AD0 ADlAD
− 1 K0 K1

M0 MlM−2 MlM−1

C0 ClM−2 ClM−1

Initialization Processing associated data Encryption Finalization

(a) Authenticated encryption algorithm ACE-E

ACE ACE ACE ACE ACE ACE ACE ACE ACE ACEload-AE(N,K)

c

r

tagextract(S)

t

0x00 0x00 0x01 0x01 0x02 0x02 0x02 0x00 0x00

K0 K1 AD0 ADlAD−1 K0 K1

M0 MlM−2 MlM−1

C0 ClM−2 ClM−1

Initialization Processing associated data Decryption Finalization

(b) Verified decryption algorithm ACE-D

Figure 2.3: Schematic diagram of ACE-AE-128 AEAD algorithm

2.4.1 Rate and capacity part of state

The following 8 bytes constitute the Sr part of state and are used for both absorbing
and squeezing.

A[7], A[6], A[5], A[4], C[7], C[6], C[5], C[4]

The rationale of these byte positions is explained in Section 5.8. The remaining bytes
form the Sc part of state.

2.4.2 Padding

Padding is necessary when the length of the processed data is not a multiple of the
rate r value. Since the key size is a multiple of r, we get two key blocks K0 and K1, so
no padding is needed. Afterwards, the padding rule (10∗), denoting a single 1 followed
by the required number of 0’s, is applied to the message M , so that its length after
padding is a multiple of r. The resulting padded message is divided into `M r-bit blocks
M0‖ · · · ‖M`M−1. A similar procedure is carried out on the associated data AD which
results in `AD r-bit blocks AD0‖ · · · ‖AD`AD−1. In the case where no associated data is
present, no processing is necessary. We summarize the padding rules for the message
and associated data below.

padr(M) ←M‖1‖0r−1−(|M | mod r)

padr(AD) ←
{
AD‖1‖0r−1−(|AD| mod r) if |AD| > 0

φ if |AD| = 0

12

ACE: Submission to the NIST LWC competition

Note that in case of AD or M whose length is a multiple of r, an additional r-bit
padded block is appended to AD or M to distinguish between the processing of partial
and complete blocks.

2.4.3 Loading key and nonce

The state is loaded byte-wise with a 128-bit nonce N = N0||N1 and 128-bit key K =
K0||K1, and the remaining eight bytes are set to zero. All nonce bytes are divided and
loaded in the words, B and E, in a descending byte order. The key is loaded in words
A and C in the same manner. Word D is initialized by the zero bytes. Formally, the
state is initialized as follows.

A[7], A[6], · · · , A[0]← K0[7],K0[6], · · · ,K0[0]

C[7], C[6], · · · , C[0]← K1[7],K1[6], · · · ,K1[0]

B[7], B[6], · · · , B[0]← N0[7], N0[6], · · · , N0[0]

E[7], E[6], · · · , E[0]← N1[7], N1[6], · · · , N1[0]

D[7], D[6], · · · , D[0]← 0x00, 0x00, · · · , 0x00

We use load-AE(N,K) to denote the process of loading the state with nonce N and
key K bytes in the positions described above.

2.4.4 Initialization

The goal of this phase is to initialize the state S with public nonce N and key K.
The state is first loaded using load-AE(N,K) as described above. Afterwards, the
permutation ACE is applied to the state, and the two key blocks are absorbed into the
state with ACE applied each time. The initialization steps are described below.

S ← ACE(load-AE(N,K))

S ← ACE(Sr ⊕K0, Sc)

S ← ACE(Sr ⊕K1, Sc)

2.4.5 Processing associated data

If there is associated data, each ADi block, i = 0, . . . , `AD − 1 is XORed with the Sr
part of the internal state S and one-bit domain separator is XORed to lsb of E[0].
Then, the ACE permutation is applied to the whole state.

S ← ACE(Sr ⊕ ADi, Sc ⊕ (0c−2‖01)), i = 0, . . . , `AD − 1

This phase is defined in Algorithm 2.

2.4.6 Encryption

Similar to the processing of associated data, however, with a different domain separator,
each message block Mi, i = 0, . . . , `M − 1 is XORed to the Sr part of the internal state

13

ACE: Submission to the NIST LWC competition

S resulting in the corresponding ciphertext Ci, which is extracted from the Sr part of
the state. After the computation of each Ci, the whole internal state is permuted by
applying ACE.

Ci ← Sr ⊕Mi,

S ← ACE(Ci, Sc ⊕ (0c−2‖10)), i = 0, · · · , `M − 1

To keep a minimal overhead, the last ciphertext block C`M−1 is truncated so that its
length is equal to that of the last unpadded message block. The details of encryption
procedure is given in Algorithm 2.

2.4.7 Finalization

After the extraction of last ciphertext block and a single call of ACE, the domain
separator is reset to 0x00 indicating the start of the finalization phase. Afterwards, the
2 key blocks are absorbed into the state. Finally, the tag is extracted from the same
byte positions that are used for loading the key The finalization steps are mentioned
below and illustrated in Algorithm 2.

S ← ACE(Sr ⊕Ki, Sc), i = 0, 1

T ← tagextract(S).

The function tagextract(S) extracts the 128-bit tag T = T0||T1 from the state bytes
as follows.

T0[7], T0[6], · · · , T0[0]← A[7], A[6], · · · , A[0]

T1[7], T1[6], · · · , T1[0]← C[7], C[6], · · · , C[0]

2.4.8 Decryption

The decryption procedure is symmetrical to the encryption procedure and illustrated
in Algorithm 2.

2.5 Hash Algorithm: ACE-H-256
The hash algorithm ACE-H-256 takes as input a message M , and the standard initial-
ization vector IV of length 24 bits, and then returns a 256-bit message digest H. The
depiction of the ACE-H-256 is shown in Figure 2.4 and illustrated in Algorithm 3. We
now describe each phase of ACE-H-256 in detail.

14

ACE: Submission to the NIST LWC competition

ACE ACE ACE ACE ACE ACE ACEload-H(IV)

c

r

M0 M1 MlM−1 0 0 0 0H0 H1 H2 H3

Initialization Absorbing Squeezing

Figure 2.4: Hash algorithm ACE-H-256

2.5.1 Message padding

The same padding rule (10∗) as is used in ACE-AE-128 is applied to the input message
M , where a single 1 followed by enough 0’s is appended to it such that its length after
padding is a multiple of r. We denote the padding rule by

padr(M) = M‖10r−1−(|M | mod r)

The resulting padded message is then divided into `M r-bit blocks M0‖ · · · ‖M`M−1.

2.5.2 Loading initialization vector

The state is first initialized by IV = h/2‖r‖r′, where r′ denotes the number of bits
squeezed per permutation call (r = r′ = 64 for ACE-H-256). Eight bits are used to
encode each of the used h/2, r and r′ sizes [19] and loaded in word B as follows.

B[7]← 0x80

B[6]← 0x40

B[5]← 0x40

The remaining bytes are set to 0x00. We denote this process by load-H(IV).

2.5.3 Initialization

The load-H(IV) procedure loads the state with the IV . Then a single call of ACE
completes the initialization phase.

S ← ACE(load-H(IV))

2.5.4 Absorbing and squeezing

Each message block is absorbed by XORing it to the Sr part of the state (see Section 2.4.1),
then the ACE permutation is applied. After absorbing all the message blocks, the h-
bit output is extracted from the Sr part of the state r bits at a time followed by the
application of the ACE permutation until a total of 4 extractions are completed.

15

ACE: Submission to the NIST LWC competition

Algorithm 3 ACE-H-256 algorithm

1: ACE-H-256(M, IV):

2: S ← Initialization(IV)

3: S ← Absorbing(S,M)

4: H ← Squeezing(S)

5: return H

6: Initialization(IV):

7: S ← load-H(IV)

8: S ← ACE(S)

9: return S

10: padr(M) :

11: M ←M ||10r−1−(|M| mod r)

12: return M

1: Absorbing(S,M):

2: (M0|| · · · ||M`M−1)← padr(M)

3: for i = 0 to `M − 1 do:

4: S ← ACE(Sr ⊕Mi, Sc)

5: return S

6: Squeezing(S):

7: for i = 0 to 2 do:

8: Hi ← Sr

9: S ← ACE(S)

10: H3 ← Sr

11: return H0||H1||H2||H3

16

Chapter 3

Security Claims

ACE is an all-in-one primitive and provides both authenticated encryption with asso-
ciated data and hashing functionalities. The AEAD mode assumes a nonce respecting
adversary and we do not claim security in the event of nonce reuse. If the verification
procedure fails, the decrypted ciphertext and the new tag should not be given as out-
put. Moreover, we claim no security for reduced-round versions of ACE-AE-128 and
ACE-H-256. In summary, the security claims of ACE-AE-128 and ACE-H-256 are given
in Table 3.1 and Table 3.2, respectively.

Note that the integrity security in Table 3.1 includes the integrity of plaintext,
associated data and nonce.

Table 3.1: Security goals of ACE-AE-128 (in bits)

Confidentiality Integrity Authenticity Data limit

128 128 128 124

Table 3.2: Security goals of ACE-H-256(in bits)

Collision Preimage Second preimage

128 192 128

17

Chapter 4

Security Analysis

In this chapter, we first analyze the security of the ACE permutation by assessing its
behavior against various distinguishing attacks. We primarily focus on the diffusion
behavior, expected upper bounds on the probabilities of differential and linear charac-
teristics, algebraic properties and self-symmetry based distinguishers. Next, we present
the security bounds of ACE-AE-128 and ACE-H-256, whose results directly follow the
security proofs of sponge modes.

