
mixFeed

Designers/Submitters:
Bishwajit Chakraborty - Indian Statistical Institute,Kolkata
Mridul Nandi - Indian Statistical Institute, Kolkata, India

bishu.math.ynwa@gmail.com
mridul.nandi@gmail.com

September 21, 2019

1

1 Introduction

In this document, we propose a new scheme for authenticated encryption with associated data (AEAD) based
on AES’128/128 [7] block cipher. Here, we introduce a new mode which we call Minimally Xored Feedback
mode (mixFeed) based on any block cipher with some involved key-scheduling algorithm. Our mode (on top
of the n-bit block cipher) requires only n-bit xor to process each n-bit blocks. The name can also be justified
for the fact that we use a mixture of Plaintext and Ciphertext as the feedback to the underlying blockcipher.

Another aspect of the mixFeed is that, we use nonce-dependent key. This would help to get higher security
beyond conventional model (such as reasonable security against leakage of nonce-dependent key).

2 mixFeed Specification

2.1 Notations and Conventions

We fix positive even integers n, κ, and t to denote the block size, key size, and tag size respectively in bits.
Our input nonce size is one byte less than the block size. En/κ denotes a block cipher family E, parametrized
by the block length n and key length κ. In this paper we use AES’128/128 and so n = 128, nonce size = 120
and κ = 128 . Note that AES’128/128 is same as the original AES128/128 except that we use mixcolumn
operation at the last round.

We fix the tag size to be 128. Note that one can always truncate the tag to a small size if required.

We use {0, 1}+ and {0, 1}n to denote the set of all non-empty (binary) strings, and n-bit strings, re-
spectively. λ denotes the empty string and {0, 1}∗ = {0, 1}+ ∪ {λ}. For all practical purposes: we use
little-endian format of indexing, and assume all binary strings are byte-oriented, i.e. belong in ({0, 1}8)∗. For
any string B ∈ {0, 1}+, |B| denotes the number of bits in B, and for 0 ≤ i ≤ |B| − 1, bi denotes the i-th
bit of B, i.e. B = b|B|−1 · · · b0. where b0 is the least significant bit (LSB) and b|B|−1 is the most significant
bit (MSB). Given a nonempty bit string B of size x < n, we denote pad(B) as 0n−x−11B. Thus we always
pad the extra bits from MSB side. When x = n, we define pad(B) as B itself. The chop function chops
either the most significant or least significant bits. For k ≤ n, and B ∈ {0, 1}n, bBck := Bk−1 . . . B0 and
dBek := Bn−1 . . . Bn−k.

For B ∈ {0, 1}+, (B`−1, . . . , B0)
n← B, denotes the n-bit block parsing of B into (B`−1, . . . , B0), where

|Bi| = n for 0 ≤ i ≤ `−2, and 1 ≤ |B`−1| ≤ n. For A,B ∈ {0, 1}+, and |A| = |B|, A⊕B denotes the “bitwise
XOR” operation on A and B. For A,B ∈ {0, 1}+, A‖B denotes the “string concatenation” operation on A
and B.

We will use a compact representation of if-else statement by the following expression P ? b : c where P is
some mathematical statement. This evaluates to b if P is true and c otherwise. P1 & P2 ? b1 : b2 : b3 : b4
evaluates to b1 if both P1 and P2 are true, to b2 if only P1 is true, to b3 if only P2 is true and to b4 if none
of P1 , P2 are true.

Block Cipher: A block cipher with key size κ and block size n is a family of permutations over n-bits
indexed by κ bit key. For a fixed key k ∈ {0, 1}κ, we write Ek(·) = E(k, ·). Many block cipher uses some
non-trivial key-scheduling algorithm which produces round keys for each round to mask the block cipher
state. Let φ corresponds to the function which updates the key. In other words, if K is the key of the block
cipher for the current execution, φ(K) will denote the updated key. We will see details of this key update
function for AES’128/128 in more details later.

2.2 Our Recommendation

In Algorithm 1 we describe our specification mixFeed based on any block cipher E. We propose (primary
submission) mixFeed where E is instantiated by AES’128/128 where the last round also calls MixColumns
operation of AES128/128. For the sake of completeness we describe it in Algorithm 2. This does not change
any security level of AES’128/128, but it adds uniformity over all rounds.

2.3 Provenance of Constants used in Tweak Control

Our mode uses a 4-bit constant t3 ‖ t2 ‖ t1 ‖ t0 for processing the last block of associated data and the last
block of message which distinguishes different cases regarding completeness of the last blocks. This constant
value is decided from the inputs of the hardware API and are explained as follows.

• eoi : t3 is called the end of input control bit. This bit is set to 1 if and only if the current data block
being processed is the final block of the input. For all other data block processing t3 is set to 0.

2

Algorithm 1 Encryption/Decryption algorithm in mixFeed. Here, λ denotes the empty string. ⊥,> denotes
the abort and accept symbols respectively. By ∗, we mean that the exact value is not bothered.

1: function mixFeed[E].enc(K,N,A,M)

2: ((a, δA), (m, δM))← Fmt(A,M)

3: if a = 0,m = 0 then

4: (T, ∗)← EK(N‖0610)
5: return (λ, T)

6: else if a = 0 then (KN , ∗)← EK(N‖071)
7: else (KN , ∗)← EK(N‖08)
8: (T,K)← EKN (N‖08)
9: C ← λ

10: if a 6= 0 then (∗, T,K)← proc txt(T,K,A, δA,+)

11: if m 6= 0 then (C, T, ∗)← proc txt(T,K,M, δM ,+)

12: return (C, T)

13: function mixFeed[E].dec(K,N,A,C, T)

14: ((a, δA), (m, δC))← Fmt(A,C)

15: if a = 0,m = 0 then

16: (T ′, ∗)← EK(N‖0610)
17: return (T = T ′)? > : ⊥
18: else if a = 0 then (KN , ∗)← EK(N‖071)
19: else (KN , ∗)← EK(N‖08)
20: (T ′,K)← EKN (N‖08)
21: M ← λ

22: if a 6= 0 then (∗, T ′,K)← proc txt(T ′,K,A, δA,+)

23: if m 6= 0 then (M,T ′, ∗)← proc txt(T ′,K,C, δC ,−)
24: if T 6= T ′ then

25: return ⊥
26: else

27: return (M,>)

1: function Fmt(A,M)

2: (Aa−1, . . . , A0)
n← A

3: (Mm−1, . . . ,M0)
n←M

4: δA ← (n | |Aa−1|) & (m = 0)? 12 : 4 : 14 : 6

5: δM ← (n | |Mm−1|)? 13 : 15

6: return ((a, δA), (m, δM))

7: function proc txt(K1, Y0, D, δD, dir)

8: (Dd−1, . . . , D0)
n← D

9: for i = 0 to d− 1 do

10: (Xi+1, D
′
i)← Feed(Yi, Di, dir)

11: (Yi+1,Ki+2)← EKi+1
(Xi+1)

12: Xd+1 ← Yd ⊕ 0n−4‖δD
13: (Yd+1,Kd+2)← EKd+1

(Xd+1)

14: return (D′, Yd+1,Kd+2)

15: function Feed(Y,D,dir)

16: D′ ← D ⊕ bY c|D|
17: if dir = ” + ” then

18: B ← dpad(D′)en/2‖bpad(D)cn/2

19: if dir = ”− ” then

20: B ← dpad(D)en/2‖bpad(D′)cn/2

21: X ← B ⊕ Y
22: return (X,D′)

• eot: t2 is called the end of type control bit. This bit is set to 1 if and only if the current data block
being processed is the last block of the same type i.e. it is the last block of message/ associated data.
For all other data block processing t2 is set to 0.

• partial: t1 is called the partial control bit. this bit is set to 1 if data block currently being processed
is a partial block, i.e. it’s the data size is less than the required block size. For all other data block
processes it is set to 0.

• Type: t0 is called the type control bit and it identifies the data being processed. For the final message
block processing, t0 is set to 1. For all other data processing, t0 is set to 0.

