subterranean_bit.py 11.7 KB
Newer Older
lwc-tester committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
#!/usr/bin/python2
# -*- coding: utf-8 -*-

SUBTERRANEAN_SIZE = 257

def bits_to_hex_string(in_bits):
    string_state = ""
    if(len(in_bits)%8 == 0):
        final_position = len(in_bits) - 8
    else:
        final_position = len(in_bits) - (len(in_bits)%8)
    for i in range(0, final_position, 8):
        temp_value = in_bits[i] + 2*in_bits[i+1] + 4*in_bits[i+2] + 8*in_bits[i+3] + 16*in_bits[i+4] + 32*in_bits[i+5] + 64*in_bits[i+6] + 128*in_bits[i+7]
        string_state = string_state + "{0:02x}".format(temp_value)
    mult_factor = 1
    temp_value = 0
    for i in range(final_position, len(in_bits)):
        temp_value += mult_factor*in_bits[i]
        mult_factor *= 2
    string_state = string_state + "{0:02x}".format(temp_value)
    return string_state

def bytearray_to_bits(value):
    value_bits = [((int(value[i//8]) & (1 << (i%8))) >> (i%8)) for i in range(len(value)*8)]
    return value_bits

def bits_to_bytearray(value):
    value_bytearray = bytearray((len(value)+7)//8)
    if(len(value) != 0):
        if(len(value)%8 == 0):
            final_position = len(value) - 8
        else:
            final_position = len(value) - (len(value)%8)
        j = 0
        for i in range(0, final_position, 8):
            value_bytearray[j] = value[i] + 2*value[i+1] + 4*value[i+2] + 8*value[i+3] + 16*value[i+4] + 32*value[i+5] + 64*value[i+6] + 128*value[i+7]
            j += 1
        mult_factor = 1
        value_bytearray[j] = 0
        for i in range(final_position, len(value)):
            value_bytearray[j] += mult_factor*value[i]
            mult_factor *= 2
    return value_bytearray

def subterranean_round(state_bits):
    # Chi step
    new_state_bits = [state_bits[i] ^ ((1 ^ state_bits[(i+1) % SUBTERRANEAN_SIZE]) & state_bits[(i+2) % SUBTERRANEAN_SIZE]) for i in range(SUBTERRANEAN_SIZE)]
    # Iota step
    new_state_bits[0] ^= 1
    # Theta step
    new_state_bits = [new_state_bits[i] ^ new_state_bits[(i+3) % SUBTERRANEAN_SIZE] ^ new_state_bits[(i+8) % SUBTERRANEAN_SIZE] for i in range(SUBTERRANEAN_SIZE)]
    # Pi step
    new_state_bits = [new_state_bits[(12*i) % SUBTERRANEAN_SIZE] for i in range(SUBTERRANEAN_SIZE)]
    return new_state_bits

def subterranean_init():
    state = [0 for i in range(SUBTERRANEAN_SIZE)]
    return state

def subterranean_duplex(state, sigma):
    # s <= R(s)
    new_state = subterranean_round(state)
    # sbar <= sbar + sigma
    index_j = 1;
    for i in range(len(sigma)):
        new_state[index_j] ^= sigma[i]
        index_j = (176*index_j) % SUBTERRANEAN_SIZE
    # sbar <= sbar + (1||0*)
    new_state[index_j] ^= 1
    return new_state

def subterranean_extract(state):
    value_out = [0 for i in range(32)]
    # value_out <= extract
    index_j = 1;
    for i in range(32):
        value_out[i] = state[index_j] ^ state[SUBTERRANEAN_SIZE-index_j]
        index_j = (176*index_j) % SUBTERRANEAN_SIZE
    return value_out

def subterranean_absorb_unkeyed(state, value_in):
    new_state = [state[i] for i in range(len(state))]
    i = 0
    while(i < len(value_in) - 7):
        new_state = subterranean_duplex(new_state, value_in[i:i+8])
        new_state = subterranean_duplex(new_state, [])
        i += 8
    new_state = subterranean_duplex(new_state, value_in[i:])
    new_state = subterranean_duplex(new_state, [])
    return new_state

def subterranean_absorb_keyed(state, value_in):
    new_state = [state[i] for i in range(len(state))]
    i = 0
    while(i < len(value_in) - 31):
        new_state = subterranean_duplex(new_state, value_in[i:i+32])
        i += 32
    new_state = subterranean_duplex(new_state, value_in[i:])
    return new_state