In our analysis, we denote the linear layer by π, i.e., π permutate the words of
state. For example, if π(0, 1, 2, 3, 4) = (3, 2, 0, 4, 1) then after applying π, the state
A||B||C||D||E is transformed to D||C||A||E||B. Moreover, by the component function
fj we refer to the Algebraic Normal Form (ANF) of the j-th bit.

4.1 Diffusion

To assess the diffusion behavior, we evaluate the minimum value of u × s such that
each component function of the state after s steps depends on all the input state bits.
We find that u = 11 gives full bit diffusion within a Simeck box. Since ACE has five
words that are updated in each step, we note that s has to be at least 5. Accordingly,
we search for the following values of (u, s) ∈ {(i, 5)|1 ≤ i ≤ 11}. Note that for u = 8
and s = 5, the number of linear layers satisfying the full bit diffusion property are 13,
and π = (3, 2, 0, 4, 1) is one among them.

Given that (u, s) = (8, 16) and π = (3, 2, 0, 4, 1) for ACE, we claim that meet/miss-
in-the-middle distinguishers cannot cover more than ten steps, because ten steps guar-
antees full bit diffusion in both forward and backward directions.

4.2 Differential and Linear Cryptanalysis

To analyze the security of ACE w.r.t differential and linear distinguishers [16, 25], we
model ACE using Mixed Integer Linear Programming (MILP) and bound the minimum
number of active Simeck boxes (SB-64). We then provide expected bounds for the

18

ACE: Submission to the NIST LWC competition

maximum probabilities of differential (resp. linear) characteristics. Table 4.1 depicts
the minimum number of active Simeck boxes for all linear layers.

4.2.1 Expected bounds on the maximum probabilities of dif-
ferential and linear characteristics

Let ns(π) be the minimum number of active Simeck boxes in s steps for a linear layer
π, and p denote the Maximum Differential Probability bound (MDP) for a u-round
Simeck box in log2(·) scale. An in-depth analysis of values of p has been provided in [5]
(cf. 4.2). We now choose u, s and π such that

• the upper bound on the maximum differential characteristic probability is less
than 2−320, i.e., |ns(π)p| > 320.

• u × s is minimum and s is at least three times the number of steps required for
full bit diffusion. This implies s ≥ 15 for ACE.

For (u, s) = (8, 16) and π = (3, 2, 0, 4, 1), ns(π) = 21 and p = −15.8. Thus, |21 ×
(−15.8)| ≈ 331.8 > 320 and maximum differential characteristic probability bound is
2−331.8. The maxiumum squared correlation of a linear characteristic is computed anal-
ogously using γ = −15.6 and equals 2−327.6, where γ is the maximum square correlation
of a 8-round Simeck box (cf 4.2.2 [5]).

4.3 Algebraic Properties

In this section, we provide bounds for the algebraic degree of ACE and evaluate its
security against integral distinguishers. We use the bit based division property [26, 8]
to compute the algebraic degree. We find that the algebraic degree of a 8-round Simeck
box is 36. Note that the algebraic degree (after 8 rounds) of all component functions
from f0 − f31 is 36 while it is 27 for the component functions f32 − f63. Thus, to
evaluate the algebraic degree of ACE it is enough to find bounds for algebraic degree
of the component functions f0, f32, f64, f96, f128, f160, f192, f224, f256 and f288. Table 4.2
provides bounds of the algebraic degree for the above component functions.

Note that since the number of words in ACE is odd, due to slow diffusion the
algebraic degree is 63 and 62 for the component functions f64 and f96 after 2 steps,
respectively. A similar trend can be seen for the component functions f256 and f288.
This non-uniformity in degree continues till step five, after which the degree is stabilized
to 304-313 due to full bit diffusion (Section 4.1). We expect that the degree reaches
319 in six steps.

Integral distinguishers [21]. To search for the longest length integral distinguisher,
we set a bit of the input state as constant (0) and the rest are set to active (1). We
then evaluate the algebraic degree at the s-th step of each component function in terms

19

ACE: Submission to the NIST LWC competition

Table 4.1: Minimum number of active Simeck boxes for s-step ACE
Linear layer step s

π 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(1, 0, 3, 4, 2) 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
(1, 0, 4, 2, 3) 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
(1, 2, 0, 4, 3) 0 1 2 3 4 6 8 8 9 10 11 12 14 16 16 17
(1, 2, 3, 4, 0) 0 1 2 3 4 6 7 8 9 10 11 12 13 14 15 16
(1, 2, 4, 0, 3) 0 1 1 2 3 5 7 8 9 9 10 11 13 15 16 17
(1, 3, 0, 4, 2) 0 0 1 2 4 4 5 7 9 12 13 14 15 16 17 19
(1, 3, 4, 0, 2) 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5
(1, 3, 4, 2, 0) 0 0 1 2 3 4 5 6 7 9 11 12 12 13 14 15
(1, 4, 0, 2, 3) 0 1 2 3 4 6 8 8 9 10 11 12 14 16 16 17
(1, 4, 3, 0, 2) 0 1 1 2 4 5 6 7 9 10 11 12 14 15 16 18
(1, 4, 3, 2, 0) 0 1 2 3 5 6 7 9 11 12 13 14 15 17 18 19
(2, 0, 1, 4, 3) 0 1 2 3 4 6 6 8 9 10 11 12 14 15 16 17
(2, 0, 3, 4, 1) 0 1 2 3 4 5 7 8 9 10 11 12 13 14 15 16
(2, 0, 4, 1, 3) 0 0 1 2 3 3 4 5 7 9 10 11 12 12 13 14
(2, 3, 0, 4, 1) 0 0 1 2 3 5 7 9 10 10 11 12 13 15 17 19
(2, 3, 1, 4, 0) 0 0 1 3 4 6 7 8 8 9 11 12 13 14 15 16
(2, 3, 4, 0, 1) 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
(2, 4, 0, 1, 3) 0 0 1 3 4 5 7 9 10 10 11 13 14 15 17 19
(2, 4, 1, 0, 3) 0 1 2 3 4 5 7 8 9 10 11 12 13 15 16 17
(2, 4, 3, 0, 1) 0 1 2 3 5 5 6 7 8 10 10 11 12 13 15 15
(2, 4, 3, 1, 0) 0 0 1 2 4 6 7 8 9 10 11 12 13 14 15 16
(3, 0, 1, 4, 2) 0 1 1 2 4 6 8 8 10 10 11 13 15 16 17 19
(3, 0, 4, 1, 2) 0 0 1 1 1 2 2 2 3 3 3 4 4 4 5 5
(3, 0, 4, 2, 1) 0 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14

(3, 2, 0, 4, 1) 0 1 2 3 5 7 8 9 11 12 13 15 16 17 19 21
(3, 2, 1, 4, 0) 0 1 2 2 3 4 4 5 6 6 7 8 8 9 10 10
(3, 2, 4, 0, 1) 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
(3, 2, 4, 1, 0) 0 0 1 2 3 6 8 9 9 10 11 12 15 16 18 18
(3, 4, 0, 1, 2) 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
(3, 4, 0, 2, 1) 0 1 2 3 4 4 5 6 7 8 8 9 10 11 12 12
(3, 4, 1, 0, 2) 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
(3, 4, 1, 2, 0) 0 1 2 3 5 7 8 9 11 12 13 15 16 17 19 21
(4, 0, 1, 2, 3) 0 1 2 3 4 5 7 8 10 12 13 13 14 15 17 19
(4, 0, 3, 1, 2) 0 0 1 2 3 3 4 5 7 9 10 11 12 12 13 14
(4, 0, 3, 2, 1) 0 1 2 3 4 5 6 8 10 11 12 13 14 15 16 17
(4, 2, 0, 1, 3) 0 0 1 2 4 6 7 9 10 11 12 13 14 15 17 19
(4, 2, 1, 0, 3) 0 1 2 2 3 4 4 5 6 6 7 8 8 9 10 10
(4, 2, 3, 0, 1) 0 1 2 3 5 6 8 9 10 11 12 14 16 17 18 19
(4, 2, 3, 1, 0) 0 0 1 1 2 3 4 4 4 5 5 6 7 8 8 8
(4, 3, 0, 1, 2) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(4, 3, 0, 2, 1) 0 0 1 2 3 5 6 7 10 10 11 12 13 15 16 17
(4, 3, 1, 0, 2) 0 0 1 2 4 5 6 7 9 10 11 12 13 14 15 17
(4, 3, 1, 2, 0) 0 0 1 1 2 3 4 4 4 5 5 6 7 8 8 8

20

ACE: Submission to the NIST LWC competition

Table 4.2: Bounds on the algebraic degree of ACE
Component function

steps (s) f0 f32 f64 f96 f128 f160 f192 f224 f256 f288
1 36 27 36 27 36 27 36 27 36 27
2 92 83 63 62 92 83 92 83 63 62
3 126 125 119 117-120 239-247 235-245 236-249 233-248 119 118-120
4 240-247 238-246 241-248 242-247 306-312 303-311 304-313 304-311 241-248 241-247

of the involved active bits. If the algebraic degree equals the number of active bits
then the bit is unknown (i.e., XOR sum of the component function is unpredictable),
otherwise, it is balanced in which case the XOR sum is always zero.