While processing a last data block of a type, the input of the block cipher is decided based on the 4 control
bits. Fmt function outputs the δA, δM values by simply giving the integer representation of t3‖t2‖t1‖t0. For
example if we are in the last message block and it is partial then t3 = 1, t2 = 1, t1 = 1, t0 = 1, making
δM = 15 In Algorithm 1. Similarly if we are processing the last associate data block which is complete and
the message length is non-zero, then t3 = 0, t2 = 1, t1 = 0, t0 = 0 making δM = 4.

i 1 2 3 4 5 6 7 8 9 10 11
RCON(i) 01 02 04 08 10 20 40 80 1b 36 6c

Table 1: The RCON Values

3 Security of mixFeed

Here we describe some possible strategies to attack the mixFeed mode, and give a rough estimate on the
amount of data and time required to mount those attacks (see Table 2). In the following discussion:

3

Algorithm 2 AES’128/128 Block Cipher. To apply a chain of block cipher, we perform an extra round of
AES’128/128 Key-Schedule and use that round key as the initial key of the next call of AES’128/128. As
described in the Introduction the second output of Emodule only depends on the first input K and we define
this function as φ(K).

1: function E(K;X)

2: (W47, . . . ,W0)← KeyGen(K)

3: for i = 1 to 10 do

4: X ← X ⊕ (W4i−1,W4i−2,W4i−3,W4i−4)

5: X ← SubBytes(X)

6: X ← ShiftRows(X)

7: X ← MixColumns(X)

8: X ← X ⊕ (W43,W42,W41,W40)

9: K ← (W47,W46,W45,W44)

10: return (X,K)

11: function KeyGen(K)

12: (K15, . . . ,K0)
8← K

13: for i = 0 to 3 do

14: Wi ← (K4i+3,K4i+2,K4i+1,K4i)

15: for i = 4 to 47 do

16: Y ←Wi−1

17: if i%4 = 0 then

18: Y ← SubWords(Y ≪ 8)

19: Y ← Y ⊕ RCONi/4

20: Wi ←Wi−4 ⊕ Y
21: return (W47, . . . ,W0)

1: function SubBytes(X)

2: (X15, . . . , X0)
8← X

3: for i = 0 to 15 do

4: Xi ← AS(Xi)

5: return X

6: function Shiftrows(X)

7: (X15, . . . , X0)
8← X

8: for i = 0 to 3 do

9: for j = 0 to 3 do

10: Y4i+j ← X4i+((j+i)%4)

11: return Y

12: function MixColumns(X)

13: M ←


2 3 1 1

3 1 1 2

1 1 2 3

1 2 3 1


14: Y ←M ·X
15: return Y

• D denotes the data complexity of the attack. This parameter quantifies the online resource require-
ments, and includes the total number of blocks (among all messages and associated data) processed
through the underlying block cipher for a fixed master key. Note that for simplicity we also use D to
denote the data complexity of forging attempts.

• T denotes the time complexity of the attack. This parameter quantifies the offline resource requirements,
and includes the total time required to process the off line evaluations of the underlying block cipher.
Since one call of the block cipher can be assumed to take a constant amount of time, we generally take
T as the total number of off line calls to the block cipher.

Security Data complexity Time complexity
Model (log2D) (log2 T)

IND-CPA 60 112
INT-CTXT 50 112

Table 2: Security Claims. We remark that the given values indicate the amount of data or time required to make
the attack advantage close to 1.

Notes on Security on the Modes After making q queries with σ many blocks, adversary observes inputs
and outputs of the block cipher with a key which is dependent on the nonce and the current block number.
Thus the security of this construction would depend on the nultikey set up. As the least significant 64 bits of
inputs are random (during encryption), the multi-key attack (in the ideal cipher model) will have advantage
roughly σT/2192 where T is the number of ideal cipher calls and σ is the number of encryption blocks. Similar
argument will work for all decryption attempts.

We must admit that there is no conventional privacy security in case of nonce misuse.

3.1 Known Security Analysis of AES’128/128

The security of AES’128/128 is same as the security of AES128/128 as mixcolumn is a linear operation which
can be peeled off from the output. The security of AES128/128 is well-established in the community.

To the best of our knowledge, the best single-key attack on AES128/128 is the biclique attack by Bogdanov
et al. [1], that recovers the key in approx. 2126 computations. Although there is a related-key attack on

4

full-round AES-128/192 and AES-128/256, the same attack does not apply to AES128/128, even in the usual
XOR related-key setting, let alone the key scheduled related-keys. In fact, [5] shows that AES128/128 is
almost as secure in related-key setting as it is in single-key setting. Recent distinguishers on AES128/128
[3, 4, 8, 2], are applicable to round-reduced variants of AES128/128, and hence not applicable in our case.

4 Design Rationale

4.1 Choice of the Mode

Our primary goal is to design a lightweight cipher that should be efficient, provide high performance and
able to perform well in low end devices. In addition, we also demand robustness in security.

4.1.1 Nonce dependent key

At the very first step we compute the secret key based on nonce. So, for every encryption we use random
keys. Even though due to some side channel analysis the secret key corresponding to a nonce N is released,
the master key remains still secret and all encryption using nonce other than N remains good.

4.1.2 Minimally xored mixture feedback

As our name suggests, we use minimum number of xors to process each block. This makes the design simpler
and having very low footprint in software. The rational behind having mixture of plaintext and ciphertext
feedback is to achieve NIST aimed security. During encryption we ensure 192 bit entropy for each block
process. We have 128 bit dynamic secret key and 64 bits LSB of the inputs have influence from 64 bits LSB
of the previous block cipher call.

While decrypt, we have 64 bit MSB of the previous outputs goes to the correspond position of the next
input. This would provide about 64 bit security for forgery attempts.

4.1.3 Single State

mixFeed has a state size as small as the block size of the underlying cipher, and it ensures good implementation
characteristics both on lightweight and high-performance platforms. We moreover need not to hold the
original key as we dynamically update the key based on the key scheduling algorithm used for the block
cipher computation.

4.1.4 Inverse-Free

mixFeed is a inverse-free authenticated algorithm. Both encryption and verified decryption of the algorithm
do not require any decryption call to the underlying twekable block cipher. This reduces the overall hardware
footprint significantly, especially in the combined authenticated-encryption, verified-decryption implementa-
tions.

4.2 Choice of the Block cipher

4.2.1 Well analyzed and NIST standard

AES128/128 block cipher is well analyzed for long time and it remains secure. Moreover, in this proposal, a
weaker security from AES128/128 would suffice. AES128/128 also performs very well in microcontroller based
platform. We note that the last mix-column operation is included in our proposal to make it uniform over all
rounds. This reduces additional MUX which was required to process last round for the original AES128/128.

4.2.2 Dynamic Key

We compute the key dynamically as key schedules goes on. This helps us not to hold the master key as well
not to expose a secret key multiple times. As the key-scheduling of AES128/128 is involved, the related-key
security analysis of AES128/128 expected to be much harder than conventional xor-related key.

5 Preliminaries for Proving Security of mixFeed

Here we define the Different security notions of mixFeed and the Tweakable Block Cipher[6].

5

5.1 Security Definitions of mixFeed

Let EncK ,DecK respectively denote the encryption and decryption algorithms of mixFeed with key K.

5.1.1 Privacy

Given an adversary A we define the privacy advantage of A against mixFeed as AdvprivmixFeed(A) = |Pr
[
A EncK = 1

]
−

Pr
[
A $ = 1

]
|, where $ returns a random output string of same length as EncK . The privacy advantage of

mixFeed is defined as
AdvprivmixFeed(q, σ, t) = max

A
AdvprivmixFeed(A)

where the maximum is taken over all the nonce respecting adversaries A running in time t and making at
most q many encryption queries with total number of blocks in all the queries being σ.