def subterranean_absorb_encrypt(state, value_in):
    new_state = [state[i] for i in range(len(state))]
    # Y <= *
    value_out = []
    i = 0
    while(i < len(value_in) - 31):
        temp_value_state = subterranean_extract(new_state)
        temp_value_out = [value_in[i+j] ^ temp_value_state[j] for j in range(32)]
        new_state = subterranean_duplex(new_state, value_in[i:i+32])
        value_out = value_out + temp_value_out
        i += 32
    temp_value_state = subterranean_extract(new_state)
    temp_value_out = [value_in[i+j] ^ temp_value_state[j] for j in range(len(value_in)-i)]
    new_state = subterranean_duplex(new_state, value_in[i:])
    value_out = value_out + temp_value_out
    return new_state, value_out

def subterranean_absorb_decrypt(state, value_in):
    new_state = [state[i] for i in range(len(state))]
    # Y <= *
    value_out = []
    i = 0
    while(i < len(value_in) - 31):
        temp_value_state = subterranean_extract(new_state)
        temp_value_out = [value_in[i+j] ^ temp_value_state[j] for j in range(32)]
        new_state = subterranean_duplex(new_state, temp_value_out)
        value_out = value_out + temp_value_out
        i += 32
    temp_value_state = subterranean_extract(new_state)
    temp_value_out = [value_in[i+j] ^ temp_value_state[j] for j in range(len(value_in)-i)]
    new_state = subterranean_duplex(new_state, temp_value_out)
    value_out = value_out + temp_value_out
    return new_state, value_out

def subterranean_blank(state, r_calls):
    new_state = [state[i] for i in range(len(state))]
    for i in range(r_calls):
        new_state = subterranean_duplex(new_state, [])
    return new_state

def subterranean_squeeze(state, size_l):
    new_state = [state[i] for i in range(len(state))]
    # Z <= *
    Z = []
    i = 0
    while(i < size_l - 32):
        temp_value_out = subterranean_extract(new_state)
        new_state = subterranean_duplex(new_state, [])
        Z = Z + temp_value_out
        i += 32
    temp_value_out = subterranean_extract(new_state)
    new_state = subterranean_duplex(new_state, [])
    Z = Z + temp_value_out[:size_l]
    return new_state, Z

def subterranean_xof_init():
    # S <= Subterranean()
    state = subterranean_init()
    return state

def subterranean_xof_update(state, message):
    new_state = subterranean_absorb_unkeyed(state, message)
    return new_state
    
def subterranean_xof_finalize(state, size_l):
    # S.blank(8)
    new_state = subterranean_blank(state, 8)
    # Z <= S.squeeze(l)
    new_state, z = subterranean_squeeze(new_state, size_l)
    return new_state, z
    
def subterranean_xof_direct(message, size_l):
    # S <= Subterranean()
    state = subterranean_init()
    # Only one single message to absorb
    
    state = subterranean_absorb_unkeyed(state, message)
    # S.blank(8)
    state = subterranean_blank(state, 8)
    # Z <= S.squeeze(l)
    state, z = subterranean_squeeze(state, size_l)
    return z

def subterranean_deck_init(key):
    # S <= Subterranean()
    state = subterranean_init()
    # S.absorb(K,MAC)
    state = subterranean_absorb_keyed(state, key)
    return state

def subterranean_deck_update(state, message):
    new_state = subterranean_absorb_keyed(state, message)
    return new_state
    
def subterranean_deck_finalize(state, size_l):
    # S.blank(8)
    new_state = subterranean_blank(state, 8)
    # Z <= S.squeeze(l)
    new_state, z = subterranean_squeeze(new_state, size_l)
    return new_state, z

def subterranean_deck_direct(key, message, size_l):
    # S <= Subterranean()
    state = subterranean_init()
    # S.absorb(K,MAC)
    state = subterranean_absorb_keyed(key)
    # Only one single message to absorb
    state = subterranean_absorb_keyed(state, message)
    # S.blank(8)
    state = subterranean_blank(state, 8)
    # Z <= S.squeeze(l)
    z = subterranean_squeeze(state, size_l)
    return z
    
def subterranean_SAE_start(key, nonce):
    # S <= Subterranean()
    state = subterranean_init()
    # S.absorb(K)
    state = subterranean_absorb_keyed(state, key)
    # S.absorb(N)
    state = subterranean_absorb_keyed(state, nonce)
    # S.blank(8)
    state = subterranean_blank(state, 8)
    return state