In Table 4.3, we list the integral distinguishers of ACE. Note that the positions of
constant bits are chosen based on the degree of the Simeck box.

Table 4.3: Integral distinguishers of ACE
Steps s Input division property Balanced bits

8

132||0||1287 64-127, 256-319

196||0||1223 None

1160||0||1159 None

1224||0||195 64-127, 256-319

1288||0||131 None

4.4 Self Symmetry-based Distinguishers

A cryptographic permutation is vulnerable to attacks such as rotational distinguishers,
slide distinguishers [17] and invariant subspace attack [23] which exploit the symmetric
properties of a round function. For example, in ACE the nonlinear Simeck box is
rotational invariant if constants are not added at each round. Thus, a proper choice of
round constants is required to mitigate the above attacks.

ACE employs an 7-bit LFSR to generate round and step constants (see Section 5.6.2).
Below we mention properties of the constants which ensure that each step function of
ACE distinct.

• For 0 ≤ i ≤ 15, sci0 6= sci1 6= sci2

• For 0 ≤ i ≤ 15, (rci0, rc
i
1, rc

i
2) 6= (sci0, sc

i
1, sc

i
2)

• For 0 ≤ i, j ≤ 15 and i 6= j, (rci0, rc
i
1, rc

i
2) 6= (rcj0, rc

j
1, rc

j
2)

• For 0 ≤ i, j ≤ 15 and i 6= j, (sci0, sc
i
1, sc

i
2) 6= (scj0, sc

j
1, sc

j
2).

21

ACE: Submission to the NIST LWC competition

4.5 Security of ACE-AE-128 and ACE-H-256
The security proofs of modes based on the sponge construction relies on the indis-
tinguishability of the underlying permutation from a random one [10, 14, 13, 20]. In
previous sections, we have shown that there are no distinguishers for 16 steps of ACE.
Thus, the security bounds of sponge modes are applicable to both ACE-AE-128 and
ACE-H-256.

ACE-AE-128 security. We assume a nonce-respecting adversary, i.e, for a fixed K, the
nonce N is never repeated. Then considering a data limit of 2d, k-bit security is achieved
if c ≥ k + d+ 1 and d � c/2 [13]. The parameter set of ACE-AE-128 (see Table 2.1)
with actual effective capacity 254 (2 bits are lost for domain separation) satisfies this
condition, and hence ACE-AE-128 provides 128-bit security for confidentiality, integrity
and authenticity.

Note that we could use r = 192, d = 64 and obtain the same level of security [20].
However, this would require an additional 128 XORs and cannot meet our objective to
achieve both AEAD and hash functionalities using the same hardware circuit.

ACE-H-256 security. For a sponge based hash with b = r + c and h-bit message
digest, the generic security bounds [12, 19] are given by:

• Collision: min(2h/2, 2c/2)

• Preimage: min(2min(h,b),max(2min(h,b)−r, 2c/2))

• Second-preimage: min(2h, 2c/2)

Accordingly, ACE-H-256 provides 128, 192 and 128-bit securities for collision, preimage
and second preimage, respectively.

22

Chapter 5

Design Rationale

In this chapter, we provide the rationale for our design choices and justify the design
principles of each component of ACE, ACE-AE-128 and ACE-H-256.

5.1 Choice of the Mode: sLiSCP Sponge Mode

Our adopted mode is a variation of the sponge duplex construction. Sponge construc-
tions are very diversified in terms of the offered security level. Particularly, it is proven
that the sponge and its single pass duplex mode offer a 2c/2 bound against generic at-
tacks [11, 14] which provides a lower bound on the width of the underlying permutation.
However, for authenticated encryption (AE), a security level of 2c−d is proven when the
number of queries is upper bounded by 2d [15]. When restricting the data complexity
to a maximum of 2d queries with d � c/2, one can reduce the capacity and increase
the rate for a better throughput with the same security level. Jovanovic et.al. [20]
have shown that sponge based AE achieve higher security bound, i.e, min{2b/2, 2c, 2k}
compared to [13]. However, we are concerned with the former bound, as shown in
Section 4.5.

In sponge keyed encryption modes, nonce reuse enables the encryption of two differ-
ent messages with the same key stream, which undermines the privacy of the primitive.
More precisely, the sponge duplex authenticated encryption mode requires the unique-
ness of a nonce when encrypting different messages with the same key because the
ability of the attacker to acquire multiple combinations of input and output differences
leaks information about the inner state bits, which may lead to the reconstruction of
the full state [14, 9]. Nonce reuse in duplex constructions reveals the XOR difference
between the first two plaintexts by XORing their corresponding ciphertexts. On the
other hand, a nonce reuse differential attack may be exploited if the attacker is able
to inject a difference in the plaintext and cancel it out by another difference after the
permutation application. However, such an attack depends on the probability of the
best differential characteristic and the number of rounds of the underlying permutation.
Accordingly, if such a permutation offers enough resistance to differential cryptanaly-

23

ACE: Submission to the NIST LWC competition

sis, the feasibility of nonce reuse differential attacks is minimal. The condition on the
differential behavior of the underlying permutation is also important when considering
resynchronization attacks, where related nonces are to be used. For that reason, even
if nonce reuse is not permitted, the underlying permutation used in the initialization
stage should be strong enough to mitigate differential attacks.

Given the above results, the sLiSCP sponge mode [4] realizes the following objec-
tives:

- The flexibility to adapt the same circuitry to provide both authenticated encryp-
tion and hashing functionalities, as we adopt a unified round function for all
functionalities.

- High key agility, which fits the lightweight requirements, because all keyed modes
require no key scheduling.

- Simplicity, as there is no need to implement a decryption algorithm, because the
same encryption algorithm is used for decryption.

- Both plaintext and ciphertext blocks are generated online without the need to
process the whole input message and encrypted material first.

- Initialization and finalization phases that make key recovery hard even if the
internal state is recovered and also renders universal forgery with the knowledge
of the internal state unattainable.

- More hardware efficient initialization and finalization stages where the state is
initialized with the key which is again absorbed in the rate part afterward.

- Domain separators run for all rounds of all stages and offer uniformity across
different stages. We change the domain separators with each new transition and
not before because we found that it leads to a more efficient hardware implemen-
tations. Such mechanism has been shown to be secure in [20].

5.2 ACE State Size

Our main objective is to choose b (state size) that provides 128-bit security for both
hash and AEAD, i.e., 256-bit hash output and 128-bit key and tag. For b-bit state with
b = r+c, r-bit rate and c-bit hash output, generic attacks with 2c/2 permutation queries
exist [11]. Thus, to satisfy the security requirements of hash, c should be 256 which
implies b ≥ 257. The immediate choices are b = 288, 320 and 384. In ACE, we choose
b = 320 as it provides the best trade-off among hardware and software requirements,
security and efficiency. With this choice of b, ACE can have implementations in a wide
range of platforms. We discard the other state sizes for the following reasons.

• Considering the lightweight applications, 384-bit state is too heavy in hardware.

24

ACE: Submission to the NIST LWC competition

• 288 is not a multiple of 64, hence, we can not efficiently use inbuilt 64-bit CPU
instructions for software implementation.

5.3 ACE Step Function

The step function of the ACE permutation can be seen as a generalized five 64-bit word
sLiSCP-light [5] structure. Since we aim to build a 320-bit permutation, we could have
used a 4-word sLiSCP-light with 80-bit Simeck boxes. However, we found that it is not
practical to evaluate most of the cryptographic properties for the resulting permutation
using Simeck boxes with sizes > 64, and that our 80-bit based software implementation
is not efficient. Consequently, we decided to use a 5-word sLiSCP-light with 3 Simeck
boxes and wrap around the linear mixing between words A and E. We also decided
to XOR SB-64(A) with SB-64(E) and not E to avoid the need for an extra temporary
64-bit register to store the initial value of E while intermediate results of the iterated
SB-64 function are stored in E.

5.4 Nonlinear Layer: Simeck box (SB-64)

The Simeck box is an unkeyed independently parameterized variant of the round func-
tion of the Simon round function [7]. Moreover, it has set a new record in terms of
hardware efficiency and performance on almost all platforms [27]. In what follows, we
list the reasons that motivated our adoption of Simeck boxes as the nonlinear function
of ACE permutation.

• Simeck has a hardware friendly round function that consists of simple bitwise
XOR, AND and cyclic shift operations. Moreover, the hardware cost grows lin-
early with input size.

• It is practical to evaluate the SB-64 maximum (expected) differential probability
and maximum (expected) linear squared correlation which are 2−15.8 and 2−15.6,
respectively. Accordingly, we can provide an expected bounds against differential
and linear cryptanalysis.

• SB-64 has an algebraic degree of 36 and the output component functions f0− f31
(resp. f32 − f63) depend on 61 (resp. 55) input state bits, which enables us to
provides guarantees gainst algebraic and diffusion-based attacks.

• Each Simeck box is independently parameterized by the associated set of round
constants, which suggests that the actual security against differential and linear
cryptanalysis is better than the reported bounds.