5.1.2 Forgery

We say that a nonce respecting oracle adversary A EncK ,DecK forges mixFeed if A is able to make a fresh
query (N,A,C, T) to DK such that DK(N,A,C, T) 6=⊥. By fresh query we mean that the adversary does
not make any previous query (N,A,M) to EncK such that EncK(N,A,M) = (C, T). We say a decryption
query valid if DK(N,A,C, T) 6=⊥. The forging advantage of an adversary A is written as

AdvforgemixFeed(A) = Pr
[
A EncK ,DecK forges

]
and we write

AdvforgemixFeed(q, σ, t) = max
A

AdvforgemixFeed(A)

where the maximum is taken over all adversary A running in time t, making at most qe many nonce respecting
encryption queries with maximum σe many blocks and making at most qd many decryption queries with
maximum σd many blocks. Define q = qe + qd, σ = σe + σd. Note that the decryption queries are not
necessarily nonce respecting i.e. nonce can be repeated in the decryption queries and an encryption query
and a decryption query can use the same nonce. However, all nonces used in encryption queries are distinct.

5.2 Security Definitions of Tweakable block cipher

5.2.1 TPRP-security

Let Ẽ be an n-bit tweakable block cipher with tweak space T . The TPRP-advantage of Ẽ against an oracle

adversary A is defined as AdvTPRP
Ẽ

(A) = |Pr
[
A ẼK = 1

]
− Pr

[
A Π̃ = 1

]
| where Π̃ is chosen uniformly

from the set of all functions π̃ : T × {0, 1}n → {0, 1}n where for every tw ∈ T , π̃(tw, ·) is a permutation on
{0, 1}n. We call Π̃ a tweakable random permutation. We write,

AdvTPRP
Ẽ

(q, t) = max
A

AdvTPRP
Ẽ

(A)

where maximum is taken over all adversaries A running in time t making q many tweak-input queries of the
form (tw,X). We define µ-TPRP advantage of Ẽ to be

Advµ-TPRP

Ẽ
(q, t) = max

A
AdvTPRP

Ẽ
(A)

where the maximum is taken over all the adversaries A as defined above with the additional restriction that
it is µ-respecting i.e. the number of queries by A with same input X is at most µ. When the tweakable block
cipher is instantiated in the ideal cipher model, the time parameter t denotes the number of ideal cipher
calls.

5.2.2 Multi-Commitment Prediction

Let Ẽ be a tweakable block cipher. Let A be an adversary with oracle access to Ẽ, i.e. it can make queries
of the form (tw,X) to Ẽ to receive ẼK(tw,X). Given Such an adversary A consider the following game
between A and Ẽ

Phase 1 : A makes queries of the form (tw,X) and receives Y = ẼK(tw,X).

Phase 2 : After all the queries of Phase 1 is done,

6

(a) For some k ≤ λ, adversary makes k many commitments of the form (twi, xi, yi) where xi, yi ∈
{0, 1}n2 .

(b) A makes at most λ many queries to produce at most λ many prediction tuples of the form
(twj , Xj)j∈[1,λ] such that (twj , Xj) are fresh i.e. ∀j, (twj , Xj) has never been queried before pre-
dicting it.

We say that any adversary A wins the λ-multi-commitment-prediction game if for some prediction tuple
(twj , Xj) there exist a commitment tuple (twi, xi, yi) which was committed in Phase 2. step (a), such that

twi = twj ;xi = dXjen2 ; bẼK(twj , Xj)cn2 = yi.

The λ-multi-commitment-predicting advantage of an adversary A is defined as

Advλ-mcp

Ẽ
(A) = Pr

[
A Ẽwins the λ-multi-commitment-prediction game

]
and we write,

Advλ-mcp

Ẽ
(q, t) = max

A
Advλ-mcp

Ẽ
(A)

where maximum is taken over all adversaries A running in time t making at most q many queries.

We define (µ, λ)-mcp advantage of A to be

Adv
(µ,λ)-mcp

Ẽ
(q, t) = max

A
Advλ-mcp

Ẽ
(A)

where the maximum is taken over all adversaries as defined above with the additional restriction that
they make µ-respecting queries in Phase 1 of the game.

In the ideal cipher model the (λ, µ)-multi commitment prediction security is defined in the same way as
above with an additional restriction that the adversary doesn’t make any primitive calls to E in Phase 2.

5.2.3 Multi-Collision

Let Ẽ be a tweakable block cipher. Define an oracle OẼ which takes a query input of the form (tw,X,C)

and returns X ′ = C ⊕ 0
n
2 ‖bY cn

2
where Y = ẼK(tw,X).We say that an adversary A with oracle access to O

produces a µ-multicollision if it can produce µ many trascripts of the form (twi, Xi, Ci, X
′
i)i∈[1,µ] such that

X ′i = X ′j for all i, j ∈ [1, µ]. The µ-multicollision-advantage of the adversary A is defined as

Advµ-mcoll

Ẽ
(A) = Pr

[
A OẼ produces µ-multicollision

]
and we write

Advµ-mcoll

Ẽ
(q) = max

A
Advµ-mcoll

Ẽ
(A)

where maximum is taken over all adversaries A making at most q many queries.

6 Security Reductions of mixFeed

Here we give upper bounds on the privacy advantage and forging advantage of mixFeed against any adversary
B. For notational reference see Figure 4.

6.1 Privacy

Let B be any adversary which successfully breaks the privacy security of mixFeed. We construct a µ-respecting
adversary A which uses B to break the µ-TPRP security of Ẽ.

Let CH be a µ-TPRP challenger. A acts as a privacy challenger for B as follows:

1. CH randomly chooses a bit b ∈ {0, 1}. if b = 0, CH computes using Ẽ. Otherwise CH chooses a random
function P : T × {0, 1}n → {0, 1}n such that for all twi ∈ T , P (twi, ?) are independent random
permutations from {0, 1}n → {0, 1}n and computes using P .

7

2. on receiving encryption queries from B, of the form (N,A,M),

(a) A computes N̄ , δA, δM .

(b) For all 0 ≤ j ≤ l + 2, A defines twj = (N, j).

(c) If number of previous queries to CH of the form (?, N̄) is less than µ then A queries (tw0, N̄) to
CH to receive Y0.Else it aborts.

(d) For all 1 ≤ j ≤ a,

i. A computes Bj = Aj ⊕ bYjc|A| and Xj = dpad(Bj)en2 ‖bpad(Bj)⊕ Yjcn2 .

ii. If number of previous queries to CH of the form (?,Xj) is less than µ then it queries (twj , Xj)
to CH to receive Yj . Else it aborts.

(e) A defines Xa+1 = Yl+1 ⊕ δA.

(f) If number of previous queries to CH of the form (?,Xa+1) is less than µ then it queries (twa+1, Xa+1)
to CH to receive Ya+1.

(g) For 1 ≤ j ≤ m,

i. A computes Cj = bMj ⊕ Ya+jc|M | and Xa+j+1 = dpad(Cj)en2 ‖bpad(Cj)⊕ Ya+jcn2 .

ii. If number of previous queries to CH of the form (?,Xa+j+1) is less than µ then it queries
(twa+j+1, Xa+j+1) to CH to receive Ya+j+1. Else it aborts.

(h) A defines Xl+2 = Yl+1 ⊕ δM .

(i) If number of previous queries to CH of the form (?,Xl+2) is less than µ then it queries (twl+2, Xl+2)
to CH to receive Yl+3.

(j) Finally if A doesn’t abort in any of the previous steps, then it defines C := Cm‖ · · · ‖C1 and
T := Yl+3 and sends (C, T) to B.

3. If B produces the distinguishing bit b′ then A also produces the same distinguishing bit b′.

Theorem 1. For any privacy breaking adversary B of mixFeed any µ-TPRP adversary A of Ẽ and any
µ+ 1-multicollision adversary C of Ẽ, we have

AdvprivmixFeed(B) ≤ Advµ-TPRP
Ẽ

(A) + Advµ+1-mcoll
P (C).

Proof. Suppose CH output the bit b ∈ {0, 1}. If b = 1 then CHb(tw,X) = P (tw,X) and if b = 0 then
CHb(tw,X) = ẼK(tw,X). We define the event (CH → b) ∩ (A Aborts) as A b Aborts.

Note that at any stage of the game between A and B, if while computing the encryption query responses
for B, A needs to make a new query of the form (tw

iµ+1

jµ+1
, X

iµ+1

jµ+1
) and it has already queried µ many queries

of the form (twi1j1 , X
i1
j1

), . . . , (tw
iµ
jµ
, X

iµ
jµ

) to CH such that Xil
jl

= Xik
jk

for all l, k ∈ [1, µ+ 1] then A aborts.