def subterranean_SAE_wrap_encrypt(state, associated_data, text, tag_length):
    # S.absorb(A,MAC)
    new_state = subterranean_absorb_keyed(state, associated_data)
    # Y <= S.absorb(X,op)
    new_state, new_text = subterranean_absorb_encrypt(new_state, text)
    # S.blank(8)
    new_state = subterranean_blank(new_state, 8)
    # T <= S.squeeze(tau)
    new_state, new_tag = subterranean_squeeze(new_state, tag_length)
    return new_state, new_text, new_tag

def subterranean_SAE_wrap_decrypt(state, associated_data, text, tag, tag_length):
    # S.absorb(A,MAC)
    new_state = subterranean_absorb_keyed(state, associated_data)
    # Y <= S.absorb(X,op)
    new_state, new_text = subterranean_absorb_decrypt(new_state, text)
    # S.blank(8)
    new_state = subterranean_blank(new_state, 8)
    # T <= S.squeeze(tau)
    new_state, new_tag = subterranean_squeeze(new_state, tag_length)
    # if op = decrypt AND (tag != new_tag) then (Y,T) = (*,*)
    if(tag != new_tag):
        new_text = []
        new_tag = []
    return new_state, new_text, new_tag

def subterranean_SAE_direct_encrypt(key, nonce, associated_data, text, tag_length):
    # S <= Subterranean()
    state = subterranean_init()
    # S.absorb(K)
    state = subterranean_absorb_keyed(state, key)
    # S.absorb(N)
    state = subterranean_absorb_keyed(state, nonce)
    # S.blank(8)
    state = subterranean_blank(state, 8)
    # S.absorb(A,MAC)
    state = subterranean_absorb_keyed(state, associated_data)
    # Y <= S.absorb(X,op)
    state, new_text = subterranean_absorb_encrypt(state, text)
    # S.blank(8)
    state = subterranean_blank(state, 8)
    # T <= S.squeeze(tau)
    state, new_tag = subterranean_squeeze(state, tag_length)
    return new_text, new_tag

def subterranean_SAE_direct_decrypt(key, nonce, associated_data, text, tag, tag_length):
    # S <= Subterranean()
    state = subterranean_init()
    # S.absorb(K)
    state = subterranean_absorb_keyed(state, key)
    # S.absorb(N)
    state = subterranean_absorb_keyed(state, nonce)
    # S.blank(8)
    state = subterranean_blank(state, 8)
    # S.absorb(A,MAC)
    state = subterranean_absorb_keyed(state, associated_data)
    # Y <= S.absorb(X,op)
    state, new_text = subterranean_absorb_decrypt(state, text)
    # S.blank(8)
    state = subterranean_blank(state, 8)
    # T <= S.squeeze(tau)
    state, new_tag = subterranean_squeeze(state, tag_length)
    # if op = decrypt AND (tag != new_tag) then (Y,T) = (*,*)
    if(tag != new_tag):
        print(tag)
        print(new_tag)
        new_text = []
        new_tag = []
    return new_text, new_tag

def crypto_hash(m, out_length_bytes):
    m_bits = bytearray_to_bits(m)
    hash_bits = subterranean_xof_direct(m_bits, out_length_bytes*8)
    hash_out = bits_to_bytearray(hash_bits)
    return hash_out

def crypto_aead_encrypt(m, ad, nsec, npub, k, t_length_bytes):
    m_bits = bytearray_to_bits(m)
    ad_bits = bytearray_to_bits(ad)
    npub_bits = bytearray_to_bits(npub)
    k_bits = bytearray_to_bits(k)
    c_bits, t_bits = subterranean_SAE_direct_encrypt(k_bits, npub_bits, ad_bits, m_bits, t_length_bytes*8)
    joined_c_bits = c_bits + t_bits
    joined_c = bits_to_bytearray(joined_c_bits)
    return joined_c

def crypto_aead_decrypt(c, ad, nsec, npub, k, t_length_bytes):
    joined_c_bits = bytearray_to_bits(c)
    c_bits = joined_c_bits[:len(joined_c_bits)-t_length_bytes*8]
    t_prime_bits = joined_c_bits[len(joined_c_bits)-t_length_bytes*8:]
    ad_bits = bytearray_to_bits(ad)
    npub_bits = bytearray_to_bits(npub)
    k_bits = bytearray_to_bits(k)
    m_bits, t_bits = subterranean_SAE_direct_decrypt(k_bits, npub_bits, ad_bits, c_bits, t_prime_bits, t_length_bytes*8)
    if(t_bits == []):
        return None
    m = bits_to_bytearray(m_bits)
    return m