25

ACE: Submission to the NIST LWC competition

5.5 Linear Layer: π = (3, 2, 0, 4, 1)

The choice of a linear layer is crucial for the proper mixing among the subblocks, which
in turn affects the differential and algebraic properties. Out of 5! possible permutations
of the words, 44 do not exhibit fixed points. Moreover, we found that iterating such
permutations for multiple rounds achieves different differential and algebraic bounds.
Accordingly, we searched their space to find the ones that offer the best diffusion and
result in the minimum number of active Simeck boxes in the smallest number of steps.
We found that only two permutations, π = (3, 2, 0, 4, 1), and π′ = (3, 4, 1, 2, 0) achieve
these conditions. More precisely, using either π or π′, ACE reaches full bit diffusion in
5 steps and has 21 active Simeck boxes (see Table 4.1). Accordingly, we picked π as
our linear layer.

5.6 Round and Step Constants

5.6.1 Rationale

We use the following set of constants to mitigate the self-symmetry distinguishers.

• Three 8-bit unique step constants (sci0, sc
i
1, sc

i
2). The 3-tuple constant value

is unique across all steps, hence it destroys any symmetry between the steps of the
permutation. Accordingly, we mitigate slide distinguishers [17]. We also require
that for any given step i, sci0 6= sci1 6= sci2 in order to destroy any symmetry
between word shuffles.

• Three 8-bit unique round constants (rci0, rc
i
1, rc

i
2). One bit of each round

constant is XORed with the state of the Simeck box in each round to destroy the
preservation of any rotational properties. Moreover, we append 31 ‘1’ bits to each
one bit constant, which results in a lot of inversions, and accordingly breaks the
propagation of the rotational property in one step.

Our choice of the LFSR polynomial to generate the constants ensures that each tuple of
such constants does not repeat due to the periodicity of the 8-tuple sequence constructed
from the decimated m-sequence of period 127.

5.6.2 Generation of round and step constants

We use an LFSR of length 7 with the feedback polynomial x7 + x + 1 to generate the
round and step constants of ACE. To construct these constants, the same LFSR is run
in a 3-way parallel configuration, as illustrated in Figure 5.1. Let a denote the sequence
generated by the initial state (a0, a1, . . . , a6) of the LFSR without parallelization. The
parallel version of this LFSR outputs three sequences, all of them using decimation
exponent 3. Instead of one XOR gate feedback for the non-parallel implementation,
three XOR gates are needed to compute three feedback values.

26

ACE: Submission to the NIST LWC competition

a6 a3 a0

a4 a1

a5 a2

Figure 5.1: LFSR for generating ACE constants.

Figure 5.2 shows the same LFSR as Figure 5.1, but annotated with sequence ele-
ments at the moment when the last three bits for the round constants are available.
The round constants are produced by the sequence elements a24i+21, a24i+22 and a24i+23

in every clock cycle as follows.

rci0 = a24i+21‖a24i+18‖a24i+15‖a24i+12‖ a24i+9‖a24i+6‖a24i+3‖a24i+0

rci1 = a24i+22‖a24i+19‖a24i+16‖a24i+13‖a24i+10‖a24i+7‖a24i+4‖a24i+1

rci2 = a24i+23‖a24i+20‖a24i+17‖a24i+14‖a24i+11‖a24i+8‖a24i+5‖a24i+2

where

• rci0 corresponds to the sequence a with decimation 3

• rci1 corresponds to the sequence a shifted by 1, then decimated by 3

• rci2 corresponds to the sequence a shifted by 2, then decimated by 3

a24i+27 a24i+24 a24i+21

a24i+25 a24i+22

a24i+26 a24i+23

rci0

rci1

rci2

a24i+30

a24i+28

a24i+29

Figure 5.2: Schematic of the 3-way parallel LFSR for generation of the constants

In every 8th clock cycle, the step constants are needed in addition to round constants.
The computation of step constants does not need any extra circuitry, but rather uses the
three feedback values a24i+28, a24i+29 and a24i+30 together with all 7 state bits, annotated

27

ACE: Submission to the NIST LWC competition

︸ ︷︷ ︸
sci2

︸ ︷︷ ︸
sci1

a24i+30, a24i+29, a24i+28, a24i+27, a24i+26, a24i+25, a24i+24, a24i+23, a24i+22, a24i+21︸ ︷︷ ︸
sci0

Figure 5.3: Three 8-bit step constants, generated from 10 consecutive sequence elements

in Figure 5.2. Figure 5.3 shows how the 10 consecutive sequence elements are used to
generate step constants.
The step constants are given by:

sci0 = a24i+28‖a24i+27‖a24i+26‖a24i+25‖a24i+24‖a24i+23‖a24i+22‖a24i+21

sci1 = a24i+29‖a24i+28‖a24i+27‖a24i+26‖a24i+25‖a24i+24‖a24i+23‖a24i+22

sci2 = a24i+30‖a24i+29‖a24i+28‖a24i+27‖a24i+26‖a24i+25‖a24i+24‖a24i+23

We provide an example of how to obtain hex values of constants from LFSR sequence
in Appendix C.

5.7 Number of Rounds and Steps

Our rationale for choosing the number of rounds u and number of steps s of ACE is
based on achieving the best trade-off between security and efficiency. By security and
efficiency, we mean the value of (u, s) for which ACE is indistiguishable from a random
permutation and u × s is minimum. We now justify the choice of (u, s) = (8, 16) for
ACE.

Diffusion. Our first criteria is that s should be at least 3×m where m is the number of
#steps needed to achieve full bit diffusion in the state. This choice is inspired from [18]
and directly adds a 33% security margin against meet/miss-in-the-middle distinguishers,
as in 2m steps full bit diffusion is achieved in both forward and backward directions.
Hence, m = 5 =⇒ u ≥ 4 and s ≥ 15 (c.f. Section 4.1). However, we found that
we cannot choose u = 4, . . . , 7 because we also aim to achieve good resistance against
differential and linear cryptanalysis, and having a smaller number of rounds results in
a weaker Simeck box.

Maximum expected differential characteristic probability (MEDCP). Our
second criteria is to push the MEDCP value of ACE to below 2−320. This value depends
on the MEDCP of a u-round Simeck box and the number of such active boxes in s steps
(denote by ns). We have n15 = 19 and n16 = 21 (see Table 4.1).

Table 5.1 depicts that (u, s) ∈ {(8, 15), (8, 16), (9, 15), (9, 16)}. However, if we con-
sider the differential effect, then the differential probability is 2−15.8 when u = 8. An
indepth analysis of such effect has been provided in [5] where the CryptoSMT tool [22]

28

ACE: Submission to the NIST LWC competition

Table 5.1: Optimal differential characteristic probability p for u-round Simeck box and
the corresponding MEDCP of ACE for s = 15, 16.

u 4 5 6 7 8 9

log2(p) -6 -8 -12 -14 -18 -20

n15 × log2(p) -114 -152 -228 -266 -342 -380

n16 × log2(p) -126 -168 -252 -294 -378 -420

is used to obtain the optimal differential characteristics and corresponding probabilities.
Accordingly, we have:

n15 ×−15.8 = 19×−15.8 = −300.2 > −320

n16 ×−15.8 = 21×−15.8 = −331.8 < −320.

Thus, we ignore (u, s) = (8, 15) and choose (u, s) = (8, 16). The other two choices are
discarded from the efficiency perspective as u×s = 135 (resp. 144) when (u, s) = (9, 15)
(resp. (9,16)) compared to 128 iterations when (u, s) = (8, 15).

5.8 Choice of Rate Positions

We have followed a similar strategy in choosing the rate position as the one that has
been used in sLiSCP [4, 6]. More precisely, we absorb message blocks in words A and C.
Such rate positions allow the input bits to be processed by the Simeck boxes as soon as
possible so we achieve faster diffusion. Also, our choice forces any injected differences
to activate Simeck boxes in the first step which also enhances ACE’s resistance to
differential and linear cryptanalysis. This observation has also been confirmed by a
third party cryptanalysis of sLiSCP [24].

5.9 Statement

The authors declare that there are no hidden weaknesses in the ACE permutation,
ACE-AE-128 and ACE-H-256.

29

Chapter 6

Hardware Design and Analysis

In this chapter, we describe the hardware implementation of ACE module, which is a
single module that supports all three functionalities: authenticated encryption, verified
decryption, and hashing using the same hardware circuit.

6.1 Hardware Design Principles

In this section, we describe the design principles and assumptions that we followed
while implementing ACE module.

1. Multi-functionality module. The system should support all three operations,
namely authenticated encryption, authenticated decryption, and hashing, in a
single module, because lightweight applications generally cannot afford the extra
area for separate modules. As a result, the area for the system will be greater
compared to a single-function module.

2. Single input/output ports. In small devices, ports can be expensive, and
optimizing the number of ports may require additional multiplexers and control
circuitry. To ensure that we are not biasing our design in favour of the system and
at the expense of the environment, the key, nonce, associated data, and message
all use a single data-input port. Similarly, the output ciphertext, tag, and hash
all use a single output port.

3. Valid-bit protocol and stalling capability. The environment may take an
arbitrarily long time to produce any piece of data. For example, a small micro-
processor could require multiple clock cycles to read data from memory and write
it to the system’s input port. We use a single-phase valid bit protocol, where each
input or output data signal is paired with a valid bit to denote when the data is
valid. The receiving entity must capture the data in a single clock cycle, which is
a simple and widely applicable protocol. The system shall wait in an idle state,
while signalling the environment that it is ready to receive.