Let Dil
jl

=


pad(Biljl) for 1 ≤ jl ≤ ai
dY iljl−1en2 ‖bδAcn2 if jl = al + 1

pad(Ciljl−ai) for al + 2 ≤ jl ≤ (al +ml + 1)

dY iljl−1en2 ‖bδMcn2 if jl = al +ml + 2.

In this case, adversary C can produce µ+ 1 many tuples of the form
(twiljl−1, X

il
jl−1, D

il
jl
, Xil

jl
) such that (0

n
2 ‖bY iljl−1cn2)⊕Dil

jl
= Xil

jl
where

8

CHb(twiljl−1, Xiljl−1) = Y iljl−1 for all l ∈ [1, µ+ 1]. Thus C wins the
µ+ 1-multicollision game.

Hence we have

Pr
[
A b Aborts

]
≤ Pr

[
C produces µ+ 1-multicollisions in the CHb game

]
= Advµ+1-mcoll

CHb (C)

Now suppose the adversary A never aborts i.e never had to violate the µ+ 1-multicollision restriction.
Notice that A playing the above game, perfectly simulates as a privacy challenger for B. Suppose the

TPRP - challenger CH randomly chooses a bit b = 1. Then all the CH queries are responded through P .
Suppose B makes a query of the form (N,A,M). Then it is clear from the game that ∀0 ≤ j ≤ a+m+ 2,
twj are distinct and hence we have Yj are independent and uniformly random outputs from P (twj , ?). Then
since M is known we have Cj = bYa+j ⊕ Mjc|M | are uniformly random and T = Ya+m+2 is uniformly
random. Hence the (C, T) response from A is uniformly random. Hence A acts as a privacy challenger
which responds to the encryption queries uniformly randomly and we have,

Pr
[
B$ = 1 ∩A doesn’t Abort

]
≤ Pr

[
A P = 1

]
.

Similarly if b = 0. Then CH responds to the queries of A correctly with respect to Ẽ and thus the (C, T)
response from A to a (N,A,M) query by B is correctly computed with respect to Ẽ. Hence A acts as a
privacy challenger which responds to the encryption queries correctly with respect to Ẽ an we have

Pr
[
BEnc = 1 ∩A doesn’t Abort

]
≤ Pr

[
A Ẽ = 1

]
Now without loss of generality assume Pr

[
B$ = 1

]
≥ Pr

[
BEnc = 1

]
else we consider the adversary BC

which is compliment of B in the sense that it follows the same security game as B with the difference that
whenever B outputs guessing bit b, BC outputs guessing bit b̄.

Then we have,

Pr
[
B$ = 1

]
− Pr

[
BEnc = 1

]
≤ Pr

[
B$ = 1 ∩A doesn’t Abort

]
+ Pr

[
B$ = 1 ∩A Aborts

]
− Pr

[
BEnc = 1 ∩A doesn’t Abort

]
− Pr

[
BEnc = 1 ∩A Aborts

]
≤ Pr

[
A P = 1

]
− Pr

[
A Ẽ = 1

]
+ Pr

[
A P = 1 ∩A Aborts

]
≤ Pr

[
A P = 1

]
− Pr

[
A Ẽ = 1

]
+ Pr

[
A 1 Aborts

]

Hence, we have,

∣∣∣∣Pr
[
B$ = 1

]
− Pr

[
BEnc = 1

]∣∣∣∣ ≤ ∣∣∣∣Pr
[
A P = 1

]
− Pr

[
A Ẽ = 1

]∣∣∣∣
+ Advµ+1-mcoll

P (C)

9

6.2 Forgery

Let B be any forging adversary of mixFeed. Suppose B makes qd many forging attempts with effectively σd
many encryption blocks. We construct a (µ− 1, σd)-mcp adversary A which uses B to win the (µ− 1, σd)-
multi-commitment-prediction game of Ẽ.

Let CH be a (µ− 1, λ)-mcp challenger. A acts as a forgery challenger for B as follows:

Phase 1 :

1. Whenever B sends an encryption query of the form (N i, Ai,M i)i∈E ,

(a) A responds to the query by computing (Ci, T i) by making the required ẼK queries to CH.

(b) In the previous step, A always follows the restriction that no more than µ− 1 queries to Ẽ have
the same input. Else it aborts.

2. For each j ∈ [1, qd], on receiving decryption queries of the form (N∗j , A∗j , C∗j , T ∗j) from B, A responds
it with ⊥, and does the following:

(a) A checks if B has previously made any encryption query (N i, Ai,M i) and received output of the
form (Ci, T i) such that T i = T ∗j and does the following:

i. if there doesn’t exist any encryption query (N i, Ai,M i) from B such that T i = T ∗j , then A
sets pj = −1.

ii. Else if ∃(N i, Ai,M i) such that T i = T ∗j but N i 6= N∗j or li 6= l∗j then A sets pj = −1.

iii. Else if p′j ∈ Z≥0 be such that C∗jm∗j−k
= Cimi−k,∀k ∈ [0, p′j) and C∗jm∗j−p′j

6= Cimi−p′j
but

dC∗jm∗j−p′jen2 = dCimi−p′jen2 then define pj = p′j + 1.

iv. Else let p′j ∈ Z≥0 be such that C∗jm∗j−k
= Cimi−k,∀k ∈ [0, p′j) and dC∗jm∗j−p′jen2 6= dC

i
mi−p′j

en
2

then define pj = p′j .

(b) A computes Y ∗jk for all k ∈ [0, a∗j +m∗j − pj] with the help of CH following the restriction that no

more than µ− 1 queries to Ẽ have the same input. In that case A aborts.

(c) Note that, if there exist a common prefix between (N i, Ai, Ci) and (N∗j , A∗j , C∗j) then A already
have computed upto the common prefix length during encryption query and thus need not send
any new encryption query to CH for computation up to that point.

Phase 2:

1. For each j ∈ [1, qd]

(a) If pj = −1, then,

i. Note that A knows Y ∗jl∗j+1 from Phase 1 .

ii. A sets commitment of the form ((N∗j , l∗j + 2), dY ∗jl∗j+1en2 , bT
∗jcn

2
).

(b) Else,

i. A defines ∆j
−1 = δM∗j⊕δiMi and for each k ∈ [0, pj], ∆j

k = bpad(C∗jm∗j−k
)cn

2
⊕bpad(Cimi−k)cn

2
; l∗j =

a∗j +m∗j .

10

ii. For each j ∈ [1, qd],and for each k ∈ [0, pj] A makes commitments of the form (tw∗jk , x
∗j
k , y

∗j
k)

where,
tw∗jk = (N∗j , l∗j − k + 1);x∗jk = dC∗jm∗j−ken2

y∗jk = bY ili−k+1cn2 ⊕∆j
k−1.

2. For each j ∈ [1, qd]

(a) If pj = −1,then

i. It calculates X∗jl∗j+2 = Y ∗jl∗j+1 ⊕ δM∗j .

ii. It sets prediction of the form ((N∗j , l∗j + 2), X∗jl∗j+2, bT ∗jcn2).

(b) Else

i. Note that, A knows Y ∗jl∗j−pj
from Phase 1 .

ii. for k = pj to 0,

A. A knows the value of Y ∗jl∗j−k
.

B. A then sets X∗jl∗j−k+1 = (0
n
2 ‖bY ∗jl∗j−kcn2)⊕ C∗jm∗j−k.

C. It sets (tw∗jk , X
∗j
l∗j−k+1, y

∗j
k) as a prediction tuple, where tw∗jk , y

∗j
k are as defined above.

D. finally it queries (tw∗jk , X
∗j
l∗j−k+1) to CH and receives Y ∗jl∗j−k+1.

Theorem 2. For any forging adversary B of mixFeed making qe many encryption queries with σe many
encryption query blocks, qd many decryption queries with σd many decryption query blocks , any (µ− 1, σd)-
mcp adversary A of Ẽ, and any µ+ 1-multicollision adversary C of Ẽ, we have

AdvforgemixFeed(B) ≤ Adv
(µ−1,σd)-mcp

Ẽ
(A) + Adv

(µ+1)-mcoll

Ẽ
(C).