30

ACE: Submission to the NIST LWC competition

4. Use a “pure register-transfer-level” implementation style. In particular,
use only registers, not latches; multiplexers, not tri-state buffers; and synchronous,
not asynchronous reset.

6.2 Interface and Top-level Module

In Figure 6.1, we depict the block diagram of the top-level ACE module and the de-
scription of each interface signal is given in Table 6.1.

FSM lfsr c

datapath

lfsr c en

lfsr c reset

control

con
st

o ready

o valid

o datai data

reset

i mode

i dom sep

i valid

i padding

2

2

64 64

ACE module

Figure 6.1: Top-level module and interface

Table 6.1: Interface signals

Input signal Meaning
reset resets the state machine
i mode mode of operation
i dom sep domain separator
i padding the last block is padded
i data input data
i valid valid data on i data

Output signal Meaning
o ready hardware is ready
o data output data
o valid valid data on o data

The ACE-AE-128 mode can perform two operations: authenticated encryption (ACE-E)
and verified decryption (ACE-D). The ACE-H-256 mode has two phases: absorbing and
squeezing, both of which have the same domain separator. We use the i mode input
signal (see Table 6.2) to distinguish between the operations or phases.

The environment separates the associated data and the message/ciphertext, and
performs their padding if necessary, as specified in Sections 2.4 and 2.5. The control

31

ACE: Submission to the NIST LWC competition

Table 6.2: ACE module modes of operation
i mode

(1) (0) Mode Operation or phase
0 0 ACE-E Encryption
0 1 ACE-D Decryption
1 0 ACE-H-256 Absorb
1 1 ACE-H-256 Squeeze

input i pad is used to indicate that the last i data block is padded. No internal counters
for the number of processed blocks are needed. The environment uses the domain
separators to indicate whether the input data for ACE-AE-128 is the key, associated
data or plaintext/ciphertext. For ACE-H-256, the phase change is indicated by the
change of the i mode(0) signal, as shown in Table 6.2.

6.3 The ACE module

In this section, we illustrate the implementation details of ACE module. More specif-
ically, we provide the details of ACE datapath, ACE FSM and lfsr c (orange, blue and
yellow colored boxes, respectively in Figure 6.1). We also provide the estimated and
implementation results for the areas.

6.3.1 ACE datapath

Figure 6.2 shows the schematic for the ACE datapath. The top of the figure depicts the
five 64-bit registers A, B, C, D and E followed by the hardware components required
for absorbing, replacing and driving the outputs. The rest of the Figure 6.2 shows
one step of the ACE permutation, annotated on the left. The three parallel SB-64
modules are shown with a shaded grey box. The rounds and steps always use the same
hardware, but in different clock cycles, which forces the use of multiplexers inside the
ACE permutation.

In Table 6.3, we provide both the estimate based on the CMOS 65 nm ASIC library
and actual hardware area of the ACE permutation. For the CMOS 65 nm we use an
estimate of 3.75 GE for a 1-bit register and 2.00 GE for a 2-input XOR gate. The row
“other XORs” contains the XOR gates needed for masking B, D and E with outputs
of the three SB-64 modules, and for the addition of step constants. The estimate in
Table 6.3 does not count the multiplexers that are required to update the registers A,
B, C, D, E with Simeck round outputs or after one step of ACE.

Hardware circuitory for en/de-cryption and hash. Figure 6.2 depicts the ACE
permutation, but also shows the circuitry needed to utilize the ACE permutation to
have a specific mode. The absorbing hardware part is also shown in Figure 6.2. Apart

32

ACE: Submission to the NIST LWC competition

step_const

f(5,0,1)

A B C D E

round_const

A1

i_data

dom_sep

A0 C1 C0

o_data

64

32 2

64

B D

111

8 8 8

E1 E0

32

f(5,0,1) f(5,0,1)

S
B

-6
4

S
B

-6
4

S
B

-6
4

A
C

E
 p

er
m

ut
at

io
n

Figure 6.2: The ACE module datapath

Table 6.3: ACE permutation hardware area estimate and implementation results
Component Estimate Count Estimate per

per unit [GE] component [GE]
State registers 3.75 320 1200
SB-64 154† 3 462
Other XORs 2.00 3× (64 + 8) 432
ACE permutation - Total estimated area 2092

pre-PAR CMOS 65 nm implementation area results

ACE permutation 2716
ACE module 4268

† pre-PAR implementation results

from the output generation, this behaviour is the same for ACE-AE-128 initialization,
processing associated data, encryption, finalization, and for the ACE-H-256 absorbing
and squeezing phase. For ACE-AE-128 decryption, extra multiplexers are required on
the inputs to the ACE permutation, hence the 3:1 multiplexers before the start of the
ACE permutation.

33

ACE: Submission to the NIST LWC competition

6.3.2 ACE FSM and lfsr c

The FSM (blue box Figure 6.1) controls the ACE permutation itself, i.e., it provides
the control signals for the multiplexers based on a particular operation or phase (see
Table 6.2). It uses an internal 8-bit counter to keep track of rounds and steps of
the ACE permutation, and to set the control signals for the register updates, e.g.,
update a register with the round result or update with the step result. The FSM
also sets the control signals for the environment, such as o valid and o ready. The
last row in Table 6.3 shows the implementation results for the complete ACE module,
including the FSM and the lfsr c used for generation of the round and step constants
(see Section 5.6.2).

6.4 Hardware Implementation Results

In this section, we provide the ASIC CMOS and FPGA implementation results of ACE
and its modes. We first give the details of the used synthesis and simulation tools and
then present the performance results.

6.4.1 Hardware tools configuration

Below we provide the configuration details of synthesis and simulation tools and libraries
for both ASIC and FPGA implementations.

Synthesis and simulation tools and libraries for the ASIC
implementation

Logic synthesis Synopsys Design Compiler vN-2017.09

Physical synthesis Cadence Encounter 2014.13-s036 1

Simulation Mentor Graphics QuestaSim 10.5c

ASIC cell library 65 nm STMicroelectronics CORE65LPLVT, 1.25V, 40C

Synthesis tools for the FPGA implementation

Logic synthesis Mentor Graphics Precision 64-bit 2016.1.1.28 (for Intel/Altera),
ISE (for Xilinx)

Physical synthesis Altera Quartus Prime 15.1.0 SJ Standard Edition (for Intel/Altera),
ISE (for Xilinx)

34

ACE: Submission to the NIST LWC competition

6.4.2 Performance results

In Tables 6.4 and 6.5, we present the performance results of the ACE permutation and
the ACE module. Note that the ACE module is a single module that performs all three
functionalities: authenticated encryption, verified decryption and hashing.

Table 6.4: ASIC implementation results

Area Frequency Throughput

Module [GE] [MHz] [Mbps]

ACE permutation 2716 2500 n/a

ACE module 4268 952 476

Table 6.5: FPGA implementation results

Frequency # of slices # of FFs # of LUTs

Module [MHz]

Xilinx Spartan 3 (xc3s200-5ft256)

ACE permutation 181 215 327 381

ACE module 68 727 353 1410

Xilinx Spartan 6 (xc6slx9-3ftg256)

ACE permutation 306 127 327 378

ACE module 123 429 365 1272

Frequency # of LC # of FFs # of LUTs

Module [MHz]

Intel/Altera Stratix IV (EP4SGX70HF35M3)

ACE permutation 128 327 327 296

ACE module 51 781† 354 781

† ACE module includes ALTSYNCRAM block memory with 35 bits.

35

Chapter 7

Efficiency Analysis in Software

The ACE permutation is designed to be efficient on a wide range of resource constrianed
devices, which requires the primitive to be efficient in hardware as well as software.
Even for lightweight applications, a server communicating with such devices needs
to perform the encryption/decryption, and hashing operations at a high speed. We
assess the efficiency of the ACE permutation and its modes on two different software
platforms: high-performance CPUs and microcontrollers. For the high-performance
CPU implementation, we consider a bit-sliced implementation of ACE using SIMD
instruction sets.

7.1 Software: High-performance CPU

We implement ACE in the bit-slice fashion using SIMD instruction sets which provides
resistance against cache-timing attacks and allows to execute multiple independent ACE
instances in parallel. We consider SSE and AVX instruction sets in Intel processors
where the SSE and AVX instruction sets, support 128-bit and 256-bit SIMD registers,
known as XMM and YMM, respectively. Algorithm 4 depicts the detailed steps of
our implementation. In our implementation, packing and unpacking of data are two
important tasks, which are performed at the beginning and at the end of the execution
of the permutation and also during the execution of the permutation.

Basic idea. The key idea for our software implementation of the ACE permutation is
to split the state of the permutation among different registers for performing similar
types of operations (e.g., SB-64). For instance, when eight parallel instances of ACE are
evaluated using YMM registers, we pack data for SB-64 operation into six YMM regis-
ters and other blocks are stored in four other YMM registers. This allows us to perform
the same operations in different registers to achieve efficiency in the implementation.
Below we explain the bit-slice implementation details of ACE for YMM registers. The
details for the SSE implementation using XMM registers are similar, and so are omitted.

36

ACE: Submission to the NIST LWC competition

Packing and unpacking for ACE. There are two different types of packing and un-
packing operations in our implementation: 1) one pair is performed at the beginning
and end of the permutation execution; and 2) the other one is performed at the be-
ginning and end of the SB-64 layer in each step. We start by describing the first one.
For the software implementation, we denote an ACE state by Si = si0s

i
1s
i
2s
i
3s
i
4s
i
5s
i
6s
i
7s
i
8s
i
9

where each sij is a 32-bit word, 0 ≤ i ≤ 7 and 0 ≤ j ≤ 9. First, the eight independent
states S0, S1, S2, S3, S4, S5, S6, S7 of ACE are loaded into ten 256-bit registers as follows.

R0 ← s07s
0
6s

0
5s

0
4s

0
3s

0
2s

0
1s

0
0; R4 ← s17s

1
6s

1
5s

1
4s

1
3s

1
2s

1
1s

1
0

R1 ← s27s
2
6s

2
5s

2
4s

2
3s

2
2s

2
1s

2
0; R5 ← s37s

3
6s

3
5s

3
4s

3
3s

3
2s

3
1s

3
0

R2 ← s47s
4
6s

4
5s

4
4s

4
3s

4
2s

4
1s

4
0; R6 ← s57s

5
6s

5
5s

5
4s

5
3s

5
2s

5
1s

5
0

R3 ← s67s
6
6s

6
5s

6
4s

6
3s

6
2s

6
1s

6
0; R7 ← s77s

7
6s

7
5s

7
4s

7
3s

7
2s

7
1s

7
0

R8 ← s39s
3
8s

2
9s

2
8s

1
9s

1
8s

0
9s

0
8; R9 ← s79s

7
8s

6
9s

6
8s

5
9s

5
8s

4
9s

4
8

Then the packing operation is defined as

PACK(R0, R1, R2, R3, R4, R5, R6, R7, R8, R9) :

R0 ← s15s
1
4s

1
1s

1
0s

0
5s

0
4s

0
1s

0
0; R4 ← s17s

1
6s

1
3s

1
2s

0
7s

0
6s

0
3s

0
2

R1 ← s35s
3
4s

3
1s

3
0s

2
5s

2
4s

2
1s

2
0; R5 ← s37s

3
6s

3
3s

3
2s

2
7s

2
6s

2
3s

2
2

R2 ← s55s
5
4s

5
1s

5
0s

4
5s

4
4s

4
1s

4
0; R6 ← s57s

5
6s

5
3s

5
2s

4
7s

4
6s

4
3s

4
2

R3 ← s75s
7
4s

7
1s

7
0s

6
5s

6
4s

6
1s

6
0; R7 ← s77s

7
6s

7
3s

7
2s

6
7s

6
6s

6
3s

6
2

R8 ← s39s
3
8s

2
9s

2
8s

1
9s

1
8s

0
9s

0
8; R9 ← s79s

7
8s

6
9s

6
8s

5
9s

5
8s

4
9s

4
8

where the SB-64 operation is performed on R0, R1, R2, R3, R8, and R9.
The unpacking operation, denoted by UNPACK(), is the inverse of the packing op-

eration, which we omit here. Both operations are implemented using vpermd and
vperm2i128, vpunpcklqdq and vpunpckhqdq instructions. Assume that we wish
to apply the SB-64 operation on disjoint 64 bits (i.e., a2i+1a2i or b2i+1b2i) in the registers
A = a7a6a5a4a3a2a1a0 and B = b7b6b5b4b3b2b1b0. As SB-64 adopts the Feistel structure,
the data in A and B are regrouped for the homogeneity of operations in SB-64. For
this, we need the second pair of packing and unpacking operations for the SB-64 layer,
which is given by

PACK SB-64(A,B) : UNPACK SB-64(A,B) :
A← b6b4b2b0a6a4a2a0; A← b3a3b2a2b1a1b0a0;
B ← b7b5b3b1a7a5a3a3 B ← b7a7b6a6b5a5b4a4.

ROAX operation. We create an instruction for one round of execution of SB-64,

37

ACE: Submission to the NIST LWC competition

denoted by ROAX, which is given by

ROAX(A,B, q1, q2) :

tmp← A; C ← 0xfffffffe;

A← (L5(A)� A)⊕ L1(A);

A← A⊕B ⊕ (C ⊕ q1, C ⊕ q2, · · · , C ⊕ q1, C ⊕ q2);
B ← tmp;

where A and B are either a XMM or YMM register, L5(A) (resp. L1(A)) denotes the
left cyclic shift by 5 (resp. 1) on every ai in A, which is implemented using vpslld
and vpsrld instructions.
Swapblock operation. With R0, R1, · · · , R9 as input, the swap block operation,
denoted as SWAPBLKS, corresponding to π = (3, 2, 0, 4, 1) is given by

SWAPBLKS(R0, R1, R2, R3, R4, R5, R6, R7, R8, R9) :

R0 ← s11s
1
0s

1
7s

1
6s

0
1s

0
0s

0
7s

0
6; R4 ← s19s

1
8s

1
5s

1
4s

0
9s

0
8s

0
5s

0
4

R1 ← s31s
3
0s

3
7s

3
6s

2
1s

2
0s

2
7s

2
6; R5 ← s39s

3
8s

3
5s

3
4s

2
9s

2
8s

2
5s

2
4

R2 ← s51s
5
0s

5
7s

5
6s

1
1s

4
0s

4
7s

4
6; R6 ← s59s

5
8s

5
5s

5
4s

4
9s

4
8s

4
5s

4
4

R3 ← s71s
7
0s

7
7s

7
6s

1
1s

6
0s

6
7s

6
6; R7 ← s79s

7
8s

7
5s

7
4s

6
9s

6
8s

6
5s

6
4

R8 ← s33s
3
2s

2
3s

2
2s

1
3s

1
2s

0
3s

0
2; R9 ← s73s

7
2s

6
3s

6
2s

5
3s

5
2s

4
3s

4
2.

The execution of the eight parallel instances of the ACE permutation is summarized in
Algorithm 4.

Benchmarking

We implement the ACE permutation and ACE-AE-128 and ACE-H-256 modes in C using
SSE2 and AVX2 instruction sets and measure their performances on two different Intel
processors: Skylake and Haswell. The codes were compiled using gcc 5.4.0 on 64-bit ma-
chines with the compiler flags -O2 -funroll-all-loops -march=native. For
both implementations, we evaluate eight parallel instances and compute the through-
put of the permutation and its modes. Table 7.1 presents the performance results in
cycles per byte for both implementations where the message digest is computed for
1024 bits and encryption is also done for 1024 bits and the associated data length is set
to 128 bits. In our implementation, we include the costs for all packing and unpack-
ing operations. The best speed achieved is 9.97 cycles/byte for ACE, using the AVX2
implementation on Skylake.

38

ACE: Submission to the NIST LWC competition

Algorithm 4 Eight parallel instances of the ACE permutation
1: Input: (R0, R1, R2, R3, R4, R5, R6, R7, R8, R9)
2: Output: (R0, R1, R2, R3, R4, R5, R6, R7, R8, R9)

3: (R0, R1, R2, R3, R4, R5, R6, R7, R8, R9)← PACK(R0, R1, R2, R3, R4, R5, R6, R7, R8, R9);
4: for i = 0 to 15 do:
5: R0, R1 ← PACK SB-64(R0, R1);
6: R2, R3 ← PACK SB-64(R2, R3);
7: R8, R9 ← PACK SB-64(R8, R9);

8: for j = 0 to 7 do:
9: R0, R1 ← ROAX(R0, R1, rc

i
0[j], rc

i
1[j]); . rci0[j] : j-th lsb of rci0

10: R2, R3 ← ROAX(R2, R3, rc
i
0[j], rc

i
1[j]);

11: R8, R9 ← ROAX(R8, R9, rc
i
2[j], rc

i
2[j]);

12: end for
13: R0, R1 ← UNPACK SB-64(R0, R1);
14: R2, R3 ← UNPACK SB-64(R2, R3);
15: R8, R9 ← UNPACK SB-64(R8, R9);
16: C ← 0xffffff00; D ← 0xffffffff;
17: tmp0← (D,C ⊕ sci0, D,C ⊕ sci1, D,C ⊕ sci0, D,C ⊕ sci1)
18: tmp1← (D,C ⊕ sci2, D,C ⊕ sci2, D,C ⊕ sci2, D,C ⊕ sci2)
19: R4 ← R4 ⊕ tmp0; R5 ← R5 ⊕ tmp0;
20: R6 ← R6 ⊕ tmp0; R7 ← R7 ⊕ tmp0;
21: R8 ← R8 ⊕ tmp1; R9 ← R9 ⊕ tmp1;
22: (R0, R1, R2, R3, R4, R5, R6, R7, R8, R9)← SWAPBLKS(R0, R1, R2, R3, R4, R5, R6, R7, R8, R9);
23: end for
24: (R0, R1, R2, R3, R4, R5, R6, R7, R8, R9)← UNPACK(R0, R1, R2, R3, R4, R5, R6, R7, R8, R9);
25: return (R0, R1, R2, R3, R4, R5, R6, R7, R8, R9);

7.2 Software: Microcontroller

We implement the ACE permutation and ACE-AE-128 on two distinct microcontroller
platforms. For ACE-AE-128, we implement only encryption, as decryption is the same
as encryption, except updating the rate with ciphertext. Our codes are written in
assembly language to achieve optimal performance. We choose: 1) MSP430F2370, a
16-bit microcontroller from Texas Instruments with 2.3 Kbytes of programmable flash
memory, 128 Bytes of RAM, and 12 general purpose registers of 16 bits, and 2) ARM
Cortex M3 LM3S9D96, a 32-bit microcontroller with 524.3 Kbytes of programmable
flash memory, 131 Kbytes of RAM, and 13 general purpose registers of 32 bits. We
focus on four key performance measures, namely throughput (Kbps), code size (Kbytes),
energy (nJ), and RAM (Kbytes) consumptions.