Claim 1. Suppose A never Aborts. If (N∗i, A∗i, C∗i, T ∗i) is a valid forgery,for some i ∈ [1, qd] then for
some k ∈ [−1, pi] we have (tw∗ik , (0

n
2 ‖bY ∗a∗i+m∗i−k

cn
2

) ⊕ C∗m∗i−k
, bY ∗ja∗i+m∗i−k+1cn2) is a successful prediction

query tuple.

Proof. (Claim) Let(N∗j , A∗j , C∗j , T ∗j) is a valid forgery. If there doesn’t exist any encryption query (N i, Ai,M i)
from B such that T i = T ∗j or ∃(N i, Ai,M i) such that T i = T ∗j but N i 6= N∗j or m∗j 6= mi, then we have
pj = −1.

In the commitment phase the adversary A commits ((N∗j , l∗j + 2), dY ∗jl∗j+1en2 , bT
∗jcn

2
) as descibed above.

Now we have if any of the above condition is satisfied then ((N∗j , l∗j + 2), X∗jl∗j+2) is fresh i.e. ((N∗j , l∗j +

2), X∗jl∗j+2) has never been queried before by A to CH, dX∗jl∗j+2en2 = dY ∗jl∗j+1en2 and ẼK((N∗j , l∗j + 2), X∗jl∗j+2) =

T ∗j . Hence we see that ((N∗j , l∗j + 2), X∗jl∗j+2, bT ∗jcn2) is a valid prediction with respect to the commitment

((N∗j , l∗j + 2), dY ∗jl∗j+1en2 , bT
∗jcn

2
) .

Now let (N∗j , A∗j , C∗j , T ∗j) is a valid forgery. and let pj 6= −1 is as defined before. Hence there exist a
i ∈ [1, qe] such that N∗j = N i, a∗j +m∗j = ai +mi = l∗j , T

∗j = T i.

First let p′j ∈ Z≥0 be such that C∗jm∗j−k
= Cimi−k,∀k ∈ [0, p′j) and C∗jm∗j−p′j

6= Cimi−p′j
but dC∗jm∗j−p′jen2 =

dCimi−p′jen2 . In this case pj = p′j + 1. We have by suffix property Y ∗jlj−pj+1 = bY ilj−pj+1cn2 ⊕ ∆j
pj−1 and

∆j
pj−1 6= 0. Since tw∗jpj = twipj we must have X∗jlj−pj+1 6= Xi

lj−pj+1. And hence (tw∗jpj , X
∗j
lj−pj+1, y

∗j
pj) is fresh.

Now let p′j ∈ Z≥0 be such that C∗jm∗j−k
= Cimi−k,∀k ∈ [0, pj) and dC∗jm∗j−p′jen2 6= dC

i
mi−p′j

en
2

. Then we have

pj = p′j and by the suffix property we must have bY ∗jl∗j−pj+1cn2 = bY il∗j−pj+1cn2 . Since dC∗jm∗j−pjen2 6= dC
i
mi−pjen2

11

we have, X∗jl∗j−pj+1 6= Xi
l∗∗j−pj+1 and hence (tw∗jpj , X

∗j
l∗j−pj+1, y

∗j
pj) is fresh where tw∗jpj = (N∗j , l∗j − pj + 1).

In the commitment phase the adversary commits (tw∗jk , x
∗j
k , y

∗j
k) for all k ∈ [0, pj].

Hence if (tw∗jpj , X
∗j
l∗j−pj+1, y

∗j
pj) is a valid prediction with respect to (tw∗jpj , x

∗j
pj , y

∗j
pj) we are done.

If not then we have bY ∗jl∗j−pj+1cn2 6= bY
i
l∗j−pj+1cn2 ⊕ ∆j

pj−1. Hence X∗jl∗j−pj+2 6= Xi
l∗j−pj+2 as C∗jm∗j−pj+1 ⊕

Cimi−pj+1 = 0
n
2 ‖∆j

pj−1. Hence we have (tw∗jpj−1, X
∗j
l∗j−pj+2, y

∗j
pj−1) is fresh. Hence if it is a valid prediction

with respect to the commitment (tw∗jpj−1, x
∗j
pj−1, y

∗j
pj−1) then we are done.

Inductively, suppose we have (tw∗j1 , X
∗j
l∗j
, y∗j1) is not a valid prediction. Then we have bY ∗jl∗j cn2 6= bY

i
l∗j
cn

2
⊕

∆j
0. Hence X∗jl∗j+1 6= Xi

l∗j+1 as C∗jm∗j
⊕ Cimi = 0

n
2 ‖∆j

0. Hence we have (tw∗j0 , X
∗j
l∗j+1, y

∗j
0) is fresh. Now

since we have N∗j = N i, a∗j + m∗j = ai + mi = l∗j , T
∗j = T i, we have X∗jl∗j+2 = Xi

l∗j+2 i.e. Y ∗jl∗j
= Y il∗j

⊕
0
n
2 ‖∆∗j−1. Since (N∗j , A∗j , C∗j , T ∗j) is a valid forgery, hence, we must have ẼK((tw∗j0 , X

∗j
l∗j+1)) = Y ∗jl∗j+1.

Hence, (tw∗j0 , X
∗j
l∗j+1, y

∗j
0) must be a valid prediction.

Proof. Theorem 2. For all encryption query of the form (N i, Ai,M i), A can correctly simulate EncK as it
has access to ẼK .

Note that at any stage of the game between A and B, if while computing the encryption query responses
for B, A needs to make a new query of the form (tw

iµ+1

jµ+1
, X

iµ+1

jµ+1
) and it has already queried µ many queries

of the form (twi1j1 , X
i1
j1

), . . . , (tw
iµ
jµ
, X

iµ
jµ

) to CH such that Xil
jl

= Xik
jk

for all l, k ∈ [1, µ+ 1] then A aborts.

Let Dil
jl

=


pad(Biljl) for 1 ≤ jl ≤ ai
dY iljl−1en2 ‖bδAcn2 if jl = al + 1

pad(Ciljl−ai) for al + 2 ≤ jl ≤ (al +ml + 1)

dY iljl−1en2 ‖bδMcn2 if jl = al +ml + 2.

In this case, adversary C can produce µ+ 1 many tuples of the form
(twiljl−1, X

il
jl−1, D

il
jl
, Xil

jl
) such that (0

n
2 ‖bY iljl−1cn2)⊕Dil

jl
= Xil

jl
where

CHb(twiljl−1, Xiljl−1) = Y iljl−1 for all l ∈ [1, µ+ 1]. Thus C wins the
µ+ 1-multicollision game.

Hence Pr [A Aborts] ≤ Pr [C produces µ+ 1-multicollision].

Note that, pi < m∗i for all i-th decryption query. Hence A makes at most
∑
i pi ≤

∑
imi ≤ σd many

commitments and makes at most σd many queries in Phase 2 to produce at most σd many prediction tuples.

Hence by the claim 1 we have,

Pr [A wins (µ− 1, σd)-mcp game]

≥ Pr [B Forges i-th query for some i ∈ [1, qd]|A doesn’t Abort]

Pr [B Forges] ≤ Pr [B Forges i-th query for some i ∈ [1, qd]|A doesn’t Abort]

+ Pr [A Aborts]

≤ Pr [A wins (µ, σd)-mcp game] + Advµ+1-mcoll

Ẽ
(C)

= Adv
(µ−1,σd)-mcp

Ẽ
(A) + +Advµ+1-mcoll

Ẽ
(C).

12

7 Bounding Security Definitions of Ẽ

Here we bound the advantages of an adversary playing in different security games as defined in Section 5.1.
The tweakable block cipher Ẽ can be best understood from the following diagram.

(N, i)

X

Ẽ
Y

K

≡ /

N

K

E
KN

κ
ρi

ρi(KN)

X

E
Y

Figure 1: The tweable block cipher in mixFeed. Here ρ is the 11-th round key function in AES[7] key scheduling
algorithm. ρi denotes i-many consecutive applications of ρ.

To bound the security definitions of Ẽ we make the following assumption.

Assumption 1. For any K ∈ {0, 1}n chosen uniformly at random, probability that K has a period at most
l is at most l

2
n
2
.

Note that our assumption is weak in the sense that for an ideal permutation the above probability is
at most l

2n . Recently Mustafa Khairallah has observed that there are at least 233.77 keys with a period of
230.08 in the AES Key scheduling algorithm. Note that the probability that one of these keys are used is
233.77

2128 = 2−94.23. Whereas by our assumption the probability is at most 230.08

264 = 2−33.92. So, we conclude
that his observation does not violate our assumption.

7.1 Bounding µ-TPRP Security

Here we try to bound the µ-TPRP -security of the tweakable block cipher Ẽ. Let A be any µ-respecting
adversary playing the µ-TPRP game and makes at most t many primitive queries and d many online queries.
We assume that the adversary doesn’t make repetitive or redundant queries.

7.1.1 The Ideal world and Analysis of Bad events

Let P and E denote the index set of primitive queries and encryption queries respectively.

In ideal world the oracle chooses random functions P : {0, 1}n×{0, 1}n → {0, 1}n and Q : T ×{0, 1}n →
{0, 1}n such that for all K ∈ {0, 1}n we have P (K, ?) is a random permutation and for all tw ∈ T we have
Q(tw, ?) is a random permutation.

Primitive Query: In the Ideal world for the i-th primitive query of the form (Ki, Xi) it computes
Y i = P (Ki, Xi) and sends it as a response.

Define ωt = (Ki, Xi, Y i)i∈P to be the primitive transcript.

Online Query: On receiving the i-th input query of the form ((N i, ji), Xi) it computes Y i = Q((N i, ji), Xi)
and sends it as the response.

Offline Computation : Oracle Chooses K ∈ {0, 1}n uniformly at random. It then chooses a permutation
Π : {0, 1}n → {0, 1}n uniformly at random from the set of all permutations over {0, 1}n. It then defines

KNi := Π(N i) and Ki = αj
i ·KNi .

Define ωd = (K, ((N i, ji), Xi, Y i,Ki)i∈E ,) to be the online transcript.
Define ω = (ωt, ωd) be the transcript for the adversary in the ideal world.

Bad Events: Consider the following events due to ω,

BAD1: For some i ∈ E ∪ P we have Ki = K.

13

BAD2: For some i1 6= i2 ∈ E we have (N i1 , ji1) 6= (N i2 , ji2) but Ki1 = Ki2 .

BAD3: For some i ∈ E and i′ ∈ P we have (Ki, Xi) = (Ki′ , Xi′).

BAD4: ∃i1, . . . iµ+1 ∈ E s.t. Y ik = Y il ∀k, l ∈ [1, µ+ 1].

BAD5: For some i ∈ E and i′ ∈ P we have (Ki, Y i) = (Ki′ , Y i
′
).

Definition 1.
BAD = ∪5

i=1BADi.

Lemma 1.

Pr [BAD] ≤ t+ d

2n
+

d2

2n+1
+

d

2
n
2

+
2µt

2n
+

(
d

µ+1

)
(2n)µ

.

Proof. Here we try to bound the distinct bad events defined above.

Bounding BAD1: Fix i ∈ P ∪E , since K is chosen uniformly at random we have probabilty that Ki = K
is at most 1

2n . similar Varying over all i,

Pr [BAD1] ≤ d+ t

2n

.
Bounding BAD2: This event can be divided into the following cases.

Case 1: (N i1 6= N i2) In this case since Π is a random permutation, KNi1 6= KNi2 are distinct and
independent. Hence probability that Ki1 = Ki2 is atmost 1

2n . Varying over all i1, i2 ∈ E we have,

Pr [Case 1] ≤ d2

2n+1
.

Case 2: (N i1 = N i2 ; ji1 6= ji2) In this case we have KNi1 = KNi2 .

Hence Case 2 event occurs if and only if, ri | (ji1 − ji2) where ri is the periodicity of KNi .

Note that queries of this form arise due to the encryption query of B with nonce N i in the privacy game.

Let li denote the number of blocks in the encryption query of B with nonce N i. Then for all ii, i2 such
that N i1 = N i2 = N i, we have |ji1 − ji2 | ≤ li.

Hence we have ri ≤ li and by Assumption 1 probability that this event holds is at most li
2
n
2

.

Now varying over all possible i and from the observation that
∑
i li ≤ d we have,

Pr [Case 2] ≤
∑
i

li
2
n
2
≤ d

2
n
2
.

Since the above two cases are mutually exclusive we have,

Pr [BAD2] ≤ d2

2n+1
+

d

2
n
2
.

Bounding BAD3: For a given i′ ∈ P, let the adversary makes the primitive query (Ki′ , Xi′). Then there
can be at most µ-many encryption query of the form ((N ik , jik), Xi′)k∈[1,µ],ik∈E and hence at most µ-many

(Kik , Xi′)k∈[1,µ],ik∈E tuples. now since Kik are chosen uniformly at random during encryption query we have

for a given ik ∈ E , probability that Kik = Ki′ is at most 1
2n . Hence for a given i′ ∈ P probability that ∃i ∈ E

s.t. (Ki, Xi) = (Ki′ , Xi′) is at most µ
2n . Varying over all i′, we have

Pr [BAD3] ≤ µt

2n
.

14

Bounding BAD4: Since for each i ∈ E , Y i is chosen uniformly at random. given i1, . . . , iµ+1 ∈ E
probability that Y ij = Y ij for all j ∈ [1, µ+ 1] is at most 1

(2n)µ . Hence varying over all choices of i1, . . . , iµ+1

we have

Pr [BAD4] ≤
(
d

µ+1

)
(2n)µ

.

Bounding BAD5|BAD4 : For a given i′ ∈ P, let the adversary’s primitive transcript be (Ki′ , ?, Y i
′
). Then

there can be at most µ-many encryption transcript of the form ((N ik , jik), ?, Y i
′
)k∈[1,µ],ik∈E and hence at

most µ-many (Kik , Y i
′
)k∈[1,µ],ik∈E tuples. now since Kik are chosen uniformly at random during encryption

query we have for a given ik ∈ E , probability that Kik = Ki′ is at most 1
2n . Hence for a given i′ ∈ P

probability that ∃i ∈ E s.t. (Ki, Y i) = (Ki′ , Y i
′
) is atmost µ

2n . Varying over all i′, we have

Pr
[
BAD5|BAD4

]
≤ µt

2n
.

Adding all the probabilities we get the Lemma.

7.1.2 Real World and Good transcript analysis

The real world has oracle EK . All the primitive queries and the encryption queries are responded based on
the responses of EK .

By good transcript we mean any transcript which is not bad. Now consider a good transcript ω = (ωt, ωd).
Let Θ0 and Θ1 be the transcript random variable obtained in the ideal world and real world respectively.

Then we have Pr [Θ0 = ω] =
∏
ti

1
(2n)ti

× 1
2n ×

1
(2n)d

× 1
(2n)d

.

Where ti denotes the number of primitive Queries with the key K ′i ∈ {0, 1}κ. i.e
∑
i ti = t.

Now note that in the real world the primitive queries and online queries are permutation compatible.

Hence we have Pr [Θ1 = ω] =
∏
ki

1
(2n)ki

× 1
2n ×

1
(2n)d

. Where ki = di+ ti such that ti denotes the number of

primitive queries with key Ki and di denotes the number of encryption queries of the form (N l, jl, X) such
that Kl = Ki. Note that

∑
i ki = d+ t.

Hence

Pr [Θ1]

Pr [Θ0]
=

∏
ti

(2n)ti × 2n × (2n)d × (2n)d∏
ki

(2n)ki × 2n × (2n)d

=

∏
i

(2n)ti × (2n)d∏
i

(2n)ti+di

=
(2n)d∏

i

(2n − ti)di
> 1.

Hence by H-coefficient technique we have, Theorem 3.