For ACE-AE-128, the scheme is instantiated with a random 128-bit key and 128-bit
nonce. Note that the throughput of the modes decreases compared to the permutation
as the messages are processed on 64-bit blocks and (5 + `)(resp. (4 + `)) executions
of the permutation are needed to evaluate the AE (resp. hash) mode where ` is the
number of the processed data in blocks including padding if needed. Table 7.2 presents
the performance of the ACE permutation and its modes.

39

ACE: Submission to the NIST LWC competition

Table 7.1: Benchmarking the results for the ACE permutation and its AE and Hash
modes.

Primitive Speed Instruction CPU Name
[cpb] Set Spec.

ACE

15.66 SSE2 Skylake
9.97 AVX2 Intel i7-6700
16.96 SSE2 Haswell
10.56 AVX2 Intel i7-4790

ACE-AE-128
110.29 SSE2 Skylake
68.53 AVX2 Intel i7-6700
128.66 SSE2 Haswell
89.10 AVX2 Intel i7-4790

ACE-H-256
95.65 SSE2 Skylake
58.81 AVX2 Intel i7-6700
108.15 SSE2 Haswell
66.12 AVX2 Intel i7-4790

Table 7.2: Performance of ACE on microcontrollers at a clock frequency of 16 MHz
Platform Primitive #AD blocks #M blocks Memory (bytes) #cycles Throughput Energy/bit

SRAM Flash [Kbps] [nJ]

16-bit MSP430F2370

ACE permutation - - 304 1456 69440 73.73 225
ACE-AE-128 0 16 330 1740 1445059 11.34 1461
ACE-AE-128 2 16 330 1786 1582892 10.35 1600
ACE-H-256 - 2 330 1682 413056 4.96 3340
ACE-H-256 - 16 330 1684 1375672 11.91 1390

32-bit Cortex M3 LM3S9D96

ACE permutation - - 523 1598 13003 393.76 846
ACE-AE-128 0 16 559 1790 269341 60.83 5479
ACE-AE-128 2 16 559 1858 294988 55.54 6001
ACE-H-256 - 2 559 1822 77114 26.56 12550
ACE-H-256 - 16 559 1822 256524 63.87 5218

40

Acknowledgment

The submitters would like to thank Nusa Zidaric and Marat Sattarov for their work on
the hardware implementation and Yunjie Yi for the microcontroller implementation.

41

Bibliography

[1] Gurobi: MILP optimizer. http://www.gurobi.com/.

[2] AlTawy, R., Gong, G., He, M., Jha, A., Mandal, K., Nandi, M., and
Rohit, R. SpoC: Submission to NIST-LWC.

[3] AlTawy, R., Gong, G., He, M., Mandal, K., and Rohit, R. SPIX: An
authenticated cipher. Submission to NIST-LWC.

[4] AlTawy, R., Rohit, R., He, M., Mandal, K., Yang, G., and Gong,
G. sLiSCP: Simeck-based Permutations for Lightweight Sponge Cryptographic
Primitives. In SAC (2017), C. Adams and J. Camenisch, Eds., Springer, pp. 129–
150.

[5] Altawy, R., Rohit, R., He, M., Mandal, K., Yang, G., and Gong, G.
Sliscp-light: Towards hardware optimized sponge-specific cryptographic permuta-
tions. ACM Transactions on Embedded Computing Systems (TECS) 17, 4 (2018),
81.

[6] Altawy, R., Rohit, R., He, M., Mandal, K., Yang, G., and Gong, G.
Towards a cryptographic minimal design: The sLiSCP family of permutations.
IEEE Transactions on Computers 67, 9 (2018), 1341–1358.

[7] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B.,
and Wingers, L. The SIMON and SPECK families of lightweight block ciphers.
Cryptology ePrint Archive, Report 2013/404, 2013. http://eprint.iacr.
org/2013/404.

[8] Bernstein, D. J., Kölbl, S., Lucks, S., Massolino, P. M. C., Mendel,
F., Nawaz, K., Schneider, T., Schwabe, P., Standaert, F.-X., Todo,
Y., and Viguier, B. Gimli: a cross-platform permutation, 2017.

[9] Bertoni, G., Daemen, J., Peeters, M., and Assche, G. Caesar submission:
Ketje v2, 2014. http://ketje.noekeon.org/Ketjev2-doc2.0.pdf.

[10] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. Sponge
functions. In ECRYPT hash workshop (2007), vol. 2007.

42

http://www.gurobi.com/
http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2013/404
http://ketje.noekeon.org/Ketjev2-doc2.0.pdf

ACE: Submission to the NIST LWC competition

[11] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. On the
indifferentiability of the sponge construction. In EUROCRYPT (2008), N. Smart,
Ed., Springer, pp. 181–197.

[12] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. Keccak
specifications. submission to NIST (Round 2), 2009.

[13] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. On the
security of the keyed sponge construction. In Symmetric Key Encryption Workshop
(2011).

[14] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. Duplexing
the sponge: Single-pass authenticated encryption and other applications. In SAC
(2012), A. Miri and S. Vaudenay, Eds., Springer, pp. 320–337.

[15] Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. Permutation-
based encryption, authentication and authenticated encryption. DIAC (2012).

[16] Biham, E., and Shamir, A. Differential cryptanalysis of DES-like cryptosys-
tems. Journal of CRYPTOLOGY 4, 1 (1991), 3–72.

[17] Biryukov, A., and Wagner, D. Slide attacks. In FSE (1999), L. Knudsen,
Ed., Springer, pp. 245–259.

[18] Gueron, S., and Mouha, N. Simpira v2: A family of efficient permutations
using the aes round function. In ASIACRYPT (2016), J. H. Cheon and T. Takagi,
Eds., Springer, pp. 95–125.

[19] Guo, J., Peyrin, T., and Poschmann, A. The photon family of lightweight
hash functions. In CRYPTO (2011), P. Rogaway, Ed., Springer, pp. 222–239.

[20] Jovanovic, P., Luykx, A., and Mennink, B. Beyond 2c/2 security in sponge-
based authenticated encryption modes. In ASIACRYPT (2014), P. Sarkar and
T. Iwata, Eds., Springe, pp. 85–104.

[21] Knudsen, L., and Wagner, D. Integral cryptanalysis. In FSE (2002), J. Dae-
men and V. Rijmen, Eds., vol. 2365 of LNCS, Springer, pp. 112–127.

[22] Kölbl, S., Leander, G., and Tiessen, T. Observations on the Simon block
cipher family. In CRYPTO (2015), R. Gennaro and M. Robshaw, Eds., Springer,
pp. 161–185.

[23] Leander, G., Abdelraheem, M. A., AlKhzaimi, H., and Zenner, E. A
cryptanalysis of printcipher: The invariant subspace attack. In CRYPTO (2011),
P. Rogaway, Ed., Springer, pp. 206–221.

43

ACE: Submission to the NIST LWC competition

[24] Liu, Y., Sasaki, Y., Song, L., and Wang, G. Cryptanalysis of reduced sliscp
permutation in sponge-hash and duplex-AE modes. In SAC (2018), C. Cid and
J. Michael J. Jacobson, Eds., vol. 11349, Springer, pp. 92–114.

[25] Matsui, M., and Yamagishi, A. A new method for known plaintext attack
of FEAL cipher. In Workshop on the Theory and Application of of Cryptographic
Techniques (1992), Springer, pp. 81–91.

[26] Todo, Y., and Morii, M. Bit-based division property and application to simon
family. In FSE (2016), Springer, pp. 357–377.

[27] Yang, G., Zhu, B., Suder, V., Aagaard, M. D., and Gong, G. The
simeck family of lightweight block ciphers. In CHES (2015), T. Güneysu and
H. Handschuh, Eds., Springer, pp. 307–329.

44

Appendix A

Other NIST-LWC Submissions

In Table A.1, we list our other NIST-LWC submissions whose underlying permutation
adopts a similar design as sLiSCP-light [5] family of permutations. ACE is an all in one
primitive that utilizes a generalized version of sLiSCP-light with state size 320-bit and a
different linear layer to offer both hashing and authenticated encryption functionalities.
Spix adopts sLiSCP-light-256 in a monkey duplex to offer higher throughput than
generic Sponge-based AE schemes. Spoc is an authenticated cipher that enables higher
bound on the underlying state size to offer same security as other generic AE schemes,
thus allowing larger rate size. Spoc adopts sLiSCP-light-192 and sLiSCP-light-256 to
enable different performance and hence different target applications. In Table A.1, the
submissions are classified based on their functionalities, mode of operation parameters
and hardware area in CMOS 65 nm ASIC.