Theorem 3.

Advµ-TPRP
Ẽ

(d, t, µ) ≤ t+ d

2n
+

d2

2n+1
+

d

2
n
2

+
2µt

2n
+

(
d

µ+1

)
(2n)µ

.

15

7.2 Bounding (µ, λ)-mcp Security

Here we try to bound the advantage of a µ-respecting adversary A making t-many primitive queries and
d-many online queries playing the (µ, λ)-multi commitment prediction game with a challenger CH .

We assume that the adversary doesn’t make repetitive or redundant queries.
Primitive Queries: Whenever A makes a primitive query of the form (Ki, Xi) for some i ∈ P the CH
responds with Yi = EKi(Xi).Let ωt = (Ki, Xi, Y i)i∈P be the primitive transcript of the adversary A .

Online Queries: Whenever A makes an online query of the form ((N i, ji), Xi) for some i ∈ E , CH checks

that the query is µ-respecting. If not, then it aborts. Else, CH computes KNi = EK(N i), Ki = αj
i ·KNi

and finally outputs Y i = EKi(X) as response.

Let ωd = ((N i, ji),Ki, Xi, Y i)i∈E be the online transcript of the adversary.

Define ω = (ωt, ωd) as the transcript of A .
Bad Events

Consider the following events depending on the transcript ω of the adversary A .

Bad Events due to primitive and encryption query.

BAD1: For some i ∈ E ∪ P we have Ki = K.

BAD2: For some i1 6= i2 ∈ E we have (N i1 , ji1) 6= (N i2 , ji2) but Ki1 = Ki2 .

BAD3: For some i ∈ E and i′ ∈ P we have (Ki, Xi) = (Ki′ , Xi′).

BAD4: ∃i1, . . . iµ+1 ∈ E s.t. Y ik = Y il ∀k, l ∈ [1, µ+ 1].

BAD5: For some i ∈ E and i′ ∈ P we have (Ki, Y i) = (Ki′ , Y i
′
).

Bad event due to multi-commitment prediction game.
BAD 6 : For some i ∈ [1, λ] and k ∈ E , we have a commitment ((N i, ji), xi, yi) is such that, (N i, ji) 6=
(Nk, jk) but Ki = Kk where Ki = ρj

i · EK(N i).

BAD7: For some i ∈ [1, λ] and k ∈ P, we have a commitment ((N i, ji), xi, yi) is such that, (Ki, xi) =

(Kk, bXkcn
2

) where Ki = ρj
i · EK(N i).

Definition 2.
BAD = ∪7

i=1BADi.

Lemma 2.

Pr [BAD] ≤ t+ d

2n
+

d2

2n+1
+

2d

2
n
2

+
2µt

2n
+

(
d

µ+1

)
(2n)µ

+
λd

2n+1
+

λt

2
3n
2

.

Proof. Here we try to bound the distinct bad events defined above.

Bounds of events BAD1 to BAD5 has been found while bounding µ-TPRP security of Ẽ.

Bounding BAD6: This event can be divided into the following cases.

Case 1: (N i 6= Nk) In this case KNi 6= KNk are distinct. Hence probability that Ki = Kk is at most 1
2n .

Varying over all k ∈ E and i ∈ [1, λ] we have,

Pr [Case 1] ≤ λd

2n+1
.

Case 2: (N i = Nk; ji 6= jk) In this case we have KNi = KNk .
Note that, this event occurs if and only if, ri | (ji − jk) where ri is the periodicity of KNi .

Note that, queries of this form arise due to the encryption query of B with nonce N i in the forgery game.

16

Let l denote the maximum block length in any encryption or decryption query of B in the forgery game.
Then for all i, k such that N i = Nk, we have |ji − jk| ≤ l.

Hence we have ri ≤ l and by Assumption 1 probability that this event holds is at most li
2
n
2

.

Now varying over all possible k ∈ E , i ∈ [1, λ] we have, and the observation that l ≤ d we have,

Pr [Case 2] ≤ d

2
n
2
.

Hence

Pr [BAD6] ≤ λd

2n+1
+

d

2
n
2
.

Bounding BAD7: Fix i ∈ [1, λ] and k ∈ P. Since KNi is distributed uniformly at random, and there is no
primitive query after commitment, we have probability that (Ki, xi) = (Kk, bXkcn

2
) is at most 1

2
3n
2

. varying

over all i, k we have,

Pr [BAD7] ≤ λt

2
3n
2

.

Adding all the probabilities we get the Lemma.

Good Transcript Analysis
By good transcript we mean any transcript which is not bad. Now consider a good transcript ω = (ωt, ωd).

Then we have (twi, Xi)i∈[1,λ] is fresh. Hence for a fix i, probability that bẼ(twi, Xi)cn
2

= yi is bounded

by at most 1

2
n
2

. Hence varying over all i ∈ [1, λ] we have,

Pr
[
A Ẽwins the (λ, µ)-mcp game

]
≤ λ

2
n
2
.

Combining the results we have Theorem 4.

Theorem 4.

Adv
(µ,λ)-mcp

Ẽ
(d, t) ≤ λ

2
n
2

+
t+ d

2n
+

d2

2n+1
+

2d

2
n
2

+
2µt

2n
+

(
d

µ+1

)
(2n)µ

+
λd

2n+1
+

λt

2
3n
2

.

7.3 Bounding µ-multi collision

7.3.1 Bounding µ-multi collision for Ẽ

We model E as a random permutation. We assume that the adversary doesn’t make repetitive or redundant
queries.

O Queries: Whenever A makes an online query of the form ((N i, ji), Xi, Ci) for some i ∈ E , O computes

KNi = EK(N i), Ki = αj
i ·KNi and finally outputszi = bY i ⊕ Cicn

2
as response where Y i = EKi(Xi).

Let ωd = ((N i, ji),Ki, Xi, zi)i∈E be the online transcript of the adversary.

We have the µ- multi collision occurs if ∃i1, . . . , iµ ∈ [1, d] such that zik = zil for all k, l ∈ [1, µ].
Consider the following event

BAD: For some ik 6= il ∈ [1, d] we have twik 6= twil but Kik = Kil . As shown earlier, probability of this

can be bounded by d2

2n+1 + d

2
n
2

.

Now suppose ∀k, l ∈ [1, d] we have BAD doesn’t occur. Then Note that the probability of µ-multi
collision is highest when the tweak is same for all the queries.

In that case for a given x ∈ {0, 1}n2 , and fixed ik ∈ [1, d] number of possible tuples of (Y ik , CiK) such
that zik = bY ik ⊕Cikcn

2
= x is bounded by 2

n
2 . Hence varying over all i1, . . . , iµ ∈ [1, d], we have number of

possible tuples (Y i1 , Ci1), . . . , (Y iµ , Ciµ) such that zik = bY ik ⊕ Cikcn
2

= x ∀k ∈ [1, µ] is bounded by 2
µn
2 .

17

Varying over all x ∈ {0, 1}n2 and for all combination of i1, . . . , iµ ∈ [1, d] we have number of ways in which

µ-multi collision occurs is at most
(
d
µ

)
2

(µ+1)n
2 .

Hence we have

Pr
[
µ-mcoll|BAD

]
≤
(
d
µ

)
2

(µ+1)n
2

(2n)µ

≤ d
(

1 +
µ2

2n

)(
d

2
n
2

)µ−1

.

Combining the results of this section we have Theorem 5.

Theorem 5.

Advµ-mcoll

Ẽ
(d) ≤ d

(
1 +

µ2

2n

)(
d

2
n
2

)µ−1

+
d2

2n+1
+

d

2
n
2

.

7.3.2 Bounding µ-multi collision for P

Let P : T ×{0, 1}n → {0, 1}n be a random function such that we have P (tw, ?) is a random permutation for
all tw ∈ T .

We assume that the adversary doesn’t make repetitive or redundant queries.

O Queries: Whenever A makes an online query of the form ((N i, ji), Xi, Ci) for some i ∈ E , O computes
zi = bY i ⊕ Cicn

2
as response where Y i = P (twi, Xi).

Let ωd = ((N i, ji), Xi, zi)i∈E be the online transcript of the adversary.