Table A.1: Submissions with sLiSCP-light like permutations
Algorithm Permutation Functionality Parameters (in bits) Mode of operation Area

State Rate Security [GE]

ACE-AE-128 and ACE-H-256 ACE AEAD & Hash 320 64 128 Unified sLiSCP sponge 4286

Spix [3] sLiSCP-light-256 AEAD 256 64 128 Monkey Duplex 2611

Spoc-64 [2] sLiSCP-light-192 AEAD 192 64 128 Spoc 2329

Spoc-128 [2] sLiSCP-light-256 AEAD 256 128 128 Spoc 3020

45

Appendix B

Test Vectors

B.1 Simeck Sbox

Test vector for Simeck sbox with input = 0000000000000000 and rc = 0x07.

Round State

0 0000000000000000

1 FFFFFFFF00000000

2 FFFFFFFFFFFFFFFF

3 00000000FFFFFFFF

4 0000000100000000

5 FFFFFFFC00000001

6 FFFFFF9AFFFFFFFC

7 00000C2DFFFFFF9A

8 00001C1E00000C2D

46

ACE: Submission to the NIST LWC competition

B.2 ACE Permutation

Test vector for ACE with all zero state.

Table B.1: Test vector for ACE permutation
Step State

0 0000000000000000 0000000000000000 0000000000000000 0000000000000000 0000000000000000

1 FFFFC7CAFFFFE776 00003C9E00001C3A 00001C1E00000C2D FFFFDBD4FFFFEB67 FFFFC361FFFFE36A

2 A008C151D9C4D9F0 25ACD9A124884ECC 86A59002FBFA4BCD D9528A87DDC179A3 DA531AC0DB77ADAA

3 446BFB17FEAC5A5F 683F3428F9654513 68637D8AD2D9A691 F55A0C1AF1B48501 B26C12762212F44E

4 5453CAE4EC2F4442 1229976DFAB4E931 62A32D3D4BF8A3A4 C3AAEBC356636242 85E95CBAFC2E53AF

5 598621C1B175FD21 2D4271827840D029 7067E7DBE7730CF1 EA4B2DD90065936F C09419107D0BC64B

6 F082FCB61529AA71 7BCFD42DFA4C3E52 2D5F0057B73ACCE3 3796D138A276F5D5 A9725A507DF3111B

7 FEFB14A90FFC6647 9F5776716E158260 8E92C0A5D6800B6F 47FF05347B0A9853 1B675DA36BA6435A

8 89F30BAF3692897B C4FDA6EBEC5A67C9 14F005716C4AFC2A DAFC0BEA21D2ED4A A4552F657DB01A48

9 4C23136992E442A3 011A48EC0CB5FB43 66FE8CDB3B4199E5 F0219458887736CA 3A1811F81F10637C

10 2610F06C195D5056 17AE4FD7BD09471B FFBDD5A7EAB46BCE 298CB1937B9E0DFB E94BF8C44E4343C5

11 C0DC927D4DB070E3 CF7763937E89CB5C 15839159A987CDA1 FCD3B2B79FA9B089 2726D3BB3C7F7307

12 EB0021C196A1BD2A 0430040EFF58D77D BC9CEE20225F9C0F AB4F7D562B579198 34B898627E2EE36E

13 6665A40D97687B80 5930C806DDEBC73A 61B46748C3F87266 AC9EBE137FC7980E A2FF33F7DD4CEFF9

14 AB3B18A05461271D 8E535FE0229BC4A8 3A17D3E8D0C0DEBE 3DB2755BFB6661D6 289C6819008FFCC9

15 9FE7E5EA42C1167A 637EA3CF659E1667 A7C2AFF4D71079A3 05973F456EB70EC1 12D203D0B8FA2D26

16 5C93691AD5060935 DC19CE947EAD550D AC12BEE1A64B670E F516E8BE1DFA60DA 409892A4E4CCBC15

B.3 ACE-AE-128
Key 00111122335588DD 00111122335588DD

Nonce 111122335588DD00 111122335588DD00

Associated data 1122335588DD0011 1122335588DD00

Plaintext 335588DD00111122 335588DD001111

Ciphertext F9362385DC213A07 CEFEF38C34CEFF

Tag AE85154F0242F0E4 0F9ECA3FE696D7C6

B.4 ACE-H-256
Message 335588DD00111122 335588DD001111

Hash 1676336AB5C04A1D 9225FB283172A757 A0637A6523127B83 EFC3E990BABBD2E6

47

Appendix C

Constants: Sequence to Hex
Conversion

In this section, we show how to obtain hex values of the constants for i = 0. Note that
the LFSR is reset to initial all-one state (1, . . . , 1) at the beginning of each ACE per-
mutation. The example is captured in Table C.1. First column in the table represents
the clock cycle, which corresponds to the round within the step. The next column is
showing the current LFSR state in this clock cycle. The bits are written in the same
pattern as states in Figure 5.2, without showing the three feedback bits. The third
column is showing 10 sequence bits, composed of the three feedback bits, followed by
the state bits: the top row shows the subsequence with correct indices and the bottom
row their respective values. The last three bits in every row are used directly as round
constant in every clock cycle. The 10-bit subsequence from clock cycle 7 is used directly
as the step constant and interpreted as shown in Figure 5.3.
The HEX values for step i = 0, listed in Table 2.2 are obtained as follows:

• from the last three columns of Table C.1 for the round constants

• from the last row of Table C.1 for the step constants

as follows:

rc00 = 00000111 = 0x07 sc00 = 01010000 = 0x50
rc01 = 01010011 = 0x53 sc01 = 00101000 = 0x28
rci2 = 01000011 = 0x43 sci2 = 00010100 = 0x14

48

ACE: Submission to the NIST LWC competition

Table C.1: Generation of round and step constants for i = 0
clk. (current)

cycle LFSR state (current) subsequence bits
1 1 1 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

0 1 1
1 1 0 0 0 1 1 1 1 1 1 1

0 1 1 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3
1 0 1

0 1 0 0 0 0 0 0 1 1 1 1
0 0 1 a15 a14 a13 a12 a11 a10 a9 a8 a7 a6

2 0 0
0 0 0 0 1 0 0 0 0 0 0 1

0 0 0 a18 a17 a16 a15 a14 a13 a12 a11 a10 a9
3 1 0

0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12

4 0 1
0 0 0 1 1 0 0 0 0 0 1 0

0 0 0 a24 a23 a22 a21 a20 a19 a18 a17 a16 a15
5 1 0

1 0 0 0 0 0 1 1 0 0 0 0
0 0 0 a27 a26 a25 a24 a23 a22 a21 a20 a19 a18

6 0 1
0 1 1 0 1 0 0 0 0 1 1 0

1 0 0 a30 a29 a28 a27 a26 a25 a24 a23 a22 a21
7 1 0

0 0 0 0 0 1 0 1 0 0 0 0 ← sc02, sc
0
1, sc

0
0

↑ ↑ ↑
rc02 rc01 rc00

49

	1 Introduction
	1.1 Notations
	1.2 Outline

	2 Specification
	2.1 Parameters
	2.1.1 ACE AEAD algorithm
	2.1.2 ACE Hash algorithm

	2.2 Recommended Parameter Set
	2.3 The ACE Permutation
	2.3.1 The nonlinear function SB-64
	2.3.2 Round and step constants

	2.4 AEAD Algorithm: ACE-AE-128
	2.4.1 Rate and capacity part of state
	2.4.2 Padding
	2.4.3 Loading key and nonce
	2.4.4 Initialization
	2.4.5 Processing associated data
	2.4.6 Encryption
	2.4.7 Finalization
	2.4.8 Decryption

	2.5 Hash Algorithm: ACE-H-256
	2.5.1 Message padding
	2.5.2 Loading initialization vector
	2.5.3 Initialization
	2.5.4 Absorbing and squeezing

	3 Security Claims
	4 Security Analysis
	4.1 Diffusion
	4.2 Differential and Linear Cryptanalysis
	4.2.1 Expected bounds on the maximum probabilities of differential and linear characteristics

	4.3 Algebraic Properties
	4.4 Self Symmetry-based Distinguishers
	4.5 Security of ACE-AE-128 and ACE-H-256

	5 Design Rationale
	5.1 Choice of the Mode: sLiSCP Sponge Mode
	5.2 ACE State Size
	5.3 ACE Step Function
	5.4 Nonlinear Layer: Simeck box (SB-64)
	5.5 Linear Layer: =(3,2,0,4,1)
	5.6 Round and Step Constants
	5.6.1 Rationale
	5.6.2 Generation of round and step constants

	5.7 Number of Rounds and Steps
	5.8 Choice of Rate Positions
	5.9 Statement

	6 Hardware Design and Analysis
	6.1 Hardware Design Principles
	6.2 Interface and Top-level Module
	6.3 The ACE_module
	6.3.1 ACE datapath
	6.3.2 ACE FSM and lfsr_c

	6.4 Hardware Implementation Results
	6.4.1 Hardware tools configuration
	6.4.2 Performance results

	7 Efficiency Analysis in Software
	7.1 Software: High-performance CPU
	7.2 Software: Microcontroller

	A Other NIST-LWC Submissions
	B Test Vectors
	B.1 Simeck Sbox
	B.2 ACE Permutation
	B.3 ACE-AE-128
	B.4 ACE-H-256

	C Constants: Sequence to Hex Conversion