We have the µ- multi collision occurs if ∃i1, . . . , iµ ∈ [1, d] such that zik = zil for all k, l ∈ [1, µ].

Note that the probability of µ-multi collision is highest when the tweak is same for all the queries.

In that case for a given x ∈ {0, 1}n2 and fixed ik ∈ [1, d] number of possible tuples of (Y ik , CiK) such
that zik = bY ik ⊕Cikcn

2
= x is bounded by 2

n
2 . Hence varying over all i1, . . . , iµ ∈ [1, d], we have number of

possible tuples (Y i1 , Ci1), . . . , (Y iµ , Ciµ) such that zik = bY ik ⊕ Cikcn
2

= x ∀k ∈ [1, µ] is bounded by 2
µn
2 .

Varying over all x ∈ {0, 1}n2 and for all combination of i1, . . . , iµ ∈ [1, d] we have number of ways in which

µ-multi collision occurs is at most
(
d
µ

)
2

(µ+1)n
2 .

Hence we have

Pr [µ-mcoll] ≤
(
d
µ

)
2

(µ+1)n
2

(2n)µ

≤ d
(

1 +
µ2

2n

)(
d

2
n
2

)µ−1

.

Combining the results of this section we have Theorem 6.

Theorem 6.

Advµ-mcoll
P (d) ≤ d

(
1 +

µ2

2n

)(
d

2
n
2

)µ−1

.

18

8 Security Bounds for mixFeed

Here we bound the advantages of an adversary playing in different security games as defined in Section 5.1.

For any adversary running in time t and making atmost q many encryption and decryption(in case of
forgery) query with total of at most σ many blocks,

Theorem 7.

AdvprivmixFeed ≤
t+ σ

2n
+

σ2

2n+1
+

σ

2
n
2

+
2µt

2n
+

(
σ
µ+1

)
(2n)µ

+ σ

(
1 +

(µ+ 1)2

2n

)(
σ

2
n
2

)µ
.

Theorem 8.

AdvforgemixFeed ≤
t+ σ

2n
+

3σ2

2n+1
+

4σ

2
n
2

+
2(µ− 1)t

2n
+

(
σ
µ

)
(2n)µ−1

+
σt

2
3n
2

+ σ

(
1 +

(µ+ 1)2

2n

)(
σ

2
n
2

)µ
.

where n is the state size and µ is the number of multi collisions allowed in the input of the tweakable
blockcipher. For all calculation purposes take µ ≥ 4.

Note that According to NIST requirement σ ≤ 246 and t ≤ 2112. Following our recommendation in Section

2, we take n = 128 and µ = 4. Then We have σ

(
1 + (µ+1)2

2n

)(
σ

2
n
2

)µ
< 2−25 and hence the dominating term

is 2µt
2n Theorem 7 and 2(µ−1)t

2n in Theorem 8 which are both less than 2−12. Hence we conclude that mixFeed
is well secured within the complexity bounds specification of NIST.

Proof. Theorem 7 can be derived from Theorem 1, Theorem 3 and Theorem 6.

Theorem 8 can be derived from Theorem 2 , Theorem 4 and Theorem 5.

References

[1] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Biclique cryptanalysis of the full
AES. In Advances in Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory and
Application of Cryptology and Information Security, Seoul, South Korea, December 4-8, 2011. Proceedings,
pages 344–371, 2011.

[2] Lorenzo Grassi. Mixture differential cryptanalysis: a new approach to distinguishers and attacks on
round-reduced AES. IACR Trans. Symmetric Cryptol., 2018(2):133–160, 2018.

[3] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. Subspace trail cryptanalysis and its applica-
tions to AES. IACR Trans. Symmetric Cryptol., 2016(2):192–225, 2016.

[4] Lorenzo Grassi, Christian Rechberger, and Sondre Rønjom. A new structural-differential property of
5-round AES. In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part II, pages 289–317, 2017.

[5] Khoongming Khoo, Eugene Lee, Thomas Peyrin, and Siang Meng Sim. Human-readable proof of the
related-key security of AES-128. IACR Trans. Symmetric Cryptol., 2017(2):59–83, 2017.

[6] Moses Liskov, Ronald L Rivest, and David Wagner. Tweakable block ciphers. In Annual International
Cryptology Conference, pages 31–46. Springer, 2002.

[7] NIST. Announcing the ADVANCED ENCRYPTION STANDARD (AES). Fedral Information Processing
Standards Publication FIPS 197, National Institute of Standards and Technology, U. S. Department of
Commerce, 2001.

[8] Sondre Rønjom, Navid Ghaedi Bardeh, and Tor Helleseth. Yoyo tricks with AES. In Advances in
Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications of
Cryptology and Information Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I, pages
217–243, 2017.

19

Appendix

Relevant figures for mixFeed

FB+

M

Y

C

X ≡ Y +/
|M|

pad +

0
|Y |
2 ‖bY c |Y |

2

X

C

M

Figure 2: The FB+ Function in mixFeed. pad is 0∗1 padding.

FB−

C

Y

M

X ≡ Y + +

dY e |Y |
2
‖0
|Y |
2

X

M

pad

C

/ |M|

Figure 3: The FB− Function in mixFeed

.

Ẽ
(N,0)
K FB+

A1

FB+

Aa

Ẽ
(N,a)
K

+

δA

Ẽ
(N,a+1)
K

N̄ Y0 X1 Ya−1 Xa Ya Xa+1 Ya+1

FB+

M1

C1

FB+

Mm

Cm

Ẽ
(N,l+1)
K

+

δM

Ẽ
(N,l+2)
K

Ya+1 Xa+2 Yl
Xl+1 Yl+1 Xl+2 T

Figure 4: Block diagram for mixFeed encryption. Here, N̄ = N‖x, where x = 08/071/0610 depending on the
condition that (a 6= 0) or (a = 0 & m 6= 0) or (a = 0 & m = 0) respectively. We define l = a+m.

Test Vectors

Test Vectors for AES’128/128

testvector 1
Input = 000102030405060708090a0b0c0d0e0f
Key = efcb089475ded60586a7d97c64baf3e1
Input = 2f22aa67066bf48cdd3cf0808ebc86ed
Key = 8cc110aba3f926985eef0262bc0e21dc

testvector 2

20

Input = 000102030405060708090a0b0c0d0e0f
Key = efcb089475ded60586a7d97c64baf453
Input = 58f6d4eb08a72d19d1fae7e85634a28e
Key = 21ee22c7c5e266da384848b306dc549d

Test Vectors for mixFeed

testvector 1
Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E
PT =
AD = 000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F
CT = 6CDB385142B591F8E57D50FC41899B23

testvector 2
Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E
PT = 00
AD = 000102030405060708090A0B0C0D
CT = E56EDEC0001E1D94074303E6397D238CCF

testvectors 3
Key = 000102030405060708090A0B0C0D0E0F
Nonce = 000102030405060708090A0B0C0D0E
PT = 000102
AD = 000102030405060708090A0B0C0D0E
CT = 4753140EA6C5D3B01F06BBBC3F55181BB3FFE5

21

	Introduction
	 mixFeed Specification
	Notations and Conventions
	Our Recommendation
	Provenance of Constants used in Tweak Control

	Security of mixFeed
	Known Security Analysis of AES'128/128

	Design Rationale
	Choice of the Mode
	Nonce dependent key
	Minimally xored mixture feedback
	Single State
	Inverse-Free

	Choice of the Block cipher
	Well analyzed and NIST standard
	Dynamic Key

	Preliminaries for Proving Security of mixFeed
	Security Definitions of mixFeed
	Privacy
	Forgery

	 Security Definitions of Tweakable block cipher
	TPRP-security
	Multi-Commitment Prediction
	 Multi-Collision

	Security Reductions of mixFeed
	Privacy
	Forgery

	Bounding Security Definitions of
	Bounding -TPRP Security
	The Ideal world and Analysis of Bad events
	Real World and Good transcript analysis

	Bounding (,)-mcp Security
	Bounding -multi collision
	Bounding -multi collision for
	Bounding -multi collision for P

	Security Bounds for mixFeed